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Woord vooraf 
If you want to go fast, go alone. if you want to go far, go together. 

African Wisdom 

Dat gezegde is meer dan waar, en misschien nog sterker bij het schrijven van een doctoraat. Dit werk is niet enkel het resultaat van 

mijn inspanningen, maar van de steun en warmte die ik de afgelopen vier jaar heb mogen ervaren. Familie, vrienden, collega’s, mijn 

promotoren, en vooral die ene bijzonder persoon die altijd aan mijn zijde stond, in dit verhaal én in mijn leven. Jullie maakten dit 

mogelijk. 

Graag wil ik mijn collega’s in het UGent-Woodlab bedanken. Jullie gaven me niet alleen een luisterend oor, maar ook energie, plezier, 

en inzicht. Brainstormen met jullie leidde vaak tot de doorbraken waar dit werk op steunt. Bedankt voor alle lunches, gesprekken en 

momenten van inspiratie. In het bijzonder: Stijn Willen, het was een voorrecht je bureaupartner te zijn; jouw technische inzicht en 

goedgezindheid waren goud waard. Ik zal onze precisiewerkjes, zoals het zagen van de beukenstam, nooit vergeten. Toon Gheyle, 

bedankt voor je enthousiasme dat het werk altijd lichter maakte. Maxime Dekegeleer, onze gesprekken over AI gaven me inzichten die 

dit onderzoek sterker hebben gemaakt. Maarten Perneel, bedankt voor je tijd, behulpzaamheid, en me een beetje extra wegwijs te 

maken in neurale netwerken en computer visie. Liselotte De Ligne, jouw begeleiding en huiselijkheid bij mijn masterproef waren 

fundamenten waar ik op kon bouwen. Ik ben zeker dat anderen dit ook ervaren, en ik twijfel er geen seconde aan dat je die mooie 

waarden ook mee zal geven aan je kinderen. Joris Van Acker, jij hebt mijn liefde voor hout verder aangewakkerd en gevoed – jouw 

lessen, begeleiding en steun hebben mij mede gevormd en hebben me op een pad gestuurd dat ik met plezier heb mogen bewandelen. 

Ook wil ik graag Katrien en Kasper bedanken: jullie vriendschap en onze gezellige lunches als alumni waren telkens iets om naar uit 

te kijken. 

Ook alle jobstudenten en stagiaires met wie ik samen heb mogen werken wil ik graag bedanken. Naast Michael Monnoye wil ik ook 

Miro Cnops, Senne Suyckerbuyck, en Tibo Deckers bedanken voor al hun hulp bij het annoteren. Simon Vansuyt ook jou wil ik bedanken 

voor de inzet en kunde waarmee je een CNC machine kon ombouwen naar een indrukwekkend robot voor hoogwaardige beeldname. 

Ik wens je veel succes in je toekomstige carrière.  

In het Africamuseum wil ik graag al mijn collega's doorheen de tijd bedanken voor de fijne collegiale momenten. Ook in het 

Africamuseum zijn er enkele personen die ik graag extra in de verf wil zetten. Te beginnen met een persoon die het meeste praktisch 

werk verzet heeft voor mijn doctoraat. Daniel Wallenus, jouw tomeloze inzet voor SmartWoodID en de houtcollectie, je vriendelijkheid 

en eindeloze uren densiteitmetingen, foto’s, en scanning zijn van onschatbare waarde. Verder wil ik ook in het bijzonder Michael 

Monnoye bedanken. We hebben elkaar leren kennen als PhD student en jobstudent, maar daaruit is uiteindelijke een collegiaal gegeven 

mogen groeien. Je inzet voor het annoteren van de houtkenmerken en je verdere ontwikkeling als jonge ervaren houtidentificatie 

expert, zijn indrukwekkend en ik hoop dat we in de toekomst nog veel samen mogen werken om samen houtidentificatie nog 

efficiënter, accurater en toegankelijker te mogen maken voor het bestrijden van illegale houthandel. Kévin Lievens, onze brainstormen 

waren onvergetelijk. Ze waren een genot en hebben me veel bijgebracht. Ik wens je veel succes in je nieuwe uitdaging. Eric Van 

Herreweghe, al was onze tijd als collega's kort, ik kan terugkijken op je inzichten en onze carpoolgesprekken als waardevolle lessen. 

Ze hebben de fundamenten gevormd voor automatisering en nieuwe onderzoeksmogelijkheden. Ook de technische ondersteuning wil 

ik graag bedanken met in het bijzonder: Dieter Van Hassel, bedankt voor je kennis en inzet rond databanken en het online beschikbaar 

maken van SmartWoodID. Franck Theeten, voor je creatieve ideeën en hulp bij deep learning. Kristof Bollen, voor je snelle en vriendelijke 

technische ondersteuning die altijd klaar stond. Bovendien wil ik ook graag de directie bedanken. 

Naast mijn collega’s in wil ik ook een bijzonder groepje mensen bedanken. Mensen die zich over de jaren ingezet hebben voor 

wetenschappelijk werk vanuit hun eigen initiatief.  Ik wil graag alle vrijwilligers bedanken die me geholpen hebben bij het digitaliseren 

en managen van de SmartWoodID collectie en bij uitbreiding de Tervuren houtcollectie. Cécile De Troyer, Frank Simoens, Michèle 

Florquin, Ferre Caron, Olayemi Razaq Saliu, Véronique Maes, Philippe Quintin, Patrick De Snijder, en José Kempenaers. Verder wil ik 

graag Luiza Mitrache bedanken voor de Citizen science initiatieven die dit mogelijk maken. 

Verder wil ik ook graag iets groters bedanken dan enkele bijzonder individuen. Ik wil alle voorgaande wetenschappers bedanken, en in 

het bijzonder allen die hebben bijgedragen aan de twee instituten waarin ik zo hartelijk ben verwelkomd. Mijn onderzoek zou nooit 

mogelijk zijn geweest zonder jullie steun en inspanningen. In essentie: 

I stand on the shoulders of giants. 

Bernard of Chartres & sir Isaac Newton 
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En de grootste giant is daarbij de Tervuren houtcollectie. Deze impressionante collectie is de basis van mijn onderzoek, wat niet 

mogelijk geweest zou zijn zonder al wetenschappelijk werk dat mijn voorgangers gedaan hebben in de afgelopen eeuw. Jullie, en alle 

onderzoekers uit het verleden wil ik bedanken, opdat ik op jullie kennis verder mocht bouwen en dat anderen na mij dat ook mogen. 

Extern wil ik ook graag Bart Peeters en Filip Mollé bedanken voor hun inzicht en vriendelijkheid om samen de automatisering uit te 

werken, die befaamde robotarm aan te kopen, ondanks de uitdagende administratieve procedures aan de overheid. Ook Kristof Haneca, 

Tom De Mil, Steven Janssens, Alex Dedeckel en vele anderen wil ik bedanken om jullie te hebben mogen leren kennen tijdens mijn 

doctoraat en hopelijk nog beter in de toekomst. 

Ik wil graag de jury leden bedanken voor hun zorgvuldige en inzichtvolle feedback. Daarbij wil ik graag een speciaal woord van dank 

brengen aan Victor De Klerck. Uw ervaring, warmte en geloof in mij waren een bron van kracht. Uw woorden – dat inzet en gedrevenheid 

minstens even belangrijk zijn als punten – hebben me gedragen. U bent een voorbeeld en een inspiratie. Ik ben dankbaar dat ik met u 

heb mogen samenwerken en hoop dat dit in de toekomst nog vaak het geval zal zijn. 

Naast al die fijne collega’s wil ik nu graag in het bijzonder mijn promotoren bedanken. Elk van jullie hebben me waardevolle lessen 

geleerd waardoor ik niet alleen als wetenschapper, maar ook als mens heb kunnen groeien. 

Ik wil Jan Van den Bulcke bedanken. Ik heb veel ontzag voor de manier waarop u wetenschap beoefent. Uw efficiëntie, oog voor detail 

en vermogen om steeds meteen tot de essentie te komen, hebben me enorm geholpen om beter te leren schrijven en informatie helder 

over te brengen. Ik heb genoten van onze samenwerking en hoop oprecht dat die in de toekomst verdergezet kan worden. 

Jan Verwaeren, ook u wil ik graag bedanken voor de vele aangename en inzichtvolle gesprekken. Ze hebben me veel geleerd over data-

analyse en over de manier waarop ik naar onderzoek kan kijken. Uw toewijding om mij steeds bij te staan met antwoorden over deep 

learning was cruciaal om dit doctoraat tot een goed einde te brengen. Uw vriendelijkheid en geduld heb ik bijzonder geapprecieerd. 

Wannes Hubau, ik ben u dankbaar voor alle ondersteuning, maar in het bijzonder voor uw inzet met het oog op de toekomst. De tijd en 

moeite die u hebt geïnvesteerd in het voorzien van sponsoring en het samen uitschrijven van nieuwe projecten betekenen veel voor 

mij en mijn verdere carrière. Ik ben blij dat u me kansen biedt om hopelijk mijn onderzoek voort te zetten en dat u mijn ideeën ziet als 

waardevolle pistes voor toekomstig werk. Mijn dank is nu groot, maar ik weet dat die in de toekomst alleen maar verder zal groeien. 

Ten slotte wil ik een zeer bijzondere promotor bedanken: Hans Beeckman. U hebt mij iets gegeven dat ik nooit kan teruggeven: een 

kans. Zonder u had ik dit avontuur nooit kunnen aangaan. U schonk een onbekende, pas afgestudeerde bio-ingenieur, die u nog niet 

kende, de mogelijkheid om in te stappen in een project dat u nauw aan het hart lag. Dat vertrouwen betekende alles voor mij. Het 

leerde me hoe belangrijk het is om jonge onderzoekers kansen te geven. De tijd die u vrijmaakte voor doelgerichte, pragmatische 

ondersteuning heeft me doen groeien als wetenschapper en als persoon. Ook nu u met pensioen bent, weet ik dat ik nog steeds op u 

kan rekenen. Ik hoop oprecht dat ik u nog vele jaren mag kennen en dat we samen nog veel kunnen realiseren—tot we de volledige 

Tervuren houtcollectie hebben gedigitaliseerd en alle houtsoorten ter wereld in kaart hebben gebracht. 

Ten slotte wil ik ook al mijn vrienden en familie bedanken voor hun onvoorwaardelijke betrokkenheid bij mij en mijn onderzoek. Jullie 

oprechte interesse en enthousiasme waren voor mij een baken van motivatie en bevestiging dat mijn werk er werkelijk toe doet. Soms 

zag ik de ogen wel eens wegdromen wanneer ik weer te enthousiast over mijn onderzoek vertelde, maar toch bleven jullie vragen naar 

mijn werk. Dat vertrouwen en die warmte zijn misschien wel het mooiste geschenk dat jullie mij konden geven. 

In het bijzonder wil ik mijn ouders bedanken. Mama en Papa, jullie maakten het mogelijk dat ik kon studeren en hebben mij altijd 

gesteund in mijn keuzes. Jullie geloof in mij heeft de basis gelegd voor alles wat ik vandaag bereikt heb. Ook mijn grootmoeder, Marie 

‘Mammie’ Wynant, wil ik hier met veel dankbaarheid vernoemen. Dankzij jou leerde ik Hans kennen, wat de deur geopend heeft naar 

deze vier fantastische jaren.  

En bovenal wil ik mijn vrouw, Kim, bedanken. Laat niemand ooit zeggen dat een doctoraat geen druk zet op een relatie; vooral dit 

laatste jaar was zwaar tijdens de afwerking van dit manuscript. Liefje, zonder jouw steun had ik dit nooit kunnen volbrengen. Terwijl 

jij zelf aan je eigen doctoraat begon en daarnaast ook nog het huishouden grotendeels op je nam, bleef je me aanmoedigen en kracht 

geven om door te zetten (soms lief en warm, maar altijd recht voor de raap en ongefilterd). Zelfs wanneer ik gefrustreerd mijn bureau 

kapot kon timmeren op het programmeren, of eens zat te klagen over mijn werk, bleef jij geduldig en begripvol. Ik weet dat dit niet 

altijd eenvoudig was. Voor al die steun, voor al dat geduld en voor de liefde waarmee je me door deze storm hielp, ben ik je eindeloos 

dankbaar. 
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List of abbreviations 
AI Artificial Intelligence 

API Application Programming Interface 

AUC Area Under the Curve  

BCE Binary Cross Entropy 

BELSPO Belgian Science Policy Office  

CCE Categorical Cross Entropy 

CDF cumulative distribution function  

CITES Convention on International Trade in Endangered Species 

CNN Convolutional Neural Networks 

CROSR Classification-Reconstruction learning for Open-Set Recognition  

CT Computed Tomography 

CV Computer Vision 

DART Direct Analysis in Real Time  

DRC Democratic Republic of the Congo 

DT Decision Tree 

EUDR European Union Deforestation Regulation  

EUTR European Union Timber Regulation  

FLEGT Forest Law Enforcement, Governance and Trade 

Grad-CAM Gradient Weighted Class Activation Mapping 

IAWA International Association of Wood Anatomists  

IIIF International Image Interoperability Framework 

IUCN International Union for Conservation of Nature 

IUFRO  International Union of Forest Research Organizations 

NIRS Near-Infrared Spectroscopy  

ReLU Rectified Linear Unit  

RF Random Forests 

RGB Red Green Blue 

RMCA Royal Museum for Central-Africa 

SVM Support Vector Machines 

TOFMS Time-Of-Flight Mass Spectrometry 
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Summary (Dutch) 
Illegale houtkap vormt een ernstige bedreiging voor bossen en kan onherstelbare schade met zich 
meebrengen, zeker wanneer beschermde boomsoorten worden geëxploiteerd. Naar schatting is tussen de 
30 en 90 procent van het verhandelde tropisch hout illegaal gekapt. Om dit tegen te gaan zijn verschillende 
regelgevingen en beleidsmaatregelen ingevoerd, gericht op meer transparantie en traceerbaarheid binnen 
de houtketen. Voorbeelden hiervan zijn het FLEGT-actieplan, de Europese Houtverordening (EUTR), de 
Europese Ontbossingsverordening (EUDR), de Amerikaanse Lacey Act en het CITES-verdrag. Het succes 
van deze maatregelen hangt in grote mate af van één cruciale voorwaarde: de snelle en betrouwbare 
identificatie van houtsoorten, van het moment van kap tot aan transport, opslag en uitvoer. 

Houtidentificatie gebeurt a.d.h.v. anatomische, chemische en genetische technieken. Van deze methoden 
is de anatomische analyse – gebaseerd op de structuur van houtcellen en -weefsels – het meest 
gebruikelijk. De IAWA heeft gestandaardiseerde kenmerken opgesteld die wereldwijd als referentie gelden. 
Microscopische analyse levert een hoge nauwkeurigheid op, maar vereist gespecialiseerde apparatuur, 
training en tijdrovende voorbereiding van stalen. Daardoor is deze methode minder geschikt voor screening 
in het veld. Macroscopische analyse, waarbij gekeken wordt naar kenmerken die met het blote oog of een 
loep zichtbaar zijn op vers gezaagde of geschuurde oppervlakken, is veel toegankelijker en goedkoper. 
Vooral een dwarsdoorsnede van het hout toont belangrijke kenmerken zoals de ligging van vaten, breedte 
van stralen en verdeling van parenchym – elementen die vaak worden gebruikt in veldgidsen.  

Toch kent deze methode duidelijke beperkingen. Het aantal waarneembare kenmerken is beperkt, en er 
bestaat vaak grote variatie binnen dezelfde soort. Dat maakt het moeilijk om met zekerheid een soort te 
benoemen. De IAWA-kenmerken zijn bovendien beschrijvend van aard (“aanwezig”, “variabel”, “afwezig”), 
wat subtiele maar relevante verschillen kan verhullen en interpretatie subjectief maakt. Bovendien is er tot 
op het heden weinig onderzoek uitgevoerd naar hoe goed deze kenmerken werkelijk onderscheid tussen 
houtsoorten mogelijk maken, vooral in soortenrijke tropische gebieden. Daardoor blijven betrouwbare 
identificatiesleutels en de ontwikkeling van nieuwe herkenningsmodellen achter. 

Beeldherkenning via computer visie biedt hierin een veelbelovend alternatief. CNNs kunnen zelfstandig 
visuele kenmerken herkennen op foto’s van houtdoorsneden en zo automatisch en snel soorten 
identificeren. Deze technologie werkt op draagbare apparaten en wordt al toegepast in de praktijk, 
bijvoorbeeld met het XyloTron-systeem in Ghana. Toch kent ook deze aanpak uitdagingen. De trainingsdata 
bestaat vaak uit perfecte stalen, terwijl hout in de praktijk beschadigd kan zijn door bijvoorbeeld scheuren, 
verkleuring of aantasting door insecten of schimmels. Zulke schade kan kenmerken verbergen en de 
nauwkeurigheid van modellen aantasten. Recente studies (zoals Ravindran et al., 2023 en Owens et al., 
2024) hebben aangetoond dat beschadiging de prestaties beïnvloedt, maar er wordt nog weinig rekening 
gehouden met dit soort schade tijdens het trainen van modellen. 

Een ander knelpunt is dat de meeste CNN-modellen uitgaan van een gesloten systeem: ze gaan ervan uit 
dat elk monster tot een bekende soort behoort. In regio’s met veel biodiversiteit is dat niet realistisch, 
omdat daar ook onbekende of moeilijk te onderscheiden soorten voorkomen. Pogingen om dit op te lossen 
met opt-out categorieën of drempelwaarden hebben tot nu toe weinig succes gehad. Daarom groeit de 
belangstelling voor zogenaamde open-wereldmodellen. Een veelbelovende aanpak hierin is object-
herkenning via re-identificatie: beelden worden vertaald naar zogeheten ‘embeddings’, een soort digitale 
vingerafdruk, waarbij beelden van dezelfde soort in dezelfde cluster vallen. Nieuwe beelden kunnen dan 
vergeleken worden met een referentiedatabase. Met technieken als triplet learning en binaire verificatie 
worden modellen getraind om subtiele verschillen tussen soorten te herkennen. Hoewel deze aanpak 
complexer is en nauwkeurige selectie van trainingsvoorbeelden vereist, sluit ze beter aan bij hoe experts in 
de praktijk te werk gaan: via vergelijking in plaats van categorisatie. 

Een belangrijke uitdaging bij het opzetten van effectieve herkenningssystemen is de enorme 
soortenrijkdom van bomen wereldwijd, vooral in tropische gebieden zoals de DRC. Hout is bovendien een 
zeer variabel materiaal, beïnvloed door genetica, groeiplaats en de positie binnen de boom (bijvoorbeeld 
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stam versus tak). Daardoor is het lastig om uniforme herkenningskenmerken vast te stellen. Ook worden 
wetenschappelijke namen regelmatig herzien, wat het samenstellen van betrouwbare databases 
bemoeilijkt. In de houtindustrie worden soorten bovendien vaak gegroepeerd onder handelsnamen, die 
niet altijd overeenkomen met botanische realiteit. Bestaande databases zoals InsideWood, 
macroHOLZdata, CITESWoodID en het Atlas of Macroscopic Wood Identification bieden nuttige informatie, 
maar bevatten vaak te weinig variatie binnen soorten en zijn niet altijd gekoppeld aan fysieke referenties. 
Daardoor zijn ze minder geschikt voor het trainen van robuuste AI-modellen. De beperkingen en 
achterliggend problematiek wordt omschreven in hoofdstuk 1 a.d.h.v. literatuur. 

Om deze beperkingen tegemoet te komen, ontwikkelden we SmartWoodID – de grootste 
referentiedatabase van gelabelde macroscopische houtdoorsneden, specifiek bedoeld voor snelle en 
nauwkeurige soortherkenning in de DRC, waar illegale houtkap veel voorkomt. De database is gebaseerd 
op de uitgebreide Tervuren houtcollectie (ondergebracht in het Koninklijk Museum voor Midden-Afrika, 
Tervuren, België) en bevat meerdere, kwalitatief hoogwaardige beelden per soort, met focus op 
commercieel belangrijke taxa. In tegenstelling tot andere databases bevat SmartWoodID ook hout met 
zichtbare schade of variatie, zoals scheuren, schimmel of insectenvraat. Hierdoor zijn modellen die op 
deze beelden getraind zijn beter bestand tegen realistische veldomstandigheden. De bouw van deze 
databank wordt beschreven in hoofdstuk 2. 

In hoofdstuk 3 onderzochten we de in welke mate de 31 gestandaardiseerde kenmerken bij 601 
houtsoorten identificatie mogelijk maken, gebruikmakend van de SmartWoodID-database. Hoewel deze 
kenmerken helpen om binnen kleine taxonomische groepen te onderscheiden, bleken ze op bredere schaal 
onvoldoende onderscheidend. Modellen die alleen op deze kenmerken gebaseerd waren, behaalden 
slechts ongeveer 50% nauwkeurigheid op genusniveau bij 56 Congolese commerciële houtsoorten. Dit 
benadrukt de noodzaak om ook de andere houtanatomische kenmerken, zichtbaar op andere vlakken en 
bij grotere microscopische vergroting, te gebruikenen te combineren met andere methoden. 

Hoofdstukken 4 en 5 onderzochten CNN-modellen die getraind werden op beelden van houtdoorsneden. 
Deze modellen bleken veel beter in staat om fijne kleur- en textuurpatronen te herkennen – informatie die 
experts intuïtief gebruiken, maar niet in vaste kenmerken wordt vastgelegd. CNNs presteerden aanzienlijk 
beter dan modellen op basis van handmatige geannoteerde kenmerken, met nauwkeurigheden boven de 
85% en in meer dan 95% van de gevallen stond het juiste genus in de top zes voorspellingen. Dit bevestigt 
dat visuele data meer diagnostische waarde heeft dan eerder werd aangenomen, en dat AI deze informatie 
effectief kan benutten. 

Omdat in de praktijk vaak een combinatie van visuele indrukken en gestandaardiseerde kenmerken wordt 
gebruikt, onderzochten we in hoofdstuk 6 of deze twee benaderingen gecombineerd konden worden. Het 
opnieuw rangschikken van CNN-voorspellingen met behulp van handmatige kenmerken leverde voor 
sommige soorten verbeteringen op, maar bij andere – waaronder belangrijke zoals Khaya – leidde het tot 
lagere nauwkeurigheid. Dit wijst op het belang van zorgvuldige afstemming bij het combineren van 
methodes. 

We onderzochten ook hoe de samenstelling van de trainingsdata de prestaties beïnvloedt. Modellen 
presteerden beter naarmate er meer verschillende monsters en grotere scanoppervlakken beschikbaar 
waren. Modellen getraind op onbeschadigde beelden behaalden de hoogste sensitiviteit (90,5%), gevolgd 
door gemengde (88,4%) en beschadigde beelden (79,1%). Analyse met Grad-CAM liet zien dat modellen 
zich vooral richten op intacte structuren, wat het belang van zorgvuldig monsterbeheer en beeldkwaliteit 
benadrukt. 

Tot slot keken we in hoofdstuk 5 naar herkenningsstrategieën voor open-wereldtoepassingen (scenario’s 
waarin niet alle mogelijke soorten vooraf in het model zijn opgenomen). Binaire verificatie, waarbij beelden 
vergeleken worden met referentievoorbeelden in plaats van direct geclassificeerd, bleek robuust en 
effectief – zelfs bij onbekende soorten. Deze aanpak is bijzonder geschikt voor situaties waarin de vraag 
niet is "welke soort is dit?" maar "komt deze soort overeen met wat is opgegeven?". In vrijwel alle gevallen 
presteerde deze methode minstens zo goed als of beter dan traditionele classificatie. 
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We onderzochten ook triplet learning, waarbij beelden worden omgezet in numerieke vectoren die het 
anatomisch patroon vastleggen. Deze vectoren kunnen vervolgens worden vergeleken of ingevoerd in 
eenvoudige technieken zoals nearest neighbour of XGBoost. De eerste resultaten waren gemengd – 
mogelijk door suboptimale training – maar de aanpak blijft veelbelovend, vooral voor toekomstige 
systemen die meerdere soorten data (zoals DNA of chemische profielen) combineren. 

Dit onderzoek biedt een directe vergelijking van houtidentificatie a.d.h.v. traditionele houtkenmerken en 
CNN-classificatie op houtsoorten in de DRC. Het benadrukt het belang van open-wereld benaderingen 
voor de ontwikkeling van betrouwbare, schaalbare en toegankelijke identificatiesystemen. De bevindingen 
bieden waardevolle handvatten voor de bestrijding van illegale houtkap en vormen de basis voor de 
volgende generatie AI-ondersteunde houtherkenningstools.  
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Summary (English)  
Illegal logging significantly impacts forests, posing a high risk of irreversible damage, particularly when 
exploiting populations of protected species. Thirty to ninety percent of traded tropical timber is estimated 
to have been harvested illegally. In response, a range of regulatory frameworks has been established to 
enhance transparency and traceability within the timber supply chain. These include the FLEGT Action 
Plan, the EUTR and EUDR, the U.S. Lacey Act, and CITES. The effectiveness of these measures, however, 
hinges on a single critical capability: the rapid and accurate identification of wood species across all stages 
of the supply chain—from forest harvest sites to transport hubs, storage facilities, and ports. 

Wood identification methods encompass anatomical, chemical, and genetic techniques. Of these, 
anatomical assessment—based on the observation of wood's cellular and tissue structures—remains the 
most widely applied. The IAWA provides standardized anatomical features that underpin global anatomical 
assessment practices. While microscopic analysis offers high taxonomic resolution, it is constrained by 
the need for specialized equipment, expert training, and intensive sample preparation, limiting its utility for 
frontline enforcement. Macroscopic anatomical assessment, by contrast, relies on features visible to the 
naked eye or a hand lens and provides a more accessible, low-cost alternative applicable to freshly cut or 
sanded surfaces. Cross-sectional views are especially informative, revealing diagnostic traits such as 
vessel arrangement, ray width, and parenchyma distribution—features used in field keys and identification 
guides. 

Despite its operational simplicity, macroscopic anatomical assessment is limited by the relatively small 
number of observable features and significant intra-species variation, which can undermine diagnostic 
accuracy. Furthermore, the categorical nature of IAWA descriptors (e.g., "present," "variable," "absent") 
may obscure subtle but taxonomically relevant variation and introduce subjectivity in interpretation. 
Importantly, the actual discriminatory power of these features—especially in species-rich tropical 
regions—has not been systematically evaluated at scale, constraining the development of reliable 
identification keys and limiting the benchmarking of emerging data-driven models. 

CV offers a compelling alternative by automating wood species recognition through image analysis. CNNs, 
in particular, can extract diagnostic features directly from macroscopic cross-sectional images, enabling 
rapid and accurate assessments. These models can operate on portable devices and have already been 
piloted in enforcement scenarios, such as with the XyloTron system in Ghana. However, existing computer 
vision applications face key limitations. Training and testing data are often derived from pristine specimens, 
raising concerns about robustness in real-world conditions, where samples may exhibit cracks, insect 
damage, discoloration, or fungal decay. These factors can obscure anatomical features and degrade model 
performance. Recent studies (e.g., Ravindran et al. 2023; Owens et al. 2024) have begun to quantify the 
impact of occlusion of anatomical information on classification accuracy, but do not tackle the influence 
of including damage during training of models. 

Moreover, most CNN-based models adopt a multiclass classification approach, which assumes that all 
test samples belong to a fixed set of known species. This closed-world assumption limits their applicability 
in biodiverse regions, where unknown or closely related species may occur. Attempts to mitigate this 
limitation through opt-out classes or confidence thresholds have shown limited success. In response, the 
field is increasingly turning to open-world recognition frameworks. One promising approach is object re-
identification, which encodes images as embedding vectors (anatomical fingerprints) within a learned 
feature space, where samples from the same species form clusters. Identification is then performed by 
comparing a query image to a reference database, allowing recognition of both known and novel species. 
Training strategies such as triplet learning and binary verification promote the learning of discriminative, 
species-specific representations. While more complex to implement—requiring careful sample selection 
and robust loss functions—re-identification approaches offer generalizability to timbers beyond the 
taxonomic scope of the training data, and align more closely with expert practices, which often rely on 
comparative rather than categorical judgments. 
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A central challenge in building effective wood identification systems is the immense diversity of tree 
species worldwide, particularly in tropical regions like the DRC. Wood is a highly variable biological 
material, influenced by genetics, environmental conditions, and intra-tree location (e.g., trunk vs. 
branches, pith vs. bark). This complexity makes it difficult to define consistent diagnostic criteria. 
Additionally, taxonomic classifications are frequently revised, complicating database curation. 
Commercial trade further obscures species-level identification by grouping timbers under broad trade 
names based on physical properties rather than botanical identity. Current databases, such as 
InsideWood, macroHOLZdata, and CITESWoodID, and the Atlas of Macroscopic Wood Identification, offer 
valuable resources but may not cover the necessary variability that wood anatomical feature can portray 
within a species. InsideWood, for example, compiles species descriptions and images but often 
generalizes from limited specimens and lacks traceability to physical references. This constrains 
assessments of intra-specific variation and undermines the reliability of training data for machine learning 
models. The limitations and underlying problems are described in Chapter 1, based on literature.  

To address these limitations, we built SmartWoodID, the largest reference database of annotated 
macroscopic cross-sectional images designed to support rapid and accurate wood identification in the 
DRC, a hotspot of illegal logging. SmartWoodID draws on the extensive Tervuren wood collection and 
includes multiple high-quality images per species, prioritizing economically important taxa. Unlike other 
databases, SmartWoodID intentionally includes specimens with natural variation and surface defects 
(e.g., cracks, fungal stains, insect damage) to better represent real-world conditions. This ensures that 
models trained on the dataset are more resilient to the variability encountered in field applications. The 
construction of this database is described in Chapter 2. 

In Chapter 3, we systematically evaluated the diagnostic utility of 31 standardized macroscopic features 
across 601 timber species using the SmartWoodID dataset. While useful for narrowing identifications 
within small taxonomic scopes, these features exhibited limited discriminatory power at broader scales. 
Predictive models based solely on expert-defined features achieved only ~50% genus-level accuracy 
across 56 commercial Congolese genera, with significant anatomical overlap and large candidate sets 
required for confident identifications. These findings highlight the need to reassess the diagnostic validity 
of traditional descriptors and suggest that future research should explore both improvements to feature-
based methodologies and complementary techniques to enhance field applicability. 

To investigate whether visual information not captured by standard descriptors could improve 
identification, Chapters 4 and 5 explored CNN models trained on raw cross-sectional images. These 
models preserved nuanced patterns of colour and texture that experts intuitively use but which are not 
codified in existing feature sets. CNNs achieved substantially better performance than feature-based 
models, with precision, recall, and accuracy all exceeding 85% at the genus level. The correct genus was 
among the top six predictions in over 95% of test cases. These results affirm that raw visual data contains 
richer diagnostic information than codified features alone and that CV can effectively harness this 
information. 

Recognizing that real-world identifications often integrate anatomical descriptors and visual impressions, 
Chapter 6 examined whether expert-defined features could be used to refine CNN predictions. Re-ranking 
top-k CNN outputs using feature data led to modest improvements for some genera but reduced accuracy 
for others, including priority genera such as Khaya. This indicates that while hybrid approaches have 
potential, their implementation must be carefully tailored to avoid counterproductive effects. 

The study also addressed critical factors in building effective training databases. Empirical analyses 
showed that increasing specimen representation and scan area improved CNN performance, underscoring 
the value of capturing anatomical variability. Models trained on pristine image patches achieved higher 
recall (90.5%) than those trained on mixed (88.4%) or damaged (79.1%) patches. Grad-CAM visualizations 
confirmed that CNNs consistently focused on intact anatomical structures, further supporting the 
emphasis on high-quality specimen preparation and imaging during database construction. 
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Chapter 5 evaluated scalable identification strategies for open-world contexts. Binary verification emerged 
as a particularly promising approach, comparing query images to reference samples to generate similarity 
scores rather than fixed labels. This method performed robustly, even for species not included in training, 
and proved effective in practical scenarios where the goal is to verify the plausibility of declared identities 
rather than assign definitive species labels. Binary verification matched or outperformed multiclass 
models in ranking the correct genus among top candidates for the 56 Congolese genera studied. 

We also evaluated triplet learning, which transforms images into numerical vectors representing 
anatomical patterns. These embeddings can be directly compared or fed into lightweight classifiers such 
as nearest-neighbour or XGBoost. Although initial performance was suboptimal—likely due to suboptimal 
selection of hard training examples—the approach remains promising, particularly for integrating 
multimodal data (e.g., DNA, chemical signatures) into unified identification systems.  

In conclusion, this study provides the first direct comparison of expert-defined feature-based keys, CNN 
classifiers, and re-identification models under realistic, field-like conditions in the DRC. It emphasizes the 
need for open-world recognition frameworks and hybrid strategies to create robust, scalable, and 
interpretable systems for timber identification. The findings have direct implications for international 
efforts to combat illegal logging and lay the groundwork for next-generation, AI-enabled wood identification 
tools tailored to the operational realities of enforcement.  
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Chapter 1: General introduction 
1.1 Illegal logging: A major threat to global forests and sustainability 
Environmental crimes—illegal activities that exploit natural resources and harm ecosystems—are among 
the most pressing global challenges (van Uhm, 2024; White, 2018). They contribute to biodiversity loss by 
driving deforestation, habitat destruction, and the decline of vulnerable species through illegal logging, 
poaching, and land degradation (FAO, 2022; Gibbs and Boratto, 2017; Lirëza and Koçi, 2023). These 
activities disrupt entire ecosystems, reducing species richness and threatening key species that maintain 
ecological stability. Furthermore, these crimes undermine sustainable development by depleting essential 
natural resources such as timber, freshwater, and soil fertility, which local communities and economies 
rely on for their livelihoods, jeopardizing the well-being of future generations (Gabris, 2025). Protecting 
forests, wildlife, and other natural resources is therefore crucial to preserving ecological balance and 
ensuring long-term environmental sustainability. (DeFries et al., 2007; Inatimi, 2023). Among 
environmental crimes, illegal logging is the most profitable, representing 50 to 152 billion USD per year 
(equivalent to 10-30 % of the total global timber trade (Nellemann and INTERPOL Evironmental Crime 
Programme (eds), 2012)), posing a high risk of irreversible damage, particularly when targeting threatened 
species (Lowe et al., 2016; Tacconi et al., 2016). It leads to widespread deforestation and endangers the 
survival of vulnerable tree species. 

1.1.1 The importance of forests in tropical regions 
The problem is particularly severe in tropical regions, where forests play an indispensable role in regulating 
climate and sustaining species richness (Stokstad, 2014). Tropical forests sequester and store vast 
amounts of carbon, acting as one of the planet’s most important carbon sinks and helping to mitigate the 
effects of anthropogenic climate change (Lewis et al., 2015; Watson et al., 2000). Forest degradation not 
only releases stored carbon into the atmosphere but also reduces the planet’s capacity to sequester future 
emissions, intensifying global warming (Mitchell et al., 2017). Estimates suggest that 30% to 90% of traded 
tropical timber is harvested illegally, making illegal logging a major driver of forest loss (Hirschberger, 2008; 

Figure 1.1: Map of the Democratic Republic of the Congo, showing the land area cover in vegetation classes according 
to GlobalLandCover map 2000, adapted from (“Global Land Cover 2000 database. European Commission, Joint 
Research Centre,” 2003). 
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Hoare, 2015; Magrath et al., 2009). Among these regions, the Congo Basin stands out as a crucial 
stronghold for climate stability and biodiversity conservation (Shapiro et al., 2021). As the second-largest 
tropical rainforest in the world, it spans approximately 178 million hectares (Mayaux et al., 2013) and plays 
a pivotal role in carbon sequestration, acting as a significant and stable carbon sink in aboveground 
biomass—sequestering 0.66 tonnes of carbon per hectare per year over the three decades leading up to 
2015 (Dargie et al., 2017; Hubau et al., 2020). However, illegal logging threatens this critical biome, not only 
accelerating forest degradation but also disrupting indigenous communities that depend on these forests 
for their livelihoods (Aleman et al., 2017; Mulvagh, 2006; Piabuo et al., 2021; Réjou-Méchain et al., 2021). 
This problem is especially pertinent in the DRC. Approximately half of the rainforest area in the Congo Basin 
is located within the boundaries of the DRC (Potapov et al., 2012), and the DRC features the highest area 
of annual forest cover loss compared to other Central-African countries ((Rome), 2010; Lawson, 2014). 
Other forest types in the DRC, such as the dry deciduous Miombo woodlands, are also being overexploited, 
particularly for tree species that are currently—or soon may be—threatened with extinction (CITES, 2022a, 
2019). In southern DRC, Miombo woodlands cover nearly 23% of the national forest area and dominate the 
former Katanga province (Kabulu Djibu et al., 2008; Potapov et al., 2012) (see Figure 1.1). These forests face 
increasing anthropogenic pressure from agricultural expansion, fuelwood collection, charcoal production, 
and rapid urbanisation (Hourticq and Carole Megevand, 2013; Münkner et al., 2015; Potapov et al., 2012). 
This has led to loss in species diversity and abundance, reduced availability of non-wood forest products, 
declining access to bushmeat, and negative climatic effects such as altered rainfall patterns (Barima et al., 
2011; Kazadi and Kaoru, 1996; Malaisse, 1997). A particularly alarming trend is the illegal exploitation of 
Pterocarpus tinctorius Welw., a high-value timber species. Once used primarily in traditional medicine and 
as a dye (Augustino and Hall, 2008), it has become a target for unsustainable logging driven by demand in 
the non-Congolese luxury furniture market (Hong et al., 2020). In areas such as Kasenga territory, this has 
shifted local labour away from subsistence farming toward illicit logging, accelerating forest fragmentation 
and degradation (Cabala Kaleba et al., 2017). Given its ecological significance, protecting tropical regions 
like the Congo Basin, and the DRC in particular, is paramount to mitigating climate change, preserving 
biodiversity, and ensuring the sustainability of tropical forest ecosystems worldwide. 

1.1.2 Law enforcement 
To combat this issue, a complex framework of international and national regulations has been established. 
At the international level, the Convention on International Trade in Endangered Species of Wild Fauna and 
Flora (CITES) plays a central role (UNEP-WCMC (Comps.), 2022). CITES regulates the trade of protected 
species through a tiered system of Appendices: Appendix I prohibits commercial trade in species 
threatened with extinction; Appendix II restricts trade in species that are not currently threatened but could 
become so without strict regulation; and Appendix III covers species protected at the request of a Party 
that requires international cooperation to prevent unsustainable exploitation (UNEP-WCMC (Comps.), 
2022). Importantly, CITES also extends protections to so-called “look-alike” species, which resemble listed 
taxa closely enough to be easily confused in trade (Gasson et al., 2011). Under CITES, importers are 
required to declare both the botanical identity and geographic origin of imported wood (Wiedenhoeft et al., 
2019). 

Complementing CITES, a variety of policy measures have been adopted at regional and national levels to 
improve forest law enforcement and governance. In the European Union, the FLEGT Action Plan was 
launched in 2003 (Ayed, 2006; EC, 2003; Jonsson et al., 2015). The plan evolved into the FLEGT licensing 
system, operationalized through bilateral voluntary partnership agreements with exporting countries, to 
ensure only legally harvested timber enters the EU market (European Commission, 2019; Jonsson et al., 
2015). To further strengthen the system, the EUTR came into force in 2013, shifting responsibility to 
importers and first-time suppliers to exercise due diligence in minimizing the risk of illegality (Parliament, 
2023; Tegegne et al., 2018; Union, 2010). More recently, the EUDR expanded this framework by imposing 
stricter requirements on deforestation-free supply chains (Köthke et al., 2023; Parliament, 2023). Together, 
these instruments prohibit placing illegally harvested timber on the EU market, mandate risk assessment 
and mitigation measures, and require traceability back to the country, region, or concession of harvest 
(Lowe et al., 2016). 
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In the United States, the Lacey Act—originally enacted in 1900 and amended in 2008 to cover plants and 
plant products—prohibits the trade of illegally sourced timber (Alexander, 2014; Lowe et al., 2016). This law 
requires identification at the genus–species level and specification of the country of harvest, and violations 
include importing, exporting, transporting, selling, or acquiring plants in violation of any domestic or foreign 
law, as well as falsifying records or mislabelling products.  

Comparable legislation is enforced in other parts of the world. Australia regulates illegal timber through the 
Illegal Logging Prohibition Act 2012 and Regulation 2012, which criminalize the import or processing of 
illegally harvested timber and require businesses to conduct due diligence on supply chains (Lowe et al., 
2016; World Resources Institute, 2024). The framework obliges importers and processors to collect 
information on product species, origin, and harvest location, assess risks of illegality, and maintain written 
records. Following a mandatory ten-year review, the original act was amended in 2024 through the Illegal 
Logging Prohibition Amendment (Strengthening Measures to Prevent Illegal Timber Trade) Act 2024 and the 
Illegal Logging Prohibition Rules 2024. These were enforced starting March 2025, with a six-month 
transition period. The reforms introduced two streamlined risk-assessment pathways (certified vs. non-
certified timber), a repeat due diligence exception for imports from the same supplier within twelve 
months, and strengthened monitoring through timber testing technologies and mandatory pre-import 
notices. Enforcement has also been tightened. The reforms expand audit powers, establish strict liability 
offenses alongside fault-based ones, and increase penalties. Public disclosure of non-compliance further 
raises reputational risks.  

Canada similarly enforces the Wild Animal and Plant Protection and Regulation of International and 
Interprovincial Trade Act (1992), which prohibits the import or possession of illegally harvested plants and 
imposes penalties for misrepresentation of plant identity or origin (Government of Canada, 2025; Lowe et 
al., 2016). 

Despite these legal frameworks, enforcement remains a major challenge. Enforcing these mechanisms is 
crucial to curbing illegal logging and ensuring forests remain a vital resource for future generations (Gasson 
et al., 2021; Piabuo et al., 2021). The enforcement of timber trade regulations depends on the ability to 
accurately verify both the species and origin of traded wood (Lowe et al., 2016).  Species verification 
ensures that the declared taxon matches the wood being sold, which is critical where regulations apply to 
particular taxa (e.g., Dalbergia spp. under CITES). Origin verification, in contrast, establishes the 
geographic source of the timber, since legality is tied to compliance with harvesting laws in the jurisdiction 
of harvest. Trade documents do not always reflect the actual timber being sold enabling illegal timber trade 
and fraud, and underscoring the need to verify claims of legality and ensure compliance with regulatory 
frameworks.  

1.2 State-of-the-art in wood identification techniques 
Wood identification refers to the process of determining the botanical taxon of a given sample with the 
highest possible certainty based on a set of diagnostic features (Jacobs and Baker, 2018). Identification 
follows a hierarchical refinement process, iteratively adjusting the classification to achieve the highest 
possible taxonomic specificity. Ideally, a sample is identified at the species level, but when species-level 
resolution is not feasible, it may be assigned to a broader genus or functional group representing similar 
timber types. Identification consists of two key steps: feature extraction (or assessment) and classification. 
Feature extraction involves isolating diagnostically relevant characteristics from raw data. These features 
can later be used in classification models to distinguish between taxa or other categories, depending on 
the analytical context. Classification, in turn, uses these extracted features to predict class probabilities 
and assign specimens to one or more taxa based on the highest probability.  
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Various approaches to extract stable diagnostic patterns are being studied. An overview is presented in 
Figure 1.2, based on Schmitz et al. (2019) (Schmitz et al., 2019). One of the most established methods 
involves the study of wood anatomy (Koch et al., 2015; Richter and Dallwitz, 2000; Wheeler, 2011). Wood 
is an anisotropic material composed of multiple tissues that function together to support tree growth and 
physiological processes. Tracheids, the main cell elements of softwoods and present in some hardwoods, 
conduct water transport and provide mechanical support. Vessels facilitate the transport of water and 
mineral solutes in hardwoods from the roots to the leaves, enabling photosynthesis. Rays serve as 
horizontal transport pathways between the pith and bark. Parenchyma cells act as pathways for metabolic 
products, short-distance transport, and storage. Those pathways form a complex three-dimensional 
network that distributes resources throughout the tree. Fibres provide structural strength, allowing trees to 
withstand external forces such as wind and gravity. The unique characteristics of these tissues—whether 
individually, in combination, or as part of larger anatomical patterns—contain diagnostic information that 
can be used to differentiate species and even determine geographic origin based on local environmental 
influences. (Butterfield, 2012; Niemz et al., 2023b) 

Traditionally, wood identification has relied on anatomical assessment, where the structure of the cells, 
cell walls and tissues is visualized using partially destructive techniques such as microtomy, sanding, or 
laser ablation (Arzac et al., 2018; Fukuta et al., 2016; Guo et al., 2021; Spiecker et al., 2000; Tardif and 
Conciatori, 2015). Processed samples are then examined through microscopic observation across 
different planes and magnifications to identify species-specific diagnostic features (Niemz et al., 2023b; 
NS, 1989; Tardif and Conciatori, 2015). The three primary anatomical planes considered in wood 
identification are the transverse plane, radial plane, and tangential plane (see Figure 1.3), each providing a 
distinct perspective on wood structure (Butterfield, 2012). Their orientation is determined by the natural 
growth pattern of the tree. The transverse plane (also known as the axial plane, cross-sectional plane, or 
end-grain) is obtained by cutting the wood perpendicular to the trunk’s length. This reveals a circular cross-
section, exposing growth rings, vessel arrangements, and other structural features essential for species 
differentiation. The radial plane (vertical longitudinal section through the centre) is obtained by cutting 
vertically along the trunk’s length, passing through the pith. The tangential plane (vertical longitudinal 
section away from the centre) is obtained by cutting vertically along the trunk’s length but not through the 
pith, following the curvature of the growth rings. Traditionally, these planes are studied separately to 
analyse specific features. Modern imaging technologies, such as X-ray CT, enables researchers to examine 
wood anatomy across all three planes in a three-dimensional dynamic, interactive manner, revealing how 
structures change throughout the tree and how they are interconnected (Van den Bulcke et al., 2009). 
Additionally, some diagnostic features (e.g. fluorescence of heartwood, or water/ethanol extracts) are only 
visible at specific magnifications or by using specific wavelengths of the electromagnetic spectrum, 
necessitating customized visualization techniques to enhance accuracy in species identification (NS, 
1989; Price et al., 2021). To ensure consistency in wood anatomical assessment, standardized feature sets 
have been established by the IAWA (Angyalossy et al., 2016; Committee, 2004; Gasson et al., 2011; NS, 
1989; Ruffinatto et al., 2015; Wheeler, 2011). These descriptors provide a systematic framework for 
comparing species, improving both reliability and reproducibility. The long-established practice of 

Anatomical 
assessment NIRS DART-TOFMS Stable Isotopes Computer Vision DNA 

Figure 1.2: Overview of methods for extracting diagnostic information for taxonomic identification or origin tracking, based 
on Schmitz et al. (2019) (Schmitz et al., 2019). From left to right: Anatomical assessment; Near-Infrared Spectroscopy 
(NIRS); Genetic methods; Stable isotope ration analysis; DART-TOFMS; Computer Vision-based wood identification. 
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anatomical assessments continues to be one of the most fundamental approaches in forensic and 
regulatory applications (Wheeler and Baas, 1998). 

Several alternative techniques have been developed in recent decades for identifying the botanical taxa 
and determining geographic provenance, by leveraging chemical composition, genetic markers, and stable 
isotope ratios. NIRS is primarily used to analyse the chemical and physical properties of wood, but it has 
potential for species differentiation (Deklerck, 2019; Lowe et al., 2016; Tsuchikawa et al., 2003). This 
technique operates by measuring the absorption of near-infrared light (800–2500 nm), which interacts with 
high-molecular-weight compounds such as cellulose, hemicellulose, lignin, and extractives (Tsuchikawa 
et al., 2003; Tsuchikawa and Kobori, 2015). Because different species exhibit distinct absorption patterns, 
NIRS can be used to distinguish between species or even subspecies. Genetic techniques use 
deoxyribonucleic acid (DNA)-based approaches for species identification and origin determination. 
Genetic methods are particularly effective at distinguishing closely related species through techniques 
such as DNA-barcoding (Jiao et al., 2020, 2019) and, in some cases, even tracing individual logs throughout 
the supply chain using DNA fingerprinting (Lowe et al., 2010). Stable isotope analysis provides insights into 
the geographic origin of timber rather than species identification (Lin et al., 2024). This technique examines 
the ratios of naturally occurring stable isotopes in wood, which vary based on geographical location, 
climate conditions, soil composition, and local geology (Camin et al., 2017; Horacek et al., 2009). Since 
trees absorb elements from their surrounding environment, their isotopic composition reflects their growth 
location, allowing researchers to estimate timber provenance (Dormontt et al., 2015; Kagawa and Leavitt, 
2010). Mass spectrometry serves as a valuable analytical tool for wood identification, with DART-TOFMS 
being extensively studied (Cody et al., 2005). This method produces chemical fingerprint for wood by 
ionizing low-molecular-weight compounds (<1000 Daltons) through thermal desorption. A single wood 
sliver is placed in an open stream of excited helium atoms, which ionize the chemical compounds present 
in the sample. These ionized molecules are then propelled into the mass spectrometer, where their mass-
to-charge (m/z) ratios are measured and shown to the user in real time (DART). The technique operates on 
the principle of  TOFMS, in which heavier molecules take longer to travel through the instrument, allowing 
for their precise differentiation based on mass. DART-TOFMS has shown significant potential for both 
species identification and geographic provenance determination, making it a promising tool for forensic 
and regulatory applications in timber trade monitoring (Deklerck, 2019).These alternative identification 
techniques, while still evolving, provide valuable complementary tools to traditional wood anatomical 
assessment, expanding the capacity to identify timber species and trace their origins. As research 
continues and reference databases grow, these methods are expected to play an increasingly critical role 
in timber trade regulation and enforcement. 

Figure 1.3: The three primary anatomical planes considered in wood identification: transverse plane (or 
cross-sectional plan), radial plane, and tangential plane. ©RubenDeBlaere(first author) 
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The field of wood identification has increasingly explored the use of AI to automate the extraction of 
diagnostic patterns, aiming to enhance objectivity, scalability, and accuracy beyond traditional expert-
driven methods (Hwang and Sugiyama, 2021; Silva et al., 2022). Image-based analysis of wood anatomy 
has proven particularly effective, demonstrating strong performance in distinguishing between timbers 
with highly similar anatomical structures (Owens et al., 2024; Ravindran et al., 2021, 2020, 2018; Rosa da 
Silva et al., 2017; Wu et al., 2021). In CV-based wood identification, the input data typically consists of 
images derived from various imaging modalities, including light microscopy (JANSEN et al., 1998), scanning 
electron microscopy (Baas and Werker, 1981; Jansen et al., 2001, 2000; Jansen and Smets, 1998), and X-
ray CT (Dierickx et al., 2024). These images may capture one or multiple anatomical sections—such as 
cross, radial, or tangential views (Rosa da Silva et al., 2017)—or even 3D structures (Dierickx et al., 2024), 
depending on the imaging setup. CV-based techniques are being integrated into tools that enable non-
experts to verify whether traded timber matches documentation, providing a practical mechanism for 
flagging suspicious cases for further forensic analysis. This approach has already shown promise in real-
world deployments, such as in Ghana (Ravindran et al., 2019). A range of systems has emerged, including 
those using custom-designed microscopes for standardized image capture to improve model consistency 
(Ravindran et al., 2020), as well as smartphone-based applications that offer portability and ease of use in 
the field (Tang and Tay, 2019; Wiedenhoeft, 2020). 

CV–based approaches to wood identification have explored using classical machine learning pipelines 
using hand-crafted features such as Local Phase Quantization (Rosa da Silva et al., 2022, 2017), Local 
Binary Patterns (Dormontt et al., 2015; Souza et al., 2020), Gray-Level Co-occurrence Matrices 
(Bremananth et al., 2009), or edge descriptors like Histogram of Oriented Gradients (Sugiarto et al., 2017). 
These descriptors were then classified with algorithms such as SVM (Joachims, 2002), RF (Biau and 
Scornet, 2016), or gradient boosting (Bentéjac et al., 2021). While interpretable and computationally 
efficient, such approaches were limited by their reliance on predefined features, which cannot fully capture 
the anatomical variation of wood. 

Deep learning has since enabled more powerful alternatives (Hwang and Sugiyama, 2021; Silva et al., 
2022). Early methods using multilayer perceptron treated images as flattened vectors, ignoring spatial 
structure and requiring large parameter counts, which often led to overfitting on small datasets. More 
recently, Vision Transformers have set benchmarks in general computer vision by employing self-attention 
mechanisms that capture global dependencies from the earliest layers (Gufran et al., 2023; Ye et al., 2024). 
However, their success depends heavily on large-scale pretraining or extensive labelled data, conditions 
rarely available in wood identification tasks. 

CNNs remain the most effective and practical solution under these constraints. Their hierarchical 
architecture learns feature representations directly from images: shallow layers extract local patterns such 
as edges, vessels, and rays, while deeper layers integrate these into higher-level anatomical structures 
(Hwang and Sugiyama, 2021; Silva et al., 2022). This local-to-global progression and efficiency in small-to-
moderate data regimes, makes CNNs particularly well suited to automating wood identification. CNNs can 
capture subtle structural differences that are imperceptible to human observers, substantially enhancing 
the discriminatory power of macroscopic imagery. For these reasons, CNNs were chosen as the basis for 
the models developed in this dissertation. The general principles of AI, deep learning, and the internal 
mechanisms of CNNs for image classification are outlined on further detail in Supplementary materials:  
CNNs for image classification. 

1.3 Scalable wood Identification: assessment of available techniques 
for field-application and  knowledge gaps 
The scale of global timber production complicates regulatory oversight. In 2022, industrial roundwood, 
sawn wood, veneer, and plywood production amounted to approximately 2,651 million m³, with tropical 
species contributing significantly to these figures, with ~16% of logs, ~15% of sawnwood, ~51% of veneer, 
~38% of plywood (ITTO, 2021). Timber is frequently processed at different locations worldwide, making 
traceability increasingly difficult. Given the vast volumes of timber moving through complex global supply 
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chains there is a need for identification systems that are scalable. Researchers have increasingly focused 
on methodologies that expedite identification while also making it more scalable across global supply 
chains (Brack et al., 2002; Hoare, 2015; Johnson and Laestadius, 2011; Tacconi, 2012). The effectiveness 
of identification methods in a laboratory setting does not necessarily translate to scalability for widespread 
enforcement and trade monitoring (Spiecker et al., 2000; Tardif and Conciatori, 2015). Regarding feasibility 
in the field, methodologies should have low costs for initial purchase, maintenance, and consumables. In 
addition, it is favourable if the methodologies involve tools are robust and have a long service life. In 
addition, feasibility entails a low expertise barrier during use, so the method can be applied by non-experts. 
Finally, execution speed is also essential due to the large volumes of timber that necessitate rapid 
assessment to systematically cover enough wood. 

1.3.1 Diagnostic information for rapid identification in the field 
NIRS could become a screening tool, due to the machinery being rather straightforward and fast, but 
requires further development to become a common method in forensic research (Dormontt et al., 2015). 
DART-TOFMS, demonstrated speed and automation potential in extracting diagnostic information from 
wood. However, these methods come with high costs for purchasing equipment and require controlled 
laboratory conditions to prevent contamination, which could otherwise compromise identification 
accuracy. Additionally, DART-TOFMS is not a standalone technique; instead, it serves to refine broad 
identifications initially made through other techniques (Cody et al., 2005; Deklerck, 2019; Dormontt et al., 
2015). Engineered wood products are difficult to identify using DART-TOFMS due to processing steps, such 
as the incorporation of adhesives, resins, and chemical preservatives (e.g., copper-based compounds, 
borates, creosote) or even non-wood materials introducing interference. Genetic methods face similar 
challenges in field applicability. While ongoing efforts aim to develop portable solutions, extracting high-
quality DNA from timber remains difficult (Jiao et al., 2020, 2019, 2012; Michael Höltken et al., 2012). 
Especially due to heat treatments frequently applied for drying, which degrades DNA (Jiao et al., 2020; 
Michael Höltken et al., 2012). Nevertheless, as sequencing technologies and stable extraction procedure 
from dry wood advance, costs are decreasing, making genetic approaches increasingly viable for forensic 
applications and combating illegal logging (Deklerck, 2019; Lu et al., 2024). The application of stable 
isotope analysis in forensic wood identification is still relatively underexplored (Dormontt et al., 2015; Lin 
et al., 2024).  

Wood anatomy presents significant opportunities for large-scale applications (Beeckman et al., 2020; 
Gasson, 2011). Anatomical structures serve as a stable form of diagnostic information, remaining largely 
preserved despite the transformative processes that roundwood undergoes when converted into 
commonly traded wood products. Visualizing wood anatomy can be achieved through various techniques, 
each with distinct advantages and limitations for field applications. The traditional approach involves 
cutting wood along its three principal orientations using sharp blades to expose anatomical structures 
(Tardif and Conciatori, 2015). This method allows for two primary modes of study: thin sectioning, where 
the excised tissue is observed under a microscope with transmitted light, or direct surface examination, 
where the exposed surface is analysed under reflected light (either natural light or enhanced via external 
light sources). Qualitative thin sections are typically cut to a thickness of around 14 µm, allowing 
anatomical features to be observed clearly under transmitted light microscopy (JANSEN et al., 1998). These 
sections are bleached to enhance visibility of the cell walls and stained to increase contrast between 
different tissue types. This technique enables the observation of most, if not all, of the anatomical features 
listed by the IAWA. However, certain fine details, such as pit vestures, are more effectively visualized using 
scanning electron microscopy (SEM) (Baas and Werker, 1981; Jansen et al., 2001, 2000; Jansen and Smets, 
1998). While cutting approaches are relatively fast and cost-effective, they also present several challenges. 
An important, limitation of cutting is the dependence on wood moisture content and density. As wood 
dries, it becomes increasingly difficult to cut, particularly in dense species, making it challenging to obtain 
clean surfaces. Irregular or torn cuts may obscure anatomical details (on the surface directly) (Ravindran 
et al., 2023) and complicate the extraction of clean tissue samples for thin sectioning. To mitigate this 
issue, softening techniques—such as boiling, storing in glycerol, or continuously wetting the wood—are 
often employed (Tardif and Conciatori, 2015)(Spiecker et al., 2000; Tardif and Conciatori, 2015; von Arx et 
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al., 2016). However, these additional steps increase both the complexity and time required, reducing the 
practicality of cutting-based methods for fieldwork. Producing high-quality thin sections also demands 
specialized expertise, followed by additional steps such as staining, fixing, and mounting samples on glass 
slides, which further increase costs and preparation time. Another drawback of cutting is the difficulty in 
achieving precise orientations, particularly in field conditions. While microtomes in laboratory settings 
allow for precise sectioning, field applications typically rely on handheld knives. This introduces several 
limitations. Cutting naturally begins at the edge of the wood sample for practical handling, meaning the 
central regions of the wood often remain unsampled, introducing a minor bias. Additionally, manual cutting 
tends to produce concave surfaces, which can distort anatomical features and complicate quantitative 
analysis, especially when preparing thin sections.  

Sanding offers a more accessible and practical alternative for field applications (Arzac et al., 2018). Unlike 
thin sectioning, which allows for transmitted light microscopy, sanding only permits examination under 
reflected light. The sanding process involves the sequential use of progressively finer grits of sandpaper to 
expose cellular structures (Spiecker et al., 2000). Like cutting, it requires only inexpensive and 
straightforward equipment, such as manual or motorized sanders and sandpaper, and allows for rapid 
processing. An advantage compared to cutting is the fact that the surface quality is not impaired by the 
density of the material, with only minor added processing time as a result. Additionally, sanding is 
particularly advantageous for preparing large surface areas, making it a widely employed technique in 
dendrochronological studies. However, one of its primary limitations is the need for precise and consistent 
handling, as inconsistent sanding can obscure anatomical details and compromise analysis. Achieving 
high-quality results through manual manipulation of sanding tools is challenging, as it demands 
exceptionally steady manual control to ensure uniform surface preparation (Spiecker et al., 2000). Recent 
advancements in robotics, have demonstrated that automating the sanding process can overcome these 
limitations, producing surfaces of exceptionally high quality that facilitate detailed quantification of wood 
anatomical features (Van den Bulcke et al., 2025). Field application of robotic sanding remains limited due 
to the need for stable electricity and controlled conditions. However, small handheld tools enable sanding 
of small sections in under two minutes, achieving quality comparable to robotic systems and providing an 
effective method for rapid and scalable wood identification in the field. 

Other advanced techniques, such as laser ablation or diamond fly-cutting, provide high precision but come 
with significant limitations (Fukuta et al., 2016; Guo et al., 2021; Spiecker et al., 2000). While effective for 
exposing fine anatomical structures, the techniques require specialized equipment, involves high costs, 
and are limited to small sample areas, restricting feasibility for field applications (Spiecker et al., 2000). In 
contrast, cutting and sanding remain the most affordable and widely accessible methods for wood 
anatomical analysis (Spiecker et al., 2000).  

Despite its diagnostic power, traditional wood anatomical assessment faces challenges related to 
expertise, limiting scalability. Skilled specialists are required to accurately interpret anatomical features, 
and the increasing demand for large-scale timber identification necessitates further advancements in 
automation and accessibility. To reduce the expertise barrier, limited ranges of features have been 
proposed to serve as preliminary screening tools (Richter et al., 2017; Ruffinatto et al., 2019, 2015; 
Ruffinatto and Crivellaro, 2019). These methods prioritize broad taxonomic identification based on key 
anatomical features that are easy to visualize and assess, enabling rapid assessment of potentially 
suspicious cargo. The cross-section is particularly valuable for rapid field assessment. Firstly, among the 
three principal planes of wood—cross, radial, and tangential—the cross-section (or end-grain) is the 
simplest to locate, as it is characterized by the presence of ring-like growth patterns formed by secondary 
growth. In contrast, identifying the radial and tangential sections requires first locating the cross-section 
and then determining their orientation based on the wood’s structure and grain direction. Secondly, the 
cross-section reveals numerous anatomical features that can be examined with the naked eye or a hand 
lens, facilitating on-site wood identification without the need for microscopes. Thirdly, radial and tangential 
sections are often processed and refined for use as aesthetic outer layers, whereas the cross-section is 
generally not utilized for this purpose. This is particularly relevant given that most wood identification 
methodologies involve some degree of destructive sampling, such as extracting a small splinter, sawing off 
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a section, cutting the surface with a knife, or sanding. Non-destructive methods, such as X-ray Computer 
Tomography, offer an alternative; however, their practical application in the field is limited due to the need 
for highly precise imaging, costly equipment, radiation shielding, complex image processing, and the 
challenge of selecting appropriate resolutions to clearly visualize multiple anatomical features (each 
requiring its own resolution range for accurate anatomical assessment) (Dierickx et al., 2024). 
Consequently, the cross-section is well-suited for sanding and cutting, offering a minimally invasive 
method for rapid wood identification without significantly damaging finished products like furniture.  

1.3.2 The need for reference databases 
Several databases have been developed for wood identification using cross-sectional macroscopic 
anatomy, relying on visual comparison, IAWA features, or a combination of both. Many of these have been 
implemented in field-deployable applications that integrate identification keys with visual aids to support 
user interpretation. Notable examples include macroHOLZdata (Richter et al., 2017), CITESWoodID (Koch 
et al., 2011; Weerth, 2024), the Malaysian Timber Council’s Wood Wizard (Malaysian Timber Council, 
2018), and the Atlas of Macroscopic Wood Identification (Ruffinatto et al., 2019). The most complete online 
database for wood identification is InsideWood, a wood anatomy reference, research and teaching tool, 
containing wood anatomical descriptions of wood based on the IAWA Lists of Microscopic Features for 
Hardwood and Softwood Identification accompanied by a collection of photomicrographs (NS, 1989; 
Wheeler, 2011; Wheeler et al., 2020). This database has a global scope, incorporating timber samples from 
around the world. It includes over 9,400 wood anatomical descriptions of both fossil and modern woody 
dicotyledons, representing more than 10,000 species across 200 plant families, and is accompanied by 
over 50,000 images showcasing both microscopic and macroscopic features (Wheeler, 2011). While it 
serves as a valuable reference resource, the anatomical descriptions are generalized and often compiled 
from varying numbers of individual specimens. However, no direct link is provided between the 
descriptions and specific reference specimens, making it impossible to verify the original source material 
or assess intraspecific variation with accuracy. Furthermore, certainly not all species are represented. 

Wood identification is particularly challenging due to the inherent complexity of wood as a biological 
material. Wood is a highly variable natural material influenced by genetic and environmental factors 
(Downes and Drew, 2008; Stackpole et al., 2011; Wodzicki, 2001). Trees have evolved over millions of years, 
diversifying into a vast number of species, many of which exhibit similar diagnostic characteristics (Beech 
et al., 2017). This makes distinguishing between closely related species challenging, even for experts. 
Moreover, diagnostic features not only vary between individual trees of the same species but also within a 
single tree—depending on the organ (e.g., stem, branches, roots), the radial position from pith to bark, and 
the vertical position along the height of the tree. The number of species in tropical regions is especially 
high, increasing the challenge within tropical regions such as the Congo basin (Ifo et al., 2016; Partnership., 
2005). Furthermore, the taxonomic classification of tree species is continuously updated as advances in 
plant phylogenetics refine taxonomic relationships (Denk et al., 2017; Mishler, 2000; Wiley and Lieberman, 
2011; Yang et al., 2022). These ongoing revisions can lead to inconsistencies, further complicating 
identification. Beyond biological complexity, industrial processing introduces additional challenges. The 
timber industry often groups multiple species under broad trade names based on shared functional 
properties rather than strict taxonomic distinctions (Chudnoff, 1984; Mark et al., 2014). While practical for 
trade, this practice introduces additional ambiguity, making it difficult to identify the exact species 
composition of a given timber product (Mboma et al., 2022). Currently, hundreds of tree species are 
commercially traded worldwide, with an even greater number used locally, highlighting the immense 
diversity that wood identification systems must account for (Chudnoff, 1984; Council and Organization, 
2012; Mark et al., 2014; Richter and Dallwitz, 2000; tropicaux, 1979). Those challenges underscore the 
need for solid reference databases of the diagnostic features, that encompass enough reliable reference 
specimens to consider biological variations.  

It is the paucity of large databases that cover the variability of diagnostic features, which is the main 
obstacle currently faced when developing wood identification methodologies (Cody et al., 2005; Deklerck, 
2019; Dormontt et al., 2015; Ravindran et al., 2018; Silva et al., 2022). This paucity of large-quality datasets 
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stems from the difficulty of acquiring sufficient wood specimens that give a faithful representation of all 
species and their variability. Those wood specimens can be gathered by collecting specimens in targeted 
field expeditions, active timber harvest sites, lumber mills or other sites in the field. While such endeavours 
may faithfully capture the current data distribution, they can be logistically challenging and expensive to 
accomplish at large scale. A second source of information is institutional wood collections that have the 
advantage of having specimens readily available and that are, in some cases, the result of century-long 
collecting efforts. This makes them fit for rapidly building reference databases by extracting different types 
of diagnostic features. However, relatively few wood collections meet the essential criteria for establishing 
a robust reference database, particularly regarding collection size and specimen reliability. Most 
collections include only a limited number of specimens per species, typically focusing on vouchered 
samples verified by expert botanists based on traits (e.g. leaves, fruits, flowers, roots). While these 
specimens are representative of the species as a whole, they often fail to capture the full range of variation 
in diagnostic features that can occur within a species. The vast number of tree species makes it difficult to 
capture the full variability of wood anatomy with limited numbers of specimens per species. Among the 
most extensive and scientifically valuable wood collections is that of the Naturalis Biodiversity Centre in 
Leiden, The Netherlands. With a long-standing history in wood anatomical research, Naturalis houses the 
world's largest scientific wood collection, comprising approximately 125,000 specimens representing tree 
species from across the globe (Naturalis Biodiversity center, 2025). The second-largest collection is 
maintained by the USDA Forest Service at the University of Wisconsin–Madison, United States. This 
collection contains over 103,000 specimens, including approximately 25,000 samples with corresponding 
herbarium material stored in the Wisconsin State Herbarium (University of Wisconsin–Madison, 2025). 
Another important reference for wood identification is the Thünen Institute for Wood Research in Hamburg, 
Germany. Serving as a centre of competence on the origin of timber, wood samples can be determined at 
the genus or species level, and the geographical origin of the wood can be determined for various tree 
species (Johann Heinrich von Thünen-Institut, 2025a). Forensic research is based on the scientific wood 
collection of the Thünen Institute encompassing 35,000 wood samples from 11,300 species (Johann 
Heinrich von Thünen-Institut, 2025b). The third largest is the Tervuren Wood Collection of the Royal 
Museum for Central Africa (RMCA, Belgium), founded in 1898 to demonstrate the importance of African 
tropical timber for economic purposes. During the first half of the 20th century, the economic purpose has 
been gradually extended with a much broader scientific interest. Not only tropical species and lower taxa 
(subspecies and varieties) with commercial value but also any tropical African tree species and lower taxa 
that could be of interest in comparative wood anatomy or for the study of ethnographic objects were 
collected. From the middle of the 20th century and onwards, wood specimens from other continents were 
also incorporated in the collection (Beeckman, 2007, 2003; RMCA, 2019). Today, the wood collection has 
become the Belgian scientific reference collection for wood, containing ca. 81 000 specimens from 13 533 
species and lower taxa with accompanying microtome sections, ca. 20 500 sets of thin sections in the 
three principal directions (Beeckman, 2007; Deklerck, 2019; RMCA, 2019). Most of the species and lower 
taxa are represented by multiple samples, each from a different specimen. The Tervuren Wood Collection 
holds 26 604 specimens of DRC tree species and lower taxa, which encompasses 30% of the total 
collection, thereby offering the most complete collection of reference material for wood identification of 
>2000 woody species and lower taxa from the DRC (timber trees, small trees, shrubs, dwarf shrubs and 
lianas) (Beeckman, 2007). The Tervuren wood collection presents a unique opportunity to develop a robust 
reference database for wood identification, essential for combating illegal logging in the DRC. By leveraging 
its vast database of tree species and lower taxa with potential timber applications, the collection supports 
efforts to protect the Congo Basin—one of the world’s most critical carbon sinks and biodiversity 
hotspots—thereby contributing to climate change mitigation and sustainable forest management. 

1.3.3 Unexplored areas in literature regarding macroscopic cross-sectional 
identification applications 
To facilitate wood identification in species-rich contexts, dichotomous and multi-entry keys offer a 
straightforward means of interpreting wood anatomy without requiring users to memorize distinct 
diagnostic features across a wide range of timbers. These tools guide users through the anatomical 
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assessment process by narrowing down potential species based on observed traits (Brazier and Franklin, 
1961; Ilic, 1993; Richter et al., 2017). Available in both printed and digital formats, they provide a structured 
pathway from standardized anatomical features to a shortlist of likely taxa, improving field accessibility 
(Barefoot and Hankins, 1982; Gregory, 1980; LaPasha and Wheeler, 1987; Malaysian Timber Council, 2018; 
Vander Mijnsbrugge and Beeckman, 1992). Although their simplicity contributes to their popularity, keys 
also have clear limitations. Their effective use still depends on a foundational understanding of wood 
anatomy, as users must accurately recognize diagnostic features—limiting their scalability. They often fail 
to accommodate intra-specific anatomical variation and do not fully exploit the richness of anatomical 
data. Categorical feature states (e.g., present, variable, or absent) are inherently subjective, with 
thresholds that lack standardized definitions. For example, what one user considers a ‘present’ feature may 
be scored as ‘variable’ by another, leading to divergent identification pathways and potentially excluding 
the correct species early in the process. While multi-entry keys offer more flexibility than dichotomous 
ones, they still risk generating misleading results if the underlying database does not adequately capture 
natural variation. More critically, the limited number of macroscopic diagnostic features constrains the 
ability of keys to distinguish among species in taxonomically diverse or morphologically convergent groups. 
Combined with observer bias, this scarcity of features can result in partial or inaccurate identifications. 
Despite their widespread use, no systematic, quantitative assessment has been conducted to evaluate the 
real-world accuracy of macroscopic features for identification in species-rich contexts. Empirical 
evaluation is crucial to objectively determine the resolution enabled by applied methodologies.  

In this context, raw visual information retains diagnostic patterns that are lost when converting the anatomy 
into the expert-defined, standardized codified features. This has long been leveraged in pure visual keys, 
which offer intuitive, user-friendly tools by presenting curated reference images for direct comparison 
(Kirchoff et al., 2008). These visuals allow users to identify wood based on observable traits without 
requiring extensive anatomical expertise. Building on this foundation, the growing need for rapid, accurate, 
and scalable wood identification has accelerated the development of fully automated systems using AI 
(Hwang and Sugiyama, 2021; Silva et al., 2022). Despite advances, CV-based wood identification remains 
an evolving field, challenged by the biological variability of wood and the need for large, diverse datasets. 
Given these challenges, it is essential to evaluate the performance of CV-based methods—especially in 
species-rich, high-diversity contexts—and to compare them with traditional approaches based on expert-
defined anatomical features. Such comparisons are critical to understanding their relative strengths, 
limitations, and potential for integration into practical identification workflows. 

Wood identification presents some unique CV-related challenges that are rarely encountered in other 
domains. While advancements in CV have improved model robustness to variations in lighting, resolution, 
and image quality (e.g., blur) (Shorten and Khoshgoftaar, 2019), wood often exhibits physical anomalies 
that obscure key anatomical features and complicate classification (Goodell and Nielsen, 2023; Niemz et 
al., 2023a; Schmidt, 2006). As a biological material, wood is subject to degradation from disease, 
infestation, and physical stress. Insects and marine borers can damage wood, by removing wood material, 
and fungi and bacteria can cause discoloration and decay (Goodell and Nielsen, 2023; Schmidt, 2006). 
Furthermore, wood can crack, especially during drying (Niemz et al., 2023a). These alterations can obscure 
diagnostic structures, hinder DNA extraction, and even change wood chemistry, thereby complicating both 
visual and laboratory-based identification. However, the impact of these anomalies on CV-based 
classification remains largely unexplored. Owens et al. (2024) is the only study to date that systematically 
tested how CNN predictions are affected by digital perturbations mimicking real-world wood degradation 
(Owens et al., 2024). Most other work has relied on defect-free specimens (Hwang and Sugiyama, 2021; 
Ravindran et al., 2021; Silva et al., 2022), overlooking the imperfections typically encountered in applied 
contexts. To ensure reliable field deployment, it is essential to evaluate how such anomalies influence 
model predictions—and to develop mitigation strategies that improve classification resilience under 
realistic conditions. 

Beyond the challenges presented of anomalies on wood, model design—particularly the classification 
strategy—also plays a critical role in the performance and interpretability of CV-based wood identification. 
Despite its importance, this aspect remains understudied. Most existing approaches rely on a single 
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strategy: multiclass classification, in which CNNs assign each image to one of a fixed set of predefined 
labels, such as species or commercial timber names (Ravindran et al., 2021, 2018; Silva et al., 2022). 
However, this method assumes a closed set, limiting recognition to species included in the training data 
and struggling with unknown samples in real-world applications (Sünderhauf et al., 2018; Wilber et al., 
2013). While adding an "unknown" class can help, it remains an imperfect solution (Entezari and Saukh, 
2020; Geifman and El-Yaniv, 2019). Moreover, these models require balanced datasets, yet collecting 
diverse, high-quality timber specimens is costly and time-consuming. As a result, most studies use small 
datasets with limited species diversity, reducing model generalizability (Hwang and Sugiyama, 2021; Silva 
et al., 2022). This makes it risky to assume CNN-based wood identification can be directly applied in the 
field, as classifying between learned timbers is not the same as identifying or verifying the timber species 
of field samples. To overcome this limitation, other domains, such as facial and vehicle recognition, have 
adopted open-world approaches like object re-identification (Kumar et al., 2020; Schroff et al., 2015). 
Instead of assigning fixed labels, these networks compute similarity between images, allowing 
comparisons against a reference database (Yoshihashi et al., 2019). By embedding images into a feature 
space where distances reflect species similarity, object re-identification provides a more flexible solution 
for handling novel timbers (Chen et al., 2017; Ghosh et al., 2023; Ye et al., 2021). Despite its promise, this 
approach remains underexplored in wood identification (Hwang and Sugiyama, 2021; Silva et al., 2022). 

Despite ongoing advances in both identification keys and CV approaches for wood identification, these 
methods have largely developed in parallel, with no current system effectively integrating their 
complementary strengths. Both rely on macroscopic anatomical features, yet they extract and interpret 
these features in fundamentally different ways. Deep learning models autonomously learn complex visual 
representations through optimization, often identifying patterns that differ from those traditionally 
recognized by wood anatomists. This divergence is not a limitation but a potential advantage: expert-
defined anatomical features may provide structured, interpretable information that complements the 
data-driven outputs of CNNs. Integrating these perspectives offers a promising path to improve both the 
accuracy and transparency of automated wood identification. 

1.4 Structure of the PhD 
This research bridges key gaps in wood identification by integrating traditional macroscopic anatomical 
assessment with state-of-the-art deep learning techniques. By doing so, it contributes to the development 
of more effective, scalable, and field-deployable solutions for combating illegal logging.  

Chapter 2 –  SmartWoodID: an image collection of large end-grain surfaces to support wood 
identification systems  

To address the urgent need for rapid and accessible wood identification in the field—particularly in key 
countries like the DRC, where illegal logging poses a significant threat—we developed SmartWoodID, the 
largest reference database of sanded macroscopic cross-sectional images of local timber species, 
accompanied by descriptions of observable (expert-defined) wood anatomical features for wood 
identification. Chapter 2 describes the development of a comprehensive reference database to support 
rapid wood identification in the DRC. This effort leverages the extensive Tervuren wood collection, ensuring 
the inclusion of a vast number of DRC timber species, selecting species based on national and 
international timber trade relevance and standardized nomenclature using the World Checklist of Vascular 
Plants [202]. To account for natural variability within species, multiple specimens were digitized per 
species, prioritizing those with large end-grain surfaces to capture intra-individual variation. Specimens 
exhibiting natural anomalies (e.g., cracks, fungal damage, insect activity) were intentionally included for 
later evaluation of their impact on classification accuracy (chapter 4). 

Chapter 3 – Evaluating Expert-Defined Anatomical Features for rapid identification of 
Congolese tree species 
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General Hypothesis: Macroscopic anatomical features, as encoded in standardized expert-defined 
descriptors, retain measurable discriminatory power for taxonomic identification across taxonomic ranks 
(family, genus, species)—even in highly diverse tropical datasets. 

Despite their widespread use in field identification and identification keys, the diagnostic resolution of 
macroscopic features has not been systematically evaluated in species-rich contexts, such as the DRC. 
Chapter 3 addresses this gap by applying clustering and classification techniques to the SmartWoodID 
dataset. The goal is to quantify how well these 31 features distinguish among taxa at various taxonomic 
levels and to identify feature groupings that drive taxonomic separation. This chapter provides a baseline 
for comparison with more automated approaches. 

Individual research questions: 

- To what extent can hierarchical agglomerative clustering of the 31 expert-defined macroscopic 
feature codes delineate statistically distinct groups of DRC timber species? 

- Which individual macroscopic features exhibit statistically significant associations with specific 
species clusters, and what is the strength of these associations? 

- Are there recurrent groupings of macroscopic features that consistently co-occur within particular 
clusters, and can these be formalised into diagnostic feature sets? 

- What is the classification accuracy at the family, genus, and species levels when species-level 
predictions are made, and their corresponding higher taxa are inferred and compared to the 
ground truth? 

- How does the accuracy of the above hierarchical inference approach compare with that of models 
trained directly at each taxonomic rank (family, genus, species)? 

- What is the minimum k in top-k predictions required to achieve ≥95% correct identification at all 
taxonomic levels for the evaluated specimens? 

- To what extent can species-level prediction accuracy be improved by constraining predictions 
using the output of a separately trained family-level classifier? 

- Do the expert-defined macroscopic features annotated in SmartWoodID enable accurate 
classification of commercial timber species in other databases (e.g., InsideWood), and what are 
the measurable limits of this transferability? 

- Can expert-defined macroscopic features reliably discriminate among morphologically similar, 
closely related species (for example African Pterocarpus spp.)? 

Chapter 4 – Evaluating the effect of anomalous images on CV-based wood identification 
models 

Hypothesis: Physical anomalies common in real-world wood samples—such as cracks, discoloration, 
insect damage, and fungal decay— affect CNN-based classification accuracy by obscuring key diagnostic 
regions, and models trained on clean images may not generalize to damaged ones. 

This chapter investigates whether CNN performance degrades when confronted with anomalies that can 
be encountered on wood in the field and whether training on damaged or mixed-image sets improves 
resilience. Using Grad-CAM, model attention is visualized to determine whether CNNs rely on 
diagnostically meaningful regions or are misled by noise introduced by degradation. The findings provide 
information on the importance of this aspect regarding database construction for CV-based models by 
simulating the imperfect conditions typical of field and enforcement scenarios. 

Individual research questions: 

- What are the observed classification metrics—accuracy, precision, recall, and F1-score—of a 
pretrained, field-validated CNN in verifying the presence or absence of anomalies in macroscopic 
images of DRC timber specimens? 
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- Do Class Grad-CAM visualisations show consistent spatial correspondence between model-
activated regions and visible anomalies in anomalous images, and can these correspondences 
explain specific false-positive and false-negative predictions? 

- How does classification accuracy differ between models trained on (i) anomaly-free images only, 
(ii) anomalous images only, and (iii) a combined dataset, when evaluated on independent test 
specimens at both patch level and specimen level (using majority voting)? Do these differences 
vary systematically between anomalous and anomaly-free patches? 

- How do classification performances under the three training scenarios vary across individual 
genera, and are certain taxa more susceptible to performance degradation caused by anomalies? 

- For a genus-level model trained exclusively on anomaly-free images, which regions are activated 
according to Grad-CAM visualisations when classifying anomalous samples, and do these 
activations target non-diagnostic areas? Does incorporating anomalous images into the training 
dataset significantly improve both the alignment of attention with diagnostically relevant regions 
and overall classification performance? 

Chapter 5 – Expert-defined vs. Deep Learning Approaches for Scalable and Generalizable 
Timber Identification 

Hypothesis 1: Deep learning models trained on raw images outperform classifiers trained on expert-
defined anatomical features when both are applied to the same macroscopic specimens. 

In this chapter, classification models trained on 31 expert-coded anatomical features are directly 
compared with multiclass CNNs trained on the same Congolese species. This parallel analysis evaluates 
whether manually defined features can match or augment CNN performance and lays the foundation for 
integrating both approaches in Chapter 6. 

Individual research questions: 

- How do the classification metrics—accuracy, precision, recall, and F1-score—differ between (i) 
machine learning classifiers trained on 31 expert-coded anatomical features and (ii) CNNs trained 
directly on macroscopic images of the same specimens? 

- Do differences between class-specific F1-scores vary across individual genera? 

Hypothesis 2: Closed-world Comparison (SmartWoodID) 

Open-world identification strategies, such as object re-identification via triplet learning and binary 
verification, provide improved classification flexibility compared to traditional closed-world multiclass 
CNN classifiers when applied to the same species used during training. 

Individual research questions: 

- How do performance metrics (accuracy, precision, recall, F1-score) compare between (i) closed-
world CNN multiclass classification and (ii) open-world CNN methods, including binary 
verification and triplet-learning-based object re-identification? 

- Do differences between class-specific F1-scores vary across individual genera? 
- Which identification techniques demonstrates the smallest value of k in top-k predictions required 

to achieve ≥95% correct identification? 

These methods allow pairwise or similarity-based reasoning, better capturing intra-class variability and 
providing more robust predictions under real-world conditions were data imbalance and taxonomic 
convergence challenge multiclass architectures. 

Hypothesis 3: Open-world Generalization (non-Congolese Timber Dataset) 

Open-world identification strategy generalizes to unseen species. 
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By embedding novel samples into a learned feature space or comparing them to reference images, these 
approaches can offer scalable and adaptive solutions for timber identification across geographic regions, 
as demonstrated by performance on a separate dataset of non-Congolese timbers. 

Individual research questions: 

- How does the performance of binary verification—measured by accuracy, precision, recall, F1-
score, the minimum k for ≥95% correct identification, and the area under the top-k curve (AUC)—
differ between genera included in training and novel genera not seen during training? 

- How does classification performance vary when the number of possible candidate genera in the 
search space is systematically increased, thereby simulating progressively more challenging 
identification scenarios? 

Chapter 6 – Combining expert-defined and CV-extracted macroscopic cross-sectional 
features for enhanced wood identification 

Hypothesis: Combining CNN-derived predictions with expert-defined anatomical data through a re-
ranking or fusion model enhances the accuracy of automated wood identification systems. 

This integrative chapter tests whether a hybrid pipeline can leverage the strengths of both CV and human-
curated anatomical knowledge. CNN outputs from Chapter 5 are re-ranked using a RF model trained on 
expert-defined features from Chapter 3. This hybrid framework aims to reduce false positives, improve 
species discrimination, and increase trust in model decisions—particularly for users in enforcement and 
forensic contexts. 

Individual research questions: 

- How do performance metrics—accuracy, precision, recall, and F1-score—change when re-
ranking the top-k predicted genera from a binary verification CNN using a random forest (RF) model 
trained on expert-defined anatomical features? Performance will be assessed by visualizing metric 
distributions per genus for varying k values and aggregating them into boxplots to observe 
progression. 

- How does re-ranking affect the classification performance of individual genera, as measured by 
changes in per-class precision, recall, and F1-scores? 

- What is the optimal k value for which re-ranking consistently improves performance while 
minimizing adverse effects such as misranking correct predictions? 

- Which factors explain genus-specific increases or decrease in performance after re-ranking? 
Potential factors include (i) differences in visual field coverage between CNN image features and 
expert-defined descriptors, (ii) reduction of morphological information during feature extraction, 
and (iii) taxonomic convergence or “look-alike” taxa within the top-k predictions. 

An overview of the data and methodologies used in each chapter and in function of each hypothesis 
is shown and described underneath.  
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1.5 Structure of the data in each chapter 
This study is based on the SmartWoodID database, a digitized subcollection of the Tervuren xylarium 
housed at the RMCA, Belgium. SmartWoodID serves as a valuable resource for examining the relationship 
between macroscopic cross-sectional wood anatomy and the botanical diversity of Congolese tree taxa 
(De Blaere et al., 2023). The database contains high-resolution RGB scans of the macroscopic end-grain 
surfaces of 3,742 wood specimens, representing 954 species native to the DRC. Each specimen was 
prepared by scanning the cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the 
visualization of macroscopic features essential for wood identification.  

Each image is annotated with macroscopic IAWA features, which are observable at this resolution and 
assigned standardized feature numbers (NS, 1989; Ruffinatto et al., 2015). Features were recorded as 
Present (clearly visible), Variable (sporadically observed), Absent (below the threshold for Variable), or NA 
(undiscernible due to ambiguous visual cues or resolution limitations). Descriptions of growth rings were 
excluded, as these were often not discernible with sufficient certainty at the available resolution. Species 
and lower taxa are represented by multiple specimens, capturing both intra- and interspecific anatomical 
variation. This makes the database well-suited for studying wood identification using macroscopic 
anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et al. (2023) (De 
Blaere et al., 2023), while Supplementary Materials Table 8.1 all unique specimen identifiers and metadata. 
To enable machine learning analysis, we selected only species represented by at least two specimens. This 
set comprises 2,296 digitized specimens across 601 species, 286 genera, and 64 families. Discriminatory 
power was mainly assessed by training and evaluating classification models on the specimens. Therefore, 
specimens were allocated random to training (75%) or test set (25%), while preserving distribution of 
species across both sets. Within both sets, a subset of 78 commercially important species was defined for 
targeted evaluation. Both the full set and the commercial subset are used throughout the analyses in this 
thesis unless specified otherwise. 

Chapters 3 through 6 each build on this core dataset to evaluate different approaches to wood 
identification. Chapter 3 assesses the discriminatory power of expert-defined anatomical features as 
recorded in the SmartWoodID database. Chapter 4 to 5 focuses on training CNNs directly on macroscopic 
images for genus-level classification. Given the large surface area of the scanned images, training directly 
on full-resolution inputs is both computationally intensive and prone to overfitting due to the limited 
number of images. To mitigate this, we extracted non-overlapping patches of 512 × 512 pixels from each 
full image, corresponding to a physical area of 5.42 × 5.42 mm (see Figure 1.4). This patch size is sufficient 
to capture key diagnostic features while also reflecting natural variability between different regions of the 
same specimen.  

5.42 

5.
42

 

Figure 1.4: An example of a typical image in the SmartWoodID collection (Tw26431), cropped into patches of 5.42x5.42 mm. 
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Patches were allocated random to training (75%) or validation set (25%), while preserving distribution of 
specimens across both sets, using different regions of the same specimens for training and validating. 
These patches allow for efficient model training while preserving macroscopic features relevant for 
identification and displaying anomalies (damage) on wood at an optimal scale for observation. Examples 
of different anomalies are presented in chapter 4 (Figure 4.1). For chapter 4 only, 26 genera were selected, 
to ensure a balanced distribution of damaged and undamaged specimens to ensure fair performance 
evaluation. Patches were manually inspected and labelled based on the presence or absence of visible 
damage. Furthermore, any full image yielding fewer than four usable patches was removed, as these would 
cover less than one square centimetre—below the typical area assessed by a human expert during wood 
anatomical identification. Chapter 5 extends the CNN approach to the full set of available species and also 
evaluates the open-world recognition potential on a separate image dataset of non-Congolese genera (for 
further details see section 5.3.9). Chapter 6 integrates the expert-defined features and CNN-derived image 
information into a tiered identification system that evaluates if the top genus predictions by a CNN can be 
refined by re-ranking the top k predicted genera using expert-defined features. This approach employs RF 
trained on coded anatomical features (chapter 3) and binary verification CNN (chapter 5). The dataset in 
chapter 6 is constrained to the 78 commercial species, which regards 56 genera. 

All CNN models and associated training procedures were implemented using Python (v3.9.15) with 
TensorFlow (v2.6.0) and Scikit-learn (v1.3.0). Data analysis and visualizations were conducted using 
Pandas (v1.5.3) and Matplotlib (v3.7.1). Additional statistical analyses, including ecological metrics and 
heatmaps, were performed in R (v4.4.1) using the ‘vegan’ package (v2.6-8) and the ‘pheatmap’ package 
(v1.0.12). All computations were executed on a desktop workstation equipped with an Intel Core i9-11900F 
processor (8 cores, 16 threads, 2.5 GHz) and a single NVIDIA GeForce RTX 3080 Ti GPU.  
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Chapter 2: SmartWoodID—an image collection of 
large end-grain surfaces to support wood identification 
systems  
Authors: Ruben De Blaerea, Kévin Lievensa, Dieter Van Hassela, Victor Deklercke, Tom De Mild, Wannes 
Hubaua,b, Joris Van Ackerb, Nils Bourlanda, Jan Verwaerenc, Jan Van den Bulckeb, Hans Beeckmana 

a Service of Wood Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium, b UGent-Woodlab, 
Laboratory of Wood Technology, Department of Environment Ghent University, Coupure Links 653, 9000 Gent, Belgium, c UGent-
KERMIT, research unit Knowledge-based, predictive and spatio-temporal modelling, Department of Data Analysis and Mathematical 
Modelling, Ghent University, Coupure Links 653, 9000 Gent, Belgium, d TERRA teaching and research center, Gembloux Agro-Bio Tech 
(Université de Liège), Passage des Déportés 2, 5030 Gembloux, Belgium, e Royal Botanic Gardens, Kew, Richmond, London, TW9 3A, 
UK 

2.1 Abstract 
Wood identification is a key step in enforcing laws and regulations against illegal timber trade. Effective 
wood identification tools, capable of distinguishing a large number of timbers, require a robust reference 
database. Such reference material is typically curated in botanical wood collections and consists of 
secondary xylem samples from lignified plants. 

This chapter, adapted from De Blaere et al. (2023) (De Blaere et al., 2023), elucidates on the construction 
of SmartWoodID, a dataset derived from the Tervuren Wood Collection—one of the largest institutional 
wood collections worldwide and a major reference for DRC tree species with potential timber applications. 
SmartWoodID contains macroscopic RGB scans of cross-sectional surfaces enriched with expert-defined 
descriptions of 31 observable anatomical features. These annotated images support both interactive 
identification keys and CV models for AI-based wood identification. 

Since the original publication (De Blaere et al., 2023), a full quality control assessment (Section 2.3.7) was 
completed to detect and exclude misclassified specimens, resulting in revised counts for specimens, 
botanical families, genera, and species. A first edition of the database consists of images of 954 taxa, with 
a focus on potential timber species from the DRC aiming to include at least four different specimens per 
species included.  
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2.2 Introduction 
Illegal logging significantly impacts forests, posing a high risk of irreversible damage, particularly when 
exploiting populations of protected species. Thirty to ninety percent of traded tropical timber is estimated 
to have been harvested illegally (Hirschberger, 2008; Hoare, 2015; Magrath et al., 2009). Fast and accurate 
wood identification systems are key to properly enforce timber regulations (such as FLEGT, EUTR, U.S. 
Lacey Act, the Illegal Logging Prohibition Act in Australia) and CITES by verifying whether the traded species 
matches the species name on accompanying documents (Gasson et al., 2021; Piabuo et al., 2021).  

The most commonly used and affordable method for wood identification is the wood anatomical 
assessment. It involves observing tissues and cells at different scales and planes to identify diagnostic 
features of the botanical taxon. Macroscopic cross-sectional wood anatomy provides an accessible range 
of diagnostic information, observable with a hand lens, for faster identification in the field (Koch et al., 
2018; Ruffinatto et al., 2015) compared to other microscopic features, requiring a controlled laboratory 
environment with specialized equipment.  

The macroscopic cross-sectional wood anatomy can be used for identification using different methods of 
feature extraction. Visual keys provide users with a list of exemplary images to compare with, relying on the 
expertise of the user with wood species. A secondary method aligns more closely with the traditional wood 
anatomical assessment, relying on standardized expert-defined features to ensure consistent predictions 
(Angyalossy et al., 2016; Committee, 2004; Gasson et al., 2011; NS, 1989; Ruffinatto et al., 2015; Wheeler, 
2011). This second method can be applied in tandem with classification keys, allowing for the observation 
of anatomical features and provide a list of matching species. These classification keys are advantageous 
for their speed and flexibility, with some allowing for a specified number of feature mismatches or required 
presence/absence of certain features (LaPasha and Wheeler, 1987; Vander Mijnsbrugge and Beeckman, 
1992). Keys can be accessed online with large reference material or offline, suitable for remote locations 
such as local lumber mills in the tropics. 

CV-based wood identification is a third method for rapid identification in the field, that effectively 
automates the process of wood anatomical assessment. CV is a field of AI that trains computers to 
interpret and understand the visual world, relying on machine learning algorithms that use vast numbers 
of human-annotated reference images to distinguish timbers based on imagery (Bay et al., 2006; Hwang 
and Sugiyama, 2021; Lowe, 2004). CV-based wood identification tools have demonstrated their potential 
for real-world field deployment (e.g. evaluated in Ghana (Ravindran et al., 2019)), enabling non-expert field 
workers to perform timber tracking. This technique has the advantage of fast and easy application but faces 
risks due to the highly variable nature of wood, which exhibits inter- and intra-specific variability and 
anomalies like cracks, insect holes, and fungal damage that can hinder the recognition of wood features 
(Figure 2.1). This makes it challenging to train machine learning models for field-based wood identification. 

To build accurate identification tools, a database with typical species features and sufficient detail is 
needed, including information on multiple specimens to consider biological variation. Online databases, 

Figure 2.1: Examples of the intra-variability and anomalies that can be encountered on images of wood (end-grain 
surface). From left to right: (a) An example of the variability of wood anatomical features (such as axial parenchyma) on 
a single specimen. (b) An example of a possible anomaly on wood, a crack. (c) An example of a possible anomaly on 
wood, insect holes. (d) An example of a possible anomaly on wood, fungi damage. RubenDeBlaere©RMCA. 
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such as macroHOLZdata (Richter et al., 2017) and the Atlas of Macroscopic Wood Identification (Ruffinatto 
and Crivellaro, 2019), provide macroscopic anatomical descriptions of wood, but they may not cover all 
intra-species variability of anatomical features that can occur in wood. The most complete online database 
for timber identification is InsideWood, a wood anatomy reference, research, and teaching tool, containing 
wood anatomical descriptions of wood based on the IAWA Lists of Microscopic Features for Hardwood and 
Softwood Identification accompanied by a collection of photomicrographs (NS, 1989; Wheeler, 2011; 
Wheeler et al., 2020). This database has a global scope and therefore incorporates timbers from all over 
the world, having over 9.400 wood anatomical descriptions of fossil and modern woody dicots, 
representing over 10.000 species and 200 plant families, accompanied by over 50.000 images of both 
microscopic and macroscopic features (Wheeler et al., 2020). Still, while this database serves a key 
purpose as a reference resource, this does not mean that its descriptions cover all intra-species variability 
of anatomical features that can occur in wood. Wood is variable, and requires descriptions of large areas 
on multiple specimens. Additionally, although this database is relatively large, certainly not all woody 
species are represented with a sufficient number of individuals.  It is the paucity of large databases, that 
cover the variability of wood anatomical features, which is the main obstacle currently faced when building 
classification keys or machine-learning models (Hwang and Sugiyama, 2021; Ravindran et al., 2018). This 
paucity of large quality datasets stems from the difficulty of acquiring sufficient wood specimens that give 
a faithful representation of all species and their variability in a geographically delineated area.  

We built the first edition of SmartWoodID, an image database of end-grain wood that includes macroscopic 
features and anomalies, such as cracks, fungi damage, and insect damage, and their variability along a 
radial gradient (i.e. a gradient from pith to bark). This information enables evaluation of the diagnostic 
power of macroscopic wood anatomy under visible light, comparing traditional expert-defined features 
with computer vision–extracted features for field-based wood identification. This first edition focuses on 
tree species from the DRC and serves as annotated training data for developing classification keys and AI 
for CV-based wood identification. SmartWoodID will be gradually extended with images of timbers from 
other continents in the coming years. The resulting database can also provide unique insights into the 
occurrence of characteristics, for example within families.  

2.3 Material and methods 
2.3.1 Delineating a set area for the first edition  
Given the complex and variable structure of a wooden tissue and the large number of tree species 
worldwide, digitizing a large amount of wood specimens is a long-term process. The SmartWoodID 
database will therefore gradually be extended over the following years with images and annotated materials 
from wood species from all over the world. This will be done in several editions containing images and 
annotated materials from large geographically delineated regions, to ensure that the data are available and 
usable for research on entire biomes rather than adding species ad hoc. 
 
The first edition of the database focuses on the tree species of Central Africa and more specifically the tree 
species from the DRC. The following definition of trees is used here: perennial woody seed plants with a 
single dominant stem that is self-supporting and undergoes secondary growth. The DRC was selected 
because the vast area of the country and the different forest biomes make the DRC rich in tree species and 
thereby representative of species richness for all countries in the Congo Basin and ensure that many 
timbers or potentially commercial tree taxa of tropical Africa are included. An overview of the procedure, 
explaining the material and methods, is shown as a flowchart in Figure 2.2. 
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Figure 2.2: A flowchart showing the procedure of building the database. 
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2.3.2 Species selection  
A list with accepted species names has been created according to the World Checklist of Vascular Plants 
(WCVP) (WCVP, 2022) and the African Plant Database (APD) (APD, 2012), providing information on 
accepted name status and synonymy. In this research, we will regard not only species but also accepted 
varieties and subspecies. All instances of species, varieties and sub-species shall be named ‘species and 
lower taxa’ from this point onwards to improve the ease of reading. 
 
Two lists were used as a reference for all current and potential timbers in the DRC. The first is the list of the 
DRC forest administration Direction Inventaire et Aménagement Forestiers (DIAF), summarizing all tree 
species and lower taxa present in DRC forests, along with an indication of their current economic value 
(DIAF, 2017). The second list is extracted from the RAINBIO database, from which all tree species and lower 
taxa were selected that occur in the DRC (Dauby et al., 2016). The accepted name status of species and 
lower taxa names was cross-referenced and harmonized with the WCVP (WCVP, 2022) as a reference, using 
a custom-developed Python script. The number of species and lower taxa for which no direct match to 
WCVP was found was checked against the APD (APD, 2012), a curated list of >205 456 names of African 
plants with their nomenclatural status being a product of a collaboration between the South African 
National Biodiversity Institute, the Conservatoire et Jardin botaniques de la Ville de Genève, Tela Botanica 
and the Missouri Botanical Garden. Taxa that did not match WCVP or APD were reviewed manually, and any 
misspellings or synonyms that had not been automatically detected were corrected. Having standardized 
taxonomic names, any records from species and lower taxa that did not meet our working definition of 
trees—perennial woody seed plants with a single dominant stem that is self-supporting and undergoes 
secondary growth—were manually removed from the database. This included removing all ferns, palms, 
lianas, strangler figs, bamboos, pandans, as well as a number of shrub species and lower taxa that rarely 
exceed 2 m in height and are generally multi-stemmed. Finally, the accepted name of each species and 
lower taxon was used to check their presence in the Tervuren Wood Collection. The list contains also 
introduced species and lower taxa.  
The IUCN Red List of Threatened Species (IUCN, 2021) was used to add information on Red List Categories 
and population trends. This was done to give an overview of the threatened tree species and lower taxa in 
the DRC and give a perspective on the threatened nature of commercial timbers, which are provided by the 
indication of the economic value of those species and lower taxa. 
 
Information on the occurrence of those species and lower taxa in different vegetation types was also added 
by combining the geographical occurrence data in the RAINBIO database (Dauby et al., 2016) with the 
geographical distribution of vegetation types in the Global Land Cover Map 2000 (GLC 2000 map) (“Global 
Land Cover 2000 database. European Commission, Joint Research Centre,” 2003). Twenty-seven different 
classes are used in the GLC 2000 map to classify African vegetation. These classes were combined into 
larger classes based on research by Fritz (Fritz et al., 2003) and consist of closed forests, edaphic forests, 
altitudinal forests, woodlands, shrub lands, savannahs, deserts, water bodies and urban areas. An 
overview of all classes is given in Table 2.1. 
 
Table 2.1: Summary of Vegetation classes in the Global Land Cover map 2000, merged into broader classes used in 
this study. 

Merged classes Vegetation class (GLC 2000) 

Altitudinal forest 
Submontane forest (900 -1500 m) 

Montane forest (>1500 m) 

Closed forest 

Closed evergreen lowland forest 

Degraded evergreen lowland forest 

Mosaic Forest / Croplands 

Mosaic Forest / Savanna 

Desert 

Sandy desert and dunes 

Stony desert 

Bare rock 
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Salt hardpans 

Edaphic forest 

Swamp forest 

Mangrove 

Swamp bushland and grassland 

Savanna 

Closed grassland 

Open grassland with sparse shrubs 

Open grassland 

Sparse grassland 

Croplands (>50%) 

Shrubland 

Deciduous shrubland with sparse trees 

Open deciduous shrubland 

Croplands with open woody vegetation 

Urban areas 

Irrigated croplands 

Tree crops 

Cities 

Water bodies Water bodies 

Woodland 
Closed deciduous forest 

Deciduous woodland 

 
The GLC 2000 map of Africa (product two, version 5.0) was imported in QGIS 3.24.3 along with the 
occurrence data of trees in the RAINBIO database as point vector data and a third layer containing country 
borders (Esri, 2022). All layers were reprojected to the same coordinate reference system, EPSG:4326—
WGS 84. Next, the class of every data point in the RAINBIO database was determined. The information on 
classes was then added to the SmartWoodID database by counting all occurrences of a species and lower 
taxon in the RAINBIO database and counting the occurrence of each class. Finally, the classes were merged 
into larger classes, in order to give an easier overview on the occurrence of tree species and lower taxa in 
vegetation classes. 

2.3.3 Collecting the specimens 
The Tervuren Wood Collection of the Royal Museum for Central Africa (RMCA, Belgium) was founded in 
1898 to demonstrate the importance of African tropical timber for economic purposes. During the first half 
of the 20th century, the economic purpose has been gradually extended with a much broader scientific 
interest. Not only tropical species and lower taxa with commercial value but also any tropical African tree 
species and lower taxa that could be of interest in comparative wood anatomy or for the study of 
ethnographic objects were collected. From the middle of the 20th century and onwards, wood specimens 
from other continents were also incorporated in the collection (Beeckman, 2007, 2003; RMCA, 2019). 
 
Today, the wood collection has become the Belgian scientific reference collection for wood, containing ca. 
81000 specimens from 13533 species and lower taxa with accompanying microtome sections, ca. 20500 
sets of thin sections in the three principal directions (Beeckman, 2007; Deklerck, 2019; RMCA, 2019). Most 
of the species and lower taxa are represented by multiple samples, each from a different specimen. 
 
The Tervuren Wood Collection holds 26604 specimens of DRC-tree species and lower taxa, which 
encompasses 30% of the total collection, thereby offering the most complete collection of reference 
material for wood identification of >2000 woody species and lower taxa from the DRC (timber trees, small 
trees, shrubs, dwarf shrubs and lianas). Those aspects of the wood collection create the unique 
opportunity to provide the robust reference database needed for building classification keys and CV-based 
wood identification tools by valorising a vast collection of tree species and lower taxa with potential use as 
timber. 
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All DRC tree species and lower taxa, present in the Tervuren Wood Collection, are taken from the collection 
with at least four specimens per tree species and lower taxa. This ensures that variability in wood 
anatomical features between specimens of the same species and lower taxa is covered by the database. 
A typical wood collection sample is rarely intact because of the frequent presence of pin holes, traces of 
fungi attacks, cracks and other mechanical damage, making it difficult to produce clean polished surfaces 
that show the wood anatomical features without aforementioned anomalies. Specimens in the database 
that have such damage are not excluded from the database. They are included on purpose to ensure that 
the CV tools can learn to detect and ignore their presence. A lack of such damaged samples in the training 
data could cause the machine learning algorithm to explore such anomalies for recognizable and species 
and lower taxa defining characteristics. 

2.3.4 Sanding 
The end-grain surfaces of the samples are sanded before scanning to ensure that all features, necessary 
for determination, are visible. The samples are stacked together with clamping screws to facilitate the 
process. The parameters of the machinery, more specifically angles and distances between the table, the 
sanding surface, and the fulcrum, are set to be equal to ensure that every part of the surface is sanded at 
each grit. The samples are first sanded using a belt sander at one hundred grit to flatten the end-grain 
surface and subsequently using an eccentric sander. The end-grain of the samples is pressed against the 
belt sanding surface with the appropriate amount of force at 1-s intervals, to prevent scorch marks, which 
can hinder the visibility of anatomical features. Similarly, the end-grain surface of the samples is pressed 
against the eccentric sander while simultaneously performing lateral movements. Samples are sanded 
multiple times with gradually finer-grade sanding paper with each consecutive grit removing scratches from 
the previous grit and leaving shallower scratches. The eccentric sanding starts with a fine grade at 100 grit 
to remove all scratches of the belt sander and ends with an ultra-fine grade at 4000 grit at which point the 
end-grain surface is free of scratches and all macroscopically visible anatomical features are discernible 
with the naked eye or a ×10 magnifying glass. At the end of sanding, a magnifying glass is used to check 
surface quality, and if necessary, both belt and eccentric sanding are repeated if any scratches are still 
present. 

2.3.5 Scanning 
The sanded end-grain surfaces are scanned to visualize all macroscopically visible anatomical features. 
The scanning is performed using an Epson Perfection V750 Pro scanner using the SilverFast Ai Studio 
Version 9 software package. The scanner is calibrated twice a day with a 10×15 cm reflective Fuji Advanced 
Colour Calibration Target to ensure consistent results. A resolution of 2400 dpi or ninety-five pixel/mm was 
used in order to find a balance between storage need and a required resolution for observing all 
macroscopically visible anatomical features. A bit depth of forty-eight bit was selected to maximize the 
quantitative information (RBG values) on the natural colour of the wood. A typical image (TIFF file of 80 MB) 
will cover the wood anatomical end-grain structure of a surface of ∼7cm long and 1–2cm wide. The digital 
images cover more variability compared to sections of the usual size and provide opportunities for building 
elaborate classification keys and for performing substantial data augmentation (i.e. increasing image 
variability) for Deep learning. 
 

2.3.6 Annotating (updated after publication) 
The resulting images are annotated by anatomical descriptions of the samples based on the list of 
macroscopic features (NS, 1989; Ruffinatto et al., 2015). Twenty-nine of those standardized features are 
visible on a typical high-resolution scan of the end-grain surface. These were summarized, along with the 
matching feature number for the microscopic IAWA features for hardwood identification (NS, 1989) as well 
as the matching macroscopic feature number (Ruffinatto and Crivellaro, 2019), in Table 2.2.  
 
However, the feature definitions do not translate directly from one system to the other. InsideWood lacks 
features such as Solitary and radial multiples of 2–3 vessels, Ray visibility to the naked eye on the 
transverse surface. Vessel diameter classes are defined into different ranges, with InsideWood featuring 
<50µm, 50-100 µm, 100-200 µm, >200µm, and the macroscopic feature definitions using <80µm, 80-
130µm, and >130µm to be more adept towards the macroscopic resolution. Vessel frequency 
classification for the macroscopic features pool InsideWood’s finer resolution-based categories into a 
broader state (>20 vessels: 20–40, 40–100, >100). Similarly, vessel arrangements (radial and 



40 
 

diagonal/echelon) were also pooled into a single feature class for SmartWoodID, as SmartWoodID handles 
both as separate features while InsideWood treats them as a single feature. Each image is labelled with a 
single state for every anatomical feature. The feature states provide an overall assessment of the frequency 
at which the feature in question occurs on the specimen. The following states are used: 
Present/Variable/Absent/NA. Present, can be interpreted as the feature being clearly observable on the 
end-grain surface. Variable, can be interpreted as the feature being rare, occurring sporadically across the 
end-grain surface. The concept of Variable differs between SmartWoodID and InsideWood. In 
SmartWoodID, Variable reflects a low feature frequency across a larger specimen surface, while in 
InsideWood, Variable indicates feature instability across multiple specimens. This distinction necessitated 
cautious interpretation, given the lack of specimen-specific resolution and field-of-view details in 
InsideWood. Absent, can be interpreted as the feature being almost entirely unobservable on the end-grain 
surface, with too few examples (for example: only 1 or two vessel clusters among all vessels on an area of 
at least 1cm2) to count as Variable. Finally, NA, can be interpreted as the feature being unable to discern 
with certainty. The state "NA" is used to describe anatomical features when observations are hampered 
macroscopic resolution for features that are only a few cells wide, such as thin vasicentric parenchyma or 
banded parenchyma heights. The states may vary slightly depending on the human annotator as it is a 
qualitative assessment using the microscopic features as defined in the IAWA list of microscopic hardwood 
features. Anomalies due to biological or mechanical impact that do not have a diagnostic value are also 
coded using the same states because they can hamper the identification process by non-experts or 
automated expert systems. It should be noted that the damage must not be too dominant on the specimen. 
During the identification process and the process of deriving the anatomical description, we found that 
specimens for which the damaged area was over two-third, a proper identification was often hard to obtain. 

Table 2.2: Summary of described macroscopic cross-sectional features in the SmartWoodID database, showing the 
structures and refined categories (property/character) along with the matching feature number(s) in the IAWA list for 
hardwood identification (NS, 1989) and the Macroscopic IAWA feature list defined by Ruffinato et al. (2019) (Ruffinatto 
and Crivellaro, 2019). 

Structure Refined category Feature IAWA Item 
Description 

Macroscopic feature 
number IAWA 

Growth rings Growth rings Growth rings distinct 1 1 

Growth ring 
boundaries indistinct 
or absent 

2 1 

Vessels Porosity Diffuse porous 5 3 

Semi-ring porous 4 4 

Ring porous 3 5 

Arrangement Vessels in tangential 
bands 

6 8 

Vessels in radial 
pattern 

7 9 

Vessels in diagonal 
pattern (echelon) 

7 10 

Vessels in dendritic 
pattern (flame-like) 

8 11 

Grouping Solitary and in radial 
multiples of 2-3 
vessels 

- 12 

Exclusively solitary 
(90% or more) 

9 13 

Radial multiples of 4 
or more common 

10 14 

Clusters common 11 15 

Frequency ≤ 5 vessels per square 
mm 

46 16 

6–20 vessels / square 
mm 

47 17 
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> 20 vessels / square 
mm 

48/49/50 18 

Vessel diameter/ pore 
visibility 

Small (not visible to 
the naked eye, less 
than 80µm) 

- 19 

Medium (just visible to 
the naked eye, 80-130 
µm) 

- 20 

Large (commonly 
visible to the naked 
eye, larger than 130 
µm) 

- 21 

Axial parenchyma Distribution Diffuse-in-aggregates 77 30 

Vasicentric 79 31 

Lozenge-aliform 81 32 

Winged-aliform 82 33 

Confluent 83 34 

Bands more than 
three cells wide 

85 35 

Narrow bands or lines 
up to three cells wide 

86 35 

Parenchyma in 
marginal or seemingly 
marginal bands 

89 38 

Reticulate 87 39 

Scalariform 88 40 

Rays Visibility Ray visibility to the 
naked eye on the 
transverse surface 

- 43 

Width Rays per millimetre 
(<= 4 / mm) 

114 49 

Rays per millimetre 
(4-12 / mm) 

115 49 

Rays per millimetre 
(>= 12 /mm) 

116 49 

Anomalies visible damage insect holes - - 

fungi - - 

Mechanical damage - - 

 
The result is a list of 1700 tree species and lower taxa from the DRC, each with a description of the 
vegetation classes in which they grow, an indication of their commercial value and their threatened status 
in 2022 according to the IUCN Red List (IUCN, 2021), the CITES appendices (UNEP-WCMC (Comps.), 2022) 
and the European Union and Trade in Wild Fauna and Flora (Commission Regulation (EU), 2019). Of these 
1700 species and lower taxa, 954 species and lower taxa are present in the Tervuren Wood Collection and 
are used to create images and annotations on the macroscopic anatomical features with at least four 
specimens available for all species and lower taxa, thereby resulting in 3742 surfaces to scan. The pursued 
number of four specimens per species and lower taxon was chosen to correspond to the available number 
of collection specimens in the Tervuren Wood Collection. In addition, it is common practice in wood 
anatomical assessments to base species and lower taxa descriptions on a relatively small number of 
specimens. 

2.3.7 Quality control 
A database with reliable reference material is the backbone of any application to identify a specimen in a 
taxonomy system. A first important aspect of reliability to address is the need for specimens to be correctly 
identified. If misidentified, it would cause the interpreter, being either a wood anatomist or a machine 
learning model, to focus on different distinguishing characteristics for said species and lower taxa, 
potentially resulting in misidentification. The Tervuren Wood Collection contains specimens that were 
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collected during field missions. During many field missions, herbarium material was also collected and 
stored in the collection of the Meise Botanic Garden (Abeele et al., 2021). Specimens with reliable 
herbarium vouchers in the Meise Botanic Garden are primarily selected to ensure the reliability of the 
specimens. When specimens with herbarium material are not available, specimens from dependable 
collectors are chosen. Next, specimens are compared with descriptions in the InsideWood database to 
maximally avoid misidentification during annotation. Because the features checked during annotations are 
all macroscopic for hardwood identification listed by the IAWA and visible on the end-grain surface, the 
InsideWood database provides the perfect reference tool for checking the occurrence of IAWA features and 
the correct identification of wood collection samples. An unknown wood specimen can be a species and 
lower taxon not present in the database (Wheeler et al., 2020). The Tervuren Wood Collection contains 
multiple samples of most species and lower taxa, and for the image database that we present, four 
specimens of each species and lower taxon are selected. In order to ensure a good number of high-quality 
specimens, specimens with a large end-grain surface are preferred as they contain more information. Wide 
branches and stem disks are also included, if possible, as they have a large end-grain surface along with 
extra information, like pith and differences between heartwood and sapwood. Twigs and branches are only 
included if no other specimens are available because the smaller area of the end-grain sur-face consists 
of juvenile wood mainly and does not show the diagnostic features used in routine wood identification on 
the variability of anatomical features. Some of the different macroscopic features can also differ between 
different parts of the tree, for example, the size of vessels will be substantially larger in the stem compared 
to branches and especially twigs (Zimmennann and Potter, 1982).  

2.3.8 Technical description of the database and functionalities 
The specimen-based database with the collected observations is made accessible online by incorporating 
it in an IIIF environment for presenting and annotating content such as images and audio-visual files (IIIF, 
2022a; McAulay, 2017). This framework was selected due to the potential it has for sharing data in a way 
that allows viewing, comparing, manipulating and annotating images in an environment that is easily 
accessible. The SmartWoodID database within the IIIF contains new high-resolution scans of wood and 
accompanying metadata such as geographical origin, accepted taxonomy according to the WCVP, 
descriptions of their anatomical features, the mean RGB values of intact wood and the density 
measurements. 
 
The IIIF environment is implemented with the Image API and the Presentation API only, with plans to add 
the Content Search API in a later stage. The Image API defines how image servers deliver pixels to a viewer, 
and the Presentation API adds metadata and structures to these images, defining how they appear in IIIF-
compliant viewers. This is done through an IIIF Manifest, a JSON file. These JSON files are generated with a 
custom Python script that fetches all relevant information from the database. 
 
The Manifest file is presented by an IIIF-compliant viewer online. There are several (open source) viewers 
available, each with its own use case. Since IIIF is all about interoperability, the Manifest file can be reused 
potentially within different viewers. Mirador (IIIF, 2022b) was selected as the primary viewer as it is an open-
source, highly configurable and extensible multi-window image viewing platform that allows researchers 
to view, zoom, rotate and compare image-based resources, making it both educative and useful for experts 
and wood enthusiast alike. The viewer is also not limited to view-able specimens but can view and compare 
any IIIF-enabled resource available, facilitating research across collections and institutions. 
  
In a later stage, annotations will be added to display the macroscopic wood anatomical characteristics in 
order to visualize them for educative purposes and to potentially include them in identification applications 
such as classification keys and AI using object identification to recognize and quantify wood anatomical 
properties.   
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2.4 Results  
2.4.1 Taxonomic coverage (updated after publication) 
The database contains 954 tree species, and lower taxa present in the Tervuren Wood Collection 
encompassing 385 genera and 81 families. In total, 3,774 specimens were examined, of which 3,472 were 
retained after verification. Among these, 348 specimens had corresponding herbarium vouchers at Meise, 
with 335 confirmed as correctly identified—approximately 10% voucher coverage. The family with the 
largest number of species and lower taxa in the database is Fabaceae, covering 216 species and lower taxa 
and 22.7% of all DRC tree species and lower taxa. The fact that Fabaceae is the most diverse tree family is 
not surprising given that Fabaceae or Leguminosae is the third most diverse plant family after the (primarily 
herbaceous) families Asteraceae and Orchidaceae (54). The second and third most occurring families are 
the Rubiaceae and the Annonaceae, covering significantly less species and lower taxa with 47 and 43 
species and lower taxa and 4.9% and 4.5% of all DRC tree species and lower taxa, respectively. The 12 most 
occurring families encompass 60% of the 954 species and lower taxa with not <30 species and lower taxa 
per family. Diospyros is the genus with the most species and lower taxa at 2.6% of all species and lower 
taxa closely followed by Ficus at 2.2% of all species and lower taxa. 
 

2.4.2 Geographical coverage  

 

Figure 2.3: A map of the African continent, indicating the number (indicated in red) of DRC tree species present in each country. A 
darker colour represents a higher tree species richness of Congolese trees. 

Figure 2.3 shows in which countries on the African continent the tree species and lower taxa from the 
SmartWoodID database are growing. The colour intensities represent the number of tropical tree species 
and lower taxa of the DRC present in that country according to the RAINBIO database, ranging from 0 to 
954. There is a gradient moving away from the equator, as less DRC tree species and lower taxa occur 
further north or south of the continent, which is logical given the tropical boundaries. Given that the DRC 
is a large country covering a wide spectrum of phytogeographical regions, this obviously results in a large 
number of vegetation classes (Table 2.3) also present in neighbouring countries harbouring many of the 
same species and lower taxa. The DRC also covers the majority of the Guineo-Congolian regional centre of 
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endemism, one of the largest and most biodiverse regions of Central Africa, that encompasses both ‘Moist 
Central Africa’ and ‘Wet Central Africa’ (Fayolle et al., 2014; White, 1983). Those facts further support that 
the DRC is a relevant geographically delineated area to produce a robust reference database of images and 
wood anatomical descriptions for species identification.  
 
Table 2.3: An overview of all general vegetation classes in the DRC defined by Fritz et al. (2003) (Fritz et al., 2003) with 
the total number of tree species (available in the SmartWoodID database) in each vegetation class and the percentage 
of threatened species present in each vegetation class. 

General 
Vegetation 
Class 

Number of tree 
species per class 

Percentage of 
threatened species 

Percentage of 
species at lower 
risk 

Percentage of species with deficient 
data on threatened status 

Closed forest 886 8 16,4 64,4 

Altitudinal 
forest 

302 7 17,5 68,2 

Edaphic forest 323 2,8 11,5 71,5 

Woodland 543 4,2 10,7 68,5 

Shrubland 355 4,5 9,6 71,8 

Savanna 304 3,9 9,2 73,4 

Urban areas 178 3,9 6,2 73 

Desert 0 0 0 0 

Water bodies 306 3,3 13,7 69,9 

 

2.4.3 Threatened status  
Table 2.4: All tree species in the DRC that are appended to appendix II of Checklist of CITES Species (UNEP-WCMC 
(Comps.), 2022), along with their respective IUCN Red List Category, IUCN population trend and last year they were 
assessed (IUCN, 2021). 

Species name IUCN Red List Category Population trend Last year assessed by IUCN 

Afzelia africana vulnerable decreasing 2019 

Afzelia bella least concern stable 2019 

Afzelia bipindensis vulnerable unknown 1998 

Afzelia pachyloba vulnerable unknown 1998 

Afzelia peturei vulnerable decreasing 2019 

Afzelia quanzensis least concern decreasing 2019 

Alsophila camerooniana least concern unknown 2016 

Dalbergia nitidula least concern stable 2018 

Euphorbia abyssinica not evaluated unknown - 

Euphorbia ingens least concern stable 2018 

Euphorbia teke not evaluated unknown - 

Guibourtia demeusei near threatened decreasing 2020 

Khaya anthotheca vulnerable unknown 1998 

Khaya grandifoliola vulnerable unknown 1998 

Pericopsis elata endangered decreasing 2020 

Prunus africana vulnerable decreasing 2020 

Pterocarpus angolensis least concern decreasing 2018 
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Pterocarpus lucens least concern stable 2010 

Pterocarpus rotundifolius least concern stable 2018 

Pterocarpus soyauxii not evaluated unknown - 

Pterocarpus tessmannii near threatened unknown 2020 

Pterocarpus tinctorius least concern decreasing 2017 

 
Only 23 of the 1700 DRC tree species and lower taxa are included in the Checklist of CITES (UNEP-WCMC 
(Comps.), 2022), which is shown in Table 2.4. All those tree species and lower taxa are listed in appendix II 
of the Checklist of CITES and annex B of the European Union and Trade in Wild Fauna and Flora regulation 
(Commission Regulation (EU), 2019) and are therefore considered species and lower taxa not necessarily 
threatened with extinction now, but they may become so unless trade is closely controlled. For each 
species and lower taxon, the IUCN Red List Category is presented with sometimes remarkable results as 
some species and lower taxa are of least concern according to the Red List, while the Checklist of CITES 
includes them. One reason for this might be the year of the last assessment by the IUCN. Pterocarpus 
tinctorius is a good example of this, as it was last assessed in 2017. It was appended to appendix II of the 
CITES at the Nineteenth meeting of the Conference of the Parties (CoP19) in Panama in 2022 because more 
recent assessment showed the heightened risk of extinction due to trade (CITES, 2022a). Outdated 
assessments by the IUCN are not the only reason that a species and lower taxon might be appended to 
CITES. Afzelia bella, for example, was last assessed in 2019, which showed that the population remains 
stable on a global scope and that the species is of least concern. It was however added at the CoP19 due 
to being a look-a-like species for threatened species such as Afzelia africana, Afzelia bipindensis, Afzelia 
pachyloba and Afzelia quanzensis (CITES, 2022b). Figure 2.4 shows how many of the listed species and 
lower taxa belong to each of the nine IUCN Red List Categories. Only 8 of the 10 categories are present in 
the list of DRC timber species and lower taxa as it contains no species and lower taxa that are extinct or 
extinct in the wild. Nine per cent of all listed species and lower taxa belong to one of the three threatened 
categories (vulnerable, endangered and critically endangered). The list contains 85 vulnerable species and 
lower taxa such as Afzelia bipindensis, Baillonella toxisperma and Entandrophragma utile. Thirty-six 
species and lower taxa are classified as endangered such as Millettia laurentii, Pericopsis elata and 
Autranella congolensis. Only three species are considered critically endangered, Beilschmiedia donisii, 
Elaeophorbia drupifera and Warneckea superba. Sixty per cent of all species and lower taxa are of lower 
risk, more specifically near threatened, least concern and conservation dependent. About 43 species and 
lower taxa are near threatened like Milicia excelsa, Entandrophragma angolense and Dialium pentandrum. 
Half of the listed species and lower taxa are of least concern to being threatened. Two species are 
conservation dependent, and six species belong to the category data deficient because there are little data 
about their distribution and/or abundance. The remaining 35% of the listed species and lower taxa have not 
been evaluated yet. 
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Figure 2.4: Pie chart showing the percentage of each category (according to the IUCN Red List) present in the list of 
trees in the DRC, capable of providing timber. 

2.4.4 Economic value  
The list of DIAF 2017, summarizing all tree species and lower taxa present in DRC forests, also indicates 
their current economic value (DIAF, 2017). The species and lower taxa are divided into four categories: I 
(commercially exploited species and lower taxa) consisting of 26 species and lower taxa, II (species and 
lower taxa with potential to be used commercially) consisting of 19 species and lower taxa, III (species and 
lower taxa with potential to be used commercially, but with few knowledge on their material properties) 
consisting of 42 species and lower taxa and IV (species and lower taxa with no known economic value) 
which is the majority of the database at 1613 species and lower taxa. Categories I, II and III are considered 
as economically important classes due to the use or potential use of these species and lower taxa. A study 
that analysed 31 logging concessions in the five Inter-national Tropical Timber organization member 
countries of the Congo Basin was able to determine the 35 timbers from tropical Africa which amount to 
94.2% of the total timber volume produced annually in the Congo Basin (Pérez et al., 2005). Of those 35, 
only three species do not occur in the DRC according to the database. Those three species, 
Distemonanthus benthamianus, Brachystegia cynometroides and Testulea gabonensis, account for <3% 
of the total timber volume produced in tropical Africa. This shows that the DRC is rich in commercial 
species and lower taxa, although it is important to note that those species and lower taxa do not necessarily 
show the same abundance in the DRC compared to other countries. An example of this is Aucoumea 
klaineana, the most traded species in the Congo Basin, which is only sparsely present in the DRC because 
it mostly grows in West-Central-African countries such as Gabon (Pérez et al., 2005).   
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2.5 Discussion  
2.5.1 The DRC and its representativeness  
The choice of the DRC as a basis for developing the first version of the SmartWoodID database is affirmed 
by the large area of the DRC housing a large variety of vegetation types. This ensures that a large part of the 
species and lower taxa from the DRC are also present in neighbouring countries, making the database 
relevant in an international context. Illegal logging and fraudulent deliveries of timbers are not 
geographically limited to DRC. These malpractices with the same species and lower taxa happen in other 
African countries, and therefore, wood identification tools for all DRC timber-producing species can help 
combat illegal logging across borders. 
 
Total species richness is however not the only parameter to select the DRC as the geographic area of choice 
for the database. The choice also depends on the type of species, their economic value and threatened 
status. Some species are protected by the CITES convention (UNEP-WCMC (Comps.), 2022) and The 
European Union and Trade in Wild Fauna and Flora (Commission Regulation (EU), 2019) while also being 
highly interesting for commercial use such as Afzelia bipindensis, Khaya anthotheca, Pterocarpus soyauxii 
and Pericopsis elata. If such species are logged illegally, it can lead to severe population loss and even 
impact species that are not currently threatened or that are of least concern due to the damage to precious 
forest stands in search for valuable trees. A reference database for wood recognition should therefore 
contain the most prominent exploited timbers, as a wood identification tool will frequently encounter 
commercial and threatened timbers. The SmartWoodID database contains 32 of those 35 commercial 
timbers, showing that the DRC is host to almost all highly commercialized timbers from the Congo Basin 
(Pérez et al., 2005). The large number of commercial species and threatened species makes the 
SmartWoodID database and wood identification tools derived from it also usable in importing countries. 
This last aspect is particularly important as this is where regulations go in effect and where wood 
identification techniques must be applicable on a systematic basis.  

2.5.2 Opportunities of the SmartWoodID database  
An image database with information on wood anatomical features has clear goals to aid in identifying the 
botanical taxon of species, by serving as reference material for distinguishing them. In this regard, an image 
reference database with information on wood anatomy must be complete regarding its content. It should 
therefore not only aim at encompassing all species that logically can be encountered in trade but must also 
maximally cover all possible types of irregularities. 
 
Containing all species is particularly important because the value of identification tools depends on the 
completeness of its reference data. Especially for a species-rich country like the DRC, databases should 
be as large as possible to reduce the risk that a tool is only developed for a small part of the flora and that 
a positive identification is not possible only because many species are not included in the database. 
Moreover, it is very unlikely that foreign species are being imported in the DRC, so the database should 
purely focus on the maximum of species present in the DRC. 
 
Wood samples most often contain many irregularities visible on a wood surface due to its nature as a 
natural product that is subservient to the growing conditions of a tree or post-growth incidences such as 
mechanical damage or damage by insects or fungi. Those irregularities hamper a smooth identification 
process and are a main reason why expert knowledge is needed to distinguish between diagnostic 
characteristics and other features. This makes this information particularly relevant for anyone performing 
wood anatomical assessments in the field. Any tool used to identify wood with anatomy, such as 
classification keys or AI, must therefore take the irregularities into account. It is the inclusion of data on 
such irregularities that distinguish the image collection of the Tervuren Xylarium compared to other large 
image databases that contain high-resolution images of the end-grain surface, such as the database of the 
XyloTron system (Ravindran et al., 2020). Another difference between SmartWoodID and other databases 
is the large end-grain area scanned. A large end-grain surface contains a maximum of information on 
variably occurring macroscopic features. The amount of anatomical information is therefore higher and 
available to be used in research and development of identification tools. The variability of wood anatomical 
characteristics between specimens must also be considered as growth conditions and genetic traits can 
lead to varying wood anatomical features. Therefore, databases should contain information on several 
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specimens for each species in order to cope with the natural variability of wood between individual trees. 
The observed misidentifications,  ~10% of the initial 3.774, also underscores the need for systematic cross-
checking the taxonomy, since inconsistencies can propagate into downstream research on automated 
identification pipelines if left unresolved. This becomes even more crucial in absence of voucher-linked 
herbaceous material, as only ~10% of the specimens could be linked to herbaceous material in the Meise 
Herbarium.  
The information on variably occurring macroscopic features and the recorded data on irregularities enrich 
the SmartWoodID database and ensure its robustness needed to create tools capable of aiding 
fieldworkers in accurate identification.  
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2.6 Conclusion 
The SmartWoodID image database will offer new opportunities for developing identification systems based 
on recognition of diagnostic wood anatomical features. This database is unique since it covers a large 
number of African tree species and lower taxa of which the macroscopic structure is visualized and 
described. The Tervuren Wood Collection provides this thanks to its heritage of collecting reliable reference 
material over the span of more than a century. A total of 56% of all DRC tree species and lower taxa, listed 
in DIAF (2017) (DIAF, 2017), are currently available within the Tervuren Wood Collection. The first version of 
the SmartWoodID image database that is presented here consists of a set of 954 timber species and lower 
taxa present in the DRC forests (Dauby et al., 2016; DIAF, 2017). The database focuses on the macroscopic 
anatomical features that can be encountered on a high-resolution scan of end-grain wood surface. The 
database accounts for irregularities and natural variability, using multiple specimens with large end-grain 
sur-faces. This makes it a robust reference database for research on wood in general and will allow the 
development of tools for aiding in law enforcement to combat illegal logging. 

2.7 Data availability 
De database and all its data will remain publicly available for a minimum of two years starting from the day 
of publication. Database URL: https://hdl.handle.net/20.500.12624/SmartWoodID_first_edition  
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3.1 Abstract 
Macroscopic wood anatomical analysis is a widely applied method for identifying wood taxa based on 
features visible to the naked eye or with a hand lens. This is essential for enforcing anti-illegal logging 
regulations and promoting sustainable timber trade. The cross section (or end-grain) is particularly 
relevant, as its accessibility make it valuable for field applications, requiring little equipment and limited 
sample preparation. However, the number of expert-defined diagnostic features observable at this scale is 
limited, posing challenges when distinguishing morphologically similar taxa within species-rich groups, 
especially in highly diverse tropical regions such as the Congo Basin. Despite the widespread use of this 
method, its performance has not been systematically quantified, hampering objective evaluation relative 
to microscopic or molecular identification techniques. 

Therefore, this chapter assesses the diagnostic potential of expert-defined macroscopic cross-sectional 
anatomical features using the SmartWoodID database, the most complete image database of tree species 
that grow in the DRC. The evaluated features represent the most accessible anatomical characters for 
field-based identification. Classification performance was assessed at the species, genus, and family 
levels using a range of analytical approaches, including two-way hierarchical clustering, DTs, and 
advanced machine learning algorithms such as RF, CatBoost, and SVMs. Findings reveal that macroscopic 
features alone are insufficient for reliable species-level identification across the full taxonomic spectrum, 
with correct species predictions in fewer than 25% of cases. The clustering analysis showed that six was 
the optimal number of clusters that could be identified by clustering the tree species based on 31 
accessible macroscopic cross-sectional features. Although accuracy improves at broader taxonomic 
levels, overlapping anatomical features still constrain resolution, with a maximum of approximately one-
third of specimens correctly classified at the genus level, and around half at the family level. Nonetheless, 
when applied within narrow taxonomic scopes—such as specific genera or families—macroscopic 
features exhibit notable diagnostic value. For example, the study successfully distinguishes African 
Pterocarpus species, considered difficult to distinguish without laboratory-based methods according to 
the amendment of all African Pterocarpus species to CITES appendix II. These results underscore both the 
limitations and the potential of macroscopic wood anatomical analysis for trade monitoring and forensic 
wood identification. In field contexts, where speed, simplicity, and minimal training are critical, CV–based 
approaches offer promising solutions. By directly analysing macroscopic cross-sectional images, such 
methods can extract additional diagnostic patterns and enhance identification accuracy, supporting 
scalable and accessible wood identification systems.  

This chapter is not submitted to a peer-reviewed journal on 19/08/2025.  
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3.2 Introduction 
The ability to rapidly and accurately identify wood species is increasingly critical given the ambitious 
international regulations aimed at combating illegal logging (Gasson et al., 2021; Hirschberger, 2008; 
Hoare, 2015; Magrath et al., 2009; Piabuo et al., 2021; Van Brusselen et al., 2023). Effective identification 
methods must be both accurate and applicable in field conditions (e.g. forests, roadside, warehouse, 
container, harbour), where access to laboratory facilities is often limited (Gasson, 2011). Among the 
various techniques available, wood anatomical assessment remains one of the most reliable approaches 
for species identification. This method involves examining tissues and cells across different planes and 
scales to detect diagnostic features characteristic of specific taxa. The IAWA has standardized anatomical 
features, providing consistency and reliability across the World (Gasson et al., 2011; NS, 1989; Ruffinatto 
et al., 2015; Wheeler, 2011).  

Identification keys include digital and offline formats and play a crucial role in simplifying and speeding up 
the identification process, especially given the immense diversity of tree species (Barefoot and Hankins, 
1982; Gregory, 1980; Ilic, 1993; LaPasha and Wheeler, 1987). These keys are expert-driven and designed 
for practical use, guiding users through systematic evaluations of diagnostically valuable features by 
determining their presence, absence, or variation (LaPasha and Wheeler, 1987; Vander Mijnsbrugge and 
Beeckman, 1992). A broad array of 163 well-defined microscopic features were defined by IAWA and are 
today commonly used for precise identifications (NS, 1989). InsideWood is a widely recognized 
microscopic identification key using these IAWA features. It combines a comprehensive database of wood 
anatomical descriptions with a search engine that queries the descriptions. InsideWood is widely used for 
research, teaching, and reference purposes (NS, 1989; Wheeler, 2011; Wheeler et al., 2020). With a global 
scope, InsideWood hosts over 9,400 wood anatomical descriptions of both fossil and modern woody 
dicotyledons, covering more than 10,000 species and 200 plant families, accompanied by over 50,000 
images (Wheeler et al., 2020).  

However, comprehensive wood anatomical assessment is constrained by the need for specialized 
laboratory equipment and labour-intensive sample preparation techniques, such as microtomy, which 
increase both cost and processing time. Therefore, wood identification is most often performed using only 
macroscopic features that are quickly observable during in situ wood identification (e.g. in harbours) (Koch 
et al., 2018; Wheeler and Baas, 1998). A study by Ruffinato et al. determined which IAWA features can be 
observed with the naked eye or with the aid of a simple hand lens. Using only these macroscopic features 
for identification significantly reduces the time and resources required for sample preparation and 
examination (Ruffinatto et al., 2015). Among the three anatomical planes, the cross section is the most 
readily exposed and provides up to 31 distinct macroscopic features that can support rapid identification 
(Ruffinatto and Crivellaro, 2019). These features enable wood identification to be performed outside of 
laboratory settings by individuals with foundational knowledge in wood anatomy.  

Macroscopic identification keys, particularly dichotomous and multi-entry types, are commonly used in 
field contexts where time constraints necessitate immediate classification—often within minutes. This 
methodology is especially relevant in the context of timber trade enforcement, where rapid screening of 
large volumes of wood and wood-derived products is essential to detect fraudulent or illegally traded 
specimens, including those from protected species. Notable tools such as the Atlas of Macroscopic Wood 
Identification (Ruffinatto and Crivellaro, 2019) and macroHOLZdata (Richter et al., 2017) exemplify the 
application of macroscopic features in digital identification systems. The structural simplicity of 
dichotomous or multi-entry keys makes them popular, but also limits their capacity to fully leverage the 
power of anatomical features and often fails to accommodate intra-specific anatomical variability. 
Furthermore, the applied categorical feature states (present, variable, or absent) are inherently subjective, 
as the thresholds distinguishing these states are not strictly defined. For example, what qualifies as a 
'present' feature can vary between observers, leading to inconsistent character scoring. In identification 
keys, this interpretive variability can significantly influence outcomes. When using a dichotomous key, an 
anatomist who codes a feature as 'present' may be guided to a different result than one who considers the 
same feature 'variable,' potentially excluding the correct taxon early in the process. While multi-entry keys 
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are somewhat more flexible, they can still produce misleading outcomes if the underlying database does 
not adequately capture the natural variation of features as they appear across different specimens.  

More importantly, the restricted number of diagnostic features limits their discriminatory power in 
taxonomically diverse and morphologically convergent groups. The combination of observer bias 
(especially when using simple key-based systems) with the sheer scarcity of macroscopic features, might 
often lead to partial or full misidentifications. However, despite their widespread use, no systematic effort 
has been made to quantitatively assess the identification success of macroscopic features. This lack of 
empirical evaluation hampers objective comparisons between identification success of macroscopic 
features versus identification success of more advanced, yet resource-intensive laboratory-based 
methods such as microscopy.  

Therefore, here we evaluate the ability of macroscopic anatomical features to identify wood specimens in 
the species-rich SmartWoodID database (De Blaere et al., 2023). To maximise identification success and 
valorise the full diagnostic potential of all discernible macroscopic features, we do not use simple 
dichotomic keys, but more sophisticated analytical techniques which can significantly increase accuracy 
and robustness (Boulesteix et al., 2012; Salman et al., 2024). We specifically use a statistical technique 
(two-way species and feature clustering analysis) and four machine learning techniques that were 
evaluated for their effectiveness in classifying wood specimens across the three taxonomic levels (species, 
genus, and family):  DT, SVM, RF, and CatBoost. We assess the accuracy of each of these methods using 
Congolese species in the SmartWoodID database. In order to compare the accuracy with other online 
resources, the models were trained on a selection of commercial timbers and were used to assess the 
ability to predict InsideWood descriptions of the macroscopic cross-sectional IAWA features and to 
evaluate the capacity to distinguish high-demand timber species commonly traded in international 
markets.  
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3.3 Materials and Methods 
3.3.1 Dataset Description 
This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the 
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of 
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in 
section 1.5 which provides an overview of all data used in each chapter. 

The SmartWoodID database contains high-resolution RGB scans of the macroscopic end-grain surfaces of 
3,742 wood specimens, representing 954 species native to the DRC. Each specimen was prepared by 
scanning the cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization 
of macroscopic features essential for wood identification.  

Species and lower taxa are represented by multiple specimens, capturing both intra- and interspecific 
anatomical variation. This makes the database well-suited for studying wood identification using 
macroscopic anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et 
al. (2023) (De Blaere et al., 2023), while Supplementary Materials Table 8.1 lists all unique specimen 
identifiers and metadata. To enable machine learning analysis, we selected only species represented by at 
least two specimens. This set comprises 2,296 digitized specimens across 601 species, 286 genera, and 
64 families. Discriminatory power was mainly assessed by training and evaluating classification models on 
the specimens. Therefore, specimens were allocated random to training (75%) or test set (25%), while 
preserving distribution of species across both sets. Within both sets, a subset of 78 commercially 
important species was defined for targeted evaluation. An overview of the chapters, designated datasets 
used in each chapter and of which hypothesis they target is provided in section 1.4. 

Macroscopic wood anatomical features were described for each end-grain image of the SmartWoodID 
specimens (see chapter 2, Table 2.2; and De Blaere et al. (2023) (De Blaere et al., 2023)). Each feature is 
assigned a Macroscopic IAWA feature number (Ruffinatto et al., 2015). We did not use descriptions on the 
presence of growth rings as the discernability at the used resolution was often not high enough to assess 
this feature with certainty. Each feature is annotated with one of four states: Present (clearly visible), 
Variable (sporadically observed), Absent (rarely observed, below the threshold for Variable), or NA 
(undiscernible due to resolution limits or ambiguous visual cues). 

3.3.2 Macroscopic feature annotations 
For clustering and classification, the macroscopic anatomical features needed to be encoded in a way that 
appropriately reflects their descriptive nature and variability. Grouping features into their overarching 
refined categories (see Table 2.2) and treating them as standard categorical variables was not feasible. For 
example, the feature "vessel frequency" cannot be simply categorized into fixed bins (e.g., 6–20 vessels / 
mm2), because the IAWA guidelines may define the same value range differently across species 
(Committee, 2004; NS, 1989). For example, on a specimen, a vessel frequency of ≤ 5 vessels / mm2 might 
be considered "variable," 6–20 vessels / mm2 as "present," and >20 vessels / mm2 as "absent." This 
complexity means that each feature must be treated individually, and generic binning approaches cannot 
be applied. However, the ‘variable’ feature state complicates straightforward analysis further as the 
classification or clustering can no longer be regarded as a binary case (a feature is either present or absent). 
Treating all feature states as equal categorical levels would obscure important information—particularly 
the nuance provided by the "variable" state, which implies a range of occurrence rather than a binary 
presence or absence. To preserve this information while enabling quantitative analysis, each state was 
transformed into a numerical value representing the observed variability. Specifically, features were 
encoded per species as follows: "present" = 1, "variable" = 0.5, "absent" = 0, and "NA" (not assessable due 
to resolution or ambiguity) = 0. These values were used as inputs for clustering and classification models, 
allowing the analysis to incorporate the graded nature of anatomical trait expression. 

To assess the identification potential of macroscopic wood anatomy in a commercial context, the data 
were adjusted to align SmartWoodID with InsideWood database standards, addressing differences in 
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feature definitions and resolutions to ensure data compatibility while maintaining the integrity of 
anatomical descriptions. An overview is presented in Chapter 2.3.6 (Table 2.2) and De Blaere et al. (2023) 
(De Blaere et al., 2023). 

3.3.3 Clustering analysis 
To identify intercorrelated macroscopic features and to visually and statistically explore whether species 
in SmartWoodID are significantly different from one another based on the macroscopic annotations, we 
performed a two-way hierarchical clustering analysis in R (version 4.4.1) (Borcard et al., 2011).  

We then constructed two separate dissimilarity indices to independently assess variation among taxa and 
among anatomical features, using the ‘vegdist’ function of the ‘Vegan’ package (version 2.6-8) (Oksanen et 
al., 2025). For the clustering of taxa (i.e., botanical species), the Raup-Crick dissimilarity index was applied. 
This index is appropriate for binary presence-absence data and emphasizes stochastic differences in 
feature composition across taxa. For the clustering of anatomical features, the Bray-Curtis dissimilarity 
index was used, as it accounts for relative abundance and is commonly used in ecological studies. Each 
dissimilarity matrix was subjected to hierarchical agglomerative clustering using the Ward.D2 linkage 
method, which minimizes the total within-cluster variance and is effective for generating compact, 
interpretable clusters (Borcard et al., 2011). To determine the optimal number of clusters, we applied the 
Mantel test, which assesses the correlation between the original dissimilarity matrix and a binary matrix 
representing group membership at various cut-off levels (Borcard et al., 2011). For each value of k (number 
of clusters), a Mantel correlation coefficient was computed, and the k maximizing this correlation was 
selected as the optimal number of clusters for both dimensions. A two-way clustered heatmap was 
generated using the ‘pheatmap’ package (version 1.0.12), allowing for the simultaneous visualization of 
clusters across taxa (rows) and features (columns) (Kolde, 2018). This was accompanied by smaller figures 
showing the presence of each anatomical feature in each species cluster through boxplots, based on the 
species-specific values in the heatmap. 

To evaluate the taxonomic consistency of anatomical clustering, we examined the distribution of species 
across clusters with respect to their genus. Genera represented by multiple species were identified, and 
we assessed whether their species were grouped within a single cluster or spread across multiple clusters. 
This allowed for the quantification of anatomical coherence at the genus level and the identification of 
genera with divergent or convergent anatomical patterns relative to their taxonomic classification. 

3.3.4 Classification Models  
3.3.4.1 Training and testing datasets 
Four machine learning techniques were evaluated for their effectiveness in classifying wood specimens 
across the three taxonomic levels (species, genus, and family):  DT, SVM, RF, and CatBoost. We split the 
selected image database in a training (75% of specimens) and a test (25% of specimens) set. To prevent 
information leakage and to minimize potential biases, we ensured a balanced distribution of species 
across the training and test sets. A summary of specimen distribution across training and test sets is 
presented in Table 10.1. This shows that each species has a minimum of 1 and a maximum of 17 specimens 
in the training dataset and a minimum of 1 and a maximum of 6 specimens in the test dataset. We used the 
same training and test sets to train each of the four models.  

Table 3.1: Summary of specimen distribution between training and test datasets. This table reports the minimum, 
maximum and average number of specimens per taxonomic level (family, genus and species level) included in the 
training and test datasets. 

 
Training Specimens Testing Specimens 

Minimum Maximum Average Standard deviation Minimum Maximum Average Standard deviation 

Family 1 425 24 56 1 221 12 29 

Genus 1 56 5 6 1 22 3 3 

Species 1 17 3 2 1 6 1 1 
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3.3.4.2 Classification models 
Traditional DTs function akin to identification keys. DTs recursively split datasets based on features that 
optimize criteria such as information gain or Gini impurity at each node, unlike identification keys, which 
rely on rules derived from the raw data to guide users through sequential feature evaluations without 
probabilistic modelling (Murthy et al., 1994; Quinlan, 1987). Due to their interpretability and ability to model 
non-linear relationships, DTs are well-suited for analysing wood anatomical datasets, which often include 
large numbers of discrete features (Vander Mijnsbrugge and Beeckman, 1992; Wheeler et al., 2020). 

RF is an ensemble method that builds multiple DTs and combines their predictions to improve accuracy 
and reduce overfitting (Ho, 1998; Pes, 2021). Each tree is trained on a random subset of the data, and at 
each split, the algorithm evaluates a random subset of features, selecting the best feature from this subset 
to optimize the split. This promotes diversity among the trees in the ensemble. The probabilities of each 
class are then obtained by averaging the predictions of all trees. It provides a higher degree of robustness 
compared to a single DT and can effectively handle noisy data, which is common in wood anatomical 
datasets due to the inherent inter-specific variability of the features (Biau and Scornet, 2016; von Arx et al., 
2016). Additionally, the built-in feature importance metrics can help highlight which anatomical features 
are most significant for classification, offering insights into the biological relevance of the features.  

CatBoost, a gradient boosting algorithm specifically designed to handle categorical data effectively 
(Prokhorenkova et al., 2018). The algorithm works by sequentially training an ensemble of DTs, where each 
new tree attempts to correct the errors made by the previous trees (Ibrahim et al., 2020). Unlike traditional 
gradient boosting, which may require extensive preprocessing of categorical variables, CatBoost natively 
handles categorical features (Bentéjac et al., 2021; Wanga et al., n.d.). Its ability to generalize well on 
datasets with uneven representation makes it suitable for biological databases (Jumabek et al., 2021). 
Furthermore, CatBoost demonstrates faster training times and better performance compared to other 
boosting algorithms, such as XGBoost, making it highly suitable for large-scale wood anatomical datasets 
(Bentéjac et al., 2021; Mironov and Khuziev, 2022). 

SVMs, which represent yet another powerful machine-learning technique for wood identification. SVMs are 
designed to identify the optimal hyperplane that best separates different classes by maximizing the margin 
between support vectors (Joachims, 2002). For non-linearly separable data, SVMs use kernel functions 
(e.g., radial basis functions or polynomial kernels) to map data into higher-dimensional spaces, enabling 
better class separation. In wood anatomical datasets, where subtle distinctions between species can be 
challenging, SVMs offer high precision in modelling complex relationships between features (Rosa da Silva 
et al., 2017). 

3.3.4.3 Hyperparameter Optimization 
Each model was optimized using a randomized grid search to enhance performance by sampling a 
predefined number of parameter combinations from a range of hyperparameter values. This strategy 
ensures a scalable and flexible search for the best hyperparameters, especially when dealing with large 
parameter spaces (such as for CatBoost). In total, 50 random hyperparameter settings were sampled from 
the parameter grid of each technique, consultable Supplementary materials: Table 8.2. During the 
randomized search, the models were iteratively trained, with training samples split for training and 
validation using an internal 4-fold cross-validation, to ensure robustness. To guarantee consistency and 
reproducibility across all experiments, the random number generators were seeded with a fixed value for 
all algorithms and folds. Class weights were used to address the inherent class imbalance. As Catboost is 
a gradient method, it is sensitive to overfitting with fixed iterations, as such the model was run for 1000 
iterations with early stopping after 20 epochs if no improvement in loss. All data processing, classification, 
and evaluation tasks were executed using Python 3.9.15, Scikit-learn 1.3.0, Pandas 2.0.3, and Matplotlib 
3.7.2. 
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3.3.4.4 Evaluating model performance across taxonomic levels 
The performance of each classification model was evaluated across taxonomic levels using the species 
label with the highest predicted probability for every test specimen. Predicted species labels were mapped 
to their genus and family labels to provide insight into a species’ model’s ability to capture hierarchical 
taxonomic relationships. To evaluate the accuracy for each model, species predictions were visualized 
using horizontal stacked bar charts, illustrating accuracy at progressively higher taxonomic levels (e.g. 
species, genus, family) progression across taxonomic levels. 

To complement this indirect mapping approach, the models were also trained to predict genus and family 
labels directly. The outcomes of these direct predictions were visualized using a Venn diagram, which 
showed the proportion of specimens correctly classified at each taxonomic level, as well as the extent of 
overlap and mismatch among them. This visualization enabled a comparison between hierarchical 
inference (from species predictions) and direct classification, helping to determine whether direct 
prediction at higher ranks could improve overall accuracy. Furthermore, it highlighted species that were 
frequently misclassified at certain levels, potentially revealing inconsistencies in their alignment with 
current botanical taxonomy or indicating taxonomic ambiguity within certain groups. 

3.3.4.5 Optimal number of taxa for Reliable identification 
To determine the optimal number of output classes needed for a reliable shortlist at each taxonomic level, 
predicted classes were ranked based on their assigned probabilities. Accuracy improvements from 
including the top k predictions were analysed using two approaches.  

First, accuracy was assessed as a function of k, where the accuracy curve gradually approaches a 
maximum value of 1, representing perfect identification of all specimens. Because this function is 
cumulative, accuracy steadily increases as additional ranked classes (k) are considered. Additionally, the 
AUC was computed for each technique’s cumulative curve in function of k, providing a single quantitative 
measure of overall classification performance across multiple k levels.  

Second, accuracy was assessed as a function of probability cut-off-thresholds, where the accuracy curve 
gradually approaches a minimum value of 0, representing complete misidentification across all 
specimens. Because this function is reverse cumulative, accuracy steadily decreases as the cut-off 
threshold increases, leaving out more predicted classes. A 95% cumulative accuracy threshold was 
included for both functions to indicate the smallest k value (conversely the largest cut-off threshold) at 
which the model's top-k accuracy reaches 0.95, offering a practical benchmark for classification reliability.  

3.3.4.6 Refining species prediction 
Direct predictions at higher taxonomic levels (e.g. family level) could refine predictions at lower level (e.g. 
species). For example, certain species predictions could be ruled out by a secondary family prediction, 
eliminating species that do not belong to those families. The impact of using higher taxonomic-level 
predictions to refine lower taxonomic-level classifications was therefore assessed. Specifically, the top-k 
predicted families (derived from family-level models) were used to filter out predicted species class that 
are not a member of those botanical families, and the resulting improvement in accuracy was analysed. 
Initially, the value of k for filtering was determined based on the 95% average threshold value from the 
family-level model outputs, ensuring that the selected families were classified with a high degree of 
confidence. Next, individual families and genera were singled out for studying the contribution of 
anatomical features for refining genus and species predictions, respectively.   

3.3.4.7 Assessing Recognition of InsideWood Descriptions for Commercial Species 
The models were retrained using only commercial species to evaluate the models' effectiveness in 
distinguishing commercially significant timber species in a practical context, such as combatting illegal 
logging. This subset contains 537 specimens belonging to 76 commercial species, 56 genera and 22 
families. 
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For this analysis, we tested evaluations conducted both on SmartWoodID and corresponding descriptions 
of the same species from InsideWood (Wheeler, 2011). The performance of each machine-learning 
technique was evaluated by selecting the class with the highest predicted probability for each test 
specimen. Species predictions were mapped to their corresponding genus and family labels to provide 
insight into a species’ model’s ability to capture hierarchical taxonomic relationships. By testing the 
models on InsideWood species descriptions, this analysis evaluates their ability to generalize beyond the 
SmartWoodID dataset, providing insight into the practical applicability of these techniques for real-world 
wood identification. These descriptions, compiled by multiple wood anatomists from diverse image types 
(resolution, field-of-view), serve as an external benchmark. The assessment determines whether models 
can classify commercial species based on macroscopic features described from different materials (e.g. 
thin sections), rather than SmartWoodID standardized scans.  
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3.4 Results 
3.4.4 Clustering analysis 
This analysis aimed to identify which anatomical features co-vary across timber species. Two-way 
clustering analysis was applied to provide clear visual representation of shared anatomical features and to 
highlight key diagnostic features relevant for wood identification. All features contributed equally to the 
distance metric; the method does not assign explicit weights or identify feature importance in a predictive 
sense. Instead, the decisive features for each cluster were interpreted post-hoc by examining co-
occurrence patterns and concentrations within the heatmap. For example, cluster 5 is characterized by 
wide banded parenchyma, while cluster 3 is strongly associated with diffuse-in-aggregate parenchyma. 
Thus, while the clustering model itself does not indicate which feature group was most decisive, the 
visualizations allow us to infer which anatomical traits most strongly differentiate clusters. Results are 
visualized as a heatmap, where wood species and anatomical features are simultaneously ordered 
according to their hierarchical clustering. Figure 3.12345 depicts the relative abundance of 31 
macroscopic anatomical features across 954 wood species. Rows represent species, and columns 
represent anatomical features, with clustering patterns visualized through dendrograms on the left 
(species) and top (features). The heatmap employs a Viridis colour gradient, with higher values indicating 
higher relative abundances of anatomical features. The species and features were clustered according to 
the mantel statistics, with clustered visualized on the heatmap. The heatmap reveals six broad species 
clusters and five feature clusters, reflecting both species-level differentiation and underlying structural 
relationships among wood anatomical features.  

To facilitate interpretation of the heatmap, boxplots were generated for each macroscopic anatomical 
feature, showing how consistently that feature occurs across the six species clusters (Figure 3.2 to Figure 
3.8. Species-specific heatmap scores of the heatmap in Figure 3.1 were used to construct boxplots per 
cluster, allowing visualization of whether a feature is consistently absent, consistently present, or variable 
within clusters. In total, 31 cross-sectional features were examined, grouped into figures according to the 
broader feature categories defined in Chapter 2 (Table 2.2). 

Some features—such as vessel porosity (ring, semi-ring, and diffuse) (Figure 3.2), ray visibility (Figure 3.3), 
and certain vessel arrangements (e.g., tangential bands, diagonal, and dendritic patterns) (figure Figure 
3.4)—appear less informative for differentiating species clusters. These features display relatively uniform 
distribution across clusters, lacking pronounced cluster-specific concentrations. One exception is radial 
vessel arrangement, which tends to be more prevalent in the third cluster (Figure 3.4). Among species 
clusters, ray and vessel quantitative features are more informative. Clusters 1 and 2 predominantly exhibit 
moderate ray densities (4–12 rays/mm²), while cluster 5 includes species with lower ray densities, and 
clusters 3, 4, and 6 tend toward higher ray densities (see Figure 3.3) . Vessel frequency shows 
complementary patterns: clusters 1, 4, and 6 primarily comprise species with moderate vessel densities 
(5–20 vessels/mm²); clusters 2 and 5 more frequently include species with low frequency (<5/mm²); and 
cluster 3 is characterized by high frequency (>20/mm²) (see Figure 3.7). These vessel frequency patterns 
inversely align with vessel diameter. For example, cluster 3 features mostly small vessels (<80 μm), while 
clusters 2 and 5 include more large vessels (>130 μm), and the remaining clusters exhibit intermediate 
diameters (Figure 3.6). These opposing patterns underscore a physiologically relevant trade-off: species 
with high vessel density tend to have smaller vessels, while those with low density often feature larger 
vessels. This aligns with known hydraulic strategies in trees, where high-conductivity vessels are fewer and 
larger (Carlquist and Hoekman, 1985).  
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Figure 3.12345: Two-way clustered heatmap showing clustering of botanical Congolese tree species (rows) and macroscopic cross-sectional 
anatomical features (columns). The presence of features is highlighted using viridis colour gradient to ensure perceptual uniformity (Garnier et 
al., 2024). Broad clusters are visualized using distinct colours. 
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Figure 3.3: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure 
shows Ray features, with individual features printed above each subplot. Cluster numbers are shown on the x-axis and 
color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster (0 = absent 
for all species, 1 = present for all species). 

Figure 3.2: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure 
shows Vessel porosity features, with individual features printed above each subplot. Cluster numbers are shown on 
the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster 
(0 = absent for all species, 1 = present for all species). 
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Figure 3.4: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure 
shows Vessel arrangement features, with individual features printed above each subplot. Cluster numbers are shown 
on the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each 
cluster (0 = absent for all species, 1 = present for all species). 

Figure 3.5: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure 
shows Vessel grouping features, with individual features printed above each subplot. Cluster numbers are shown on 
the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster 
(0 = absent for all species, 1 = present for all species). 
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Figure 3.7: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure 
shows Vessel frequency class features, with individual features printed above each subplot. Cluster numbers are 
shown on the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in 
each cluster (0 = absent for all species, 1 = present for all species). 

Figure 3.6: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure 
shows Vessel diameter class features, with individual features printed above each subplot. Cluster numbers are shown 
on the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each 
cluster (0 = absent for all species, 1 = present for all species). 
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Axial parenchyma characteristics further distinguish species clusters (see Figure 3.8). Cluster 5 is defined 
by a predominance of wide banded parenchyma, while cluster 6 is more strongly associated with narrow 
bands. Both clusters feature reticulate parenchyma, but scalariform patterns are more frequent in cluster 
5. Cluster 2 displays a range of paratracheal parenchyma types, including vasicentric and confluent forms, 
along with frequent marginal bands. Cluster 4 represents a transition from paratracheal to banded 
parenchyma, frequently featuring winged-aliform, confluent, and marginal bands, though less consistently 
than cluster 2. Cluster 3 is distinguished by its emphasis on apotracheal parenchyma—particularly diffuse-
in-aggregates—which is largely mutually exclusive from the banded and paratracheal types found in other 
clusters. In cluster 1 axial parenchyma is less observed, though some species exhibit marginal bands, 
diffuse-in-aggregates, or vasicentric types.  

Vessel grouping features are comparatively less diagnostic across clusters (Figure 3.5). Solitary vessels are 
broadly distributed but do not dominate any cluster. Radial multiples of four or more are largely absent 
from cluster 2 and somewhat more common in clusters 3, 4, 5, and 6. Vessel clusters are especially 
frequent in cluster 5, though not universally present. 

These species-level observations intersect with five feature clusters that reflect co-occurrence patterns 
among anatomical features. Feature cluster 1 groups paratracheal parenchyma types such as confluent, 
vasicentric, lozenge-aliform, and winged-aliform, reflecting their structural continuum. These types often 
blend into one another morphologically and functionally, co-occurring in species with moderate to high 
vessel and ray densities. Feature cluster 2 links semi-ring porosity with vessels arranged in tangential 
bands—an association that aligns with the seasonal onset of earlywood vessels, often producing 
tangential alignments. Feature cluster 3 brings together ring-porous species and dendritic vessel 
arrangements. Both features are largely absent from Congolese species, and their co-location within this 
cluster likely reflects mutual absence. The lack of ring porosity can be attributed to the predominantly 
tropical and subtropical climates of the DRC, where seasonal growth rhythms are less pronounced. 

Figure 3.8: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure 
shows Parenchyma features, with individual features printed above each subplot. Cluster numbers are shown on the 
x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster (0 
= absent for all species, 1 = present for all species). 
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Feature cluster 4 represents a structurally divergent group of features, including diffuse-in-aggregate 
parenchyma, exclusively solitary vessels, high vessel frequency, and vessel arrangements in radial or 
diagonal patterns. These features characterize anatomical strategies that are spatially and functionally 
distinct from the vessel-associated (paratracheal) parenchyma types. Diffuse-in-aggregate parenchyma is 
particularly removed from other axial types in the dendrogram, underscoring its apotracheal nature: it 
consists of loosely clustered cells not associated with vessels. This structural independence contrasts 
strongly with the tight vessel-parenchyma associations seen in paratracheal types. As such, apotracheal 
and paratracheal parenchyma types appear nearly mutually exclusive in their distribution, with only a few 
exceptions such as the genus Afzelia bipindensis (Fabaceae), Balanites wilsoniana (Zygophyllaceae), and 
species of Beilschmiedia (Lauraceae) exhibiting both forms. The integration of these patterns across 
species and features reinforces the idea that wood anatomical diversity in Congolese species reflects a 
continuum of trait syndromes, with certain parenchyma and vessel arrangements marking points of 
distinct structural divergence. 

Feature cluster 5 groups narrow and wide banded parenchyma together with scalariform and reticulate 
patterns. This reflects established structural interdependencies: both reticulate and scalariform 
parenchyma require the presence of axial parenchyma bands and are shaped by their spacing relative to 
rays. Reticulate parenchyma forms regular, net-like networks where tangential bands align with ray 
spacing, whereas scalariform parenchyma consists of narrow, evenly spaced horizontal lines forming 
ladder-like patterns, with band intervals narrower than ray spacing. The co-occurrence of these patterns in 
species clusters 5 and 6 supports their structural and functional linkage. Observations from this dataset 
align with the IAWA list, in which reticulate parenchyma is common in families such as Annonaceae and 
Ebenaceae. In contrast, Chrysobalanaceae generally exhibits narrow banded parenchyma, with only 
limited occurrences of reticulate or scalariform patterns. Nonetheless, some species within Maranthes 
(Chrysobalanaceae) display reticulate parenchyma, notably Maranthes gabunensis (Tw25733) and 
Maranthes glabra (Tw103, Tw8219, Tw47797). 

The clustering results provide insights into the degree of taxonomic coherence captured by the 
macroscopic cross-sectional anatomical patterns. Specifically, examining the taxonomic structure within 
each cluster reveals whether species belonging to the same genus or family tend to be grouped together or 
scattered across multiple clusters. Inconsistencies between taxonomy and clustering may reflect 
anatomical divergence, convergent features, or limitations in the clustering resolution. To assess this, a 
ring plot (Figure 3.9) was created to visualize the proportion of genera whose species were assigned to one 
or multiple clusters. The results show that approximately 75% of Congolese timber genera have all of their 
species assigned to a single cluster, suggesting strong anatomical consistency within these genera. 
Notably, several genera within the Fabaceae family—such as Afzelia and Albizia—are entirely assigned to 
cluster 2, indicating both taxonomic and anatomical cohesion. In contrast, about 20% of the genera exhibit 
inter-cluster species assignments. For example, species within the genus Pterocarpus (Fabaceae) are split 
across clusters: P. angolensis, P. rotundifolius, and P. soyauxii are assigned to cluster 2, whereas P. 
tinctorius is placed in cluster 4. A small number of genera—specifically nine—have species distributed 
across three clusters. For instance, the genus Aningeria includes Aningeria adolfi-friederici (cluster 3), 
Aningeria altissima (cluster 4), and Aningeria pierrei (cluster 6). The genus Gambeya shows the broadest 
dispersion, with species present in clusters 1, 3, 4, and 6. 
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3.4.5 Classification models 
3.4.5.1 Evaluating model performance across taxonomic levels 
 

Figure 3.10: Stacked bar chart illustrating the accuracy of four different machine-learning classification techniques 
(named on the y-axis) across the full range of predicted Congolese tree species labels (in the SmartWoodID database);  
The stacked bar colours represent different taxonomic levels, with printed values representing the individual increase 
in accuracy gained at a higher taxonomic level. 

The stacked bar chart (Figure 3.10) presents the cumulative classification accuracy achieved by each 
species classifier across progressively broader taxonomic levels. The purple bars, along with the printed 
values within them, represent the accuracy of species-level predictions. The yellow bars indicate the 
additional accuracy gained when species-level predictions are mapped to their corresponding genera, 

Figure 3.9: Distribution of Congolese timber genera assigned to 
one or more clusters (see Figure 3.12345). Genera with species 
assigned to a single cluster (Blue), assigned to two clusters 
(Orange), assigned to three clusters (Green), Assigned to four 
clusters (Red). 

Species 
Genus 
Family 
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resulting in a total genus-level accuracy of purple + yellow. Similarly, the pink bars reflect the further 
increase in accuracy when genus-level predictions are mapped to their respective families, yielding a total 
family-level accuracy of purple + yellow + pink. Overall, classification accuracy improves as taxonomic 
resolution broadens, though the magnitude of this improvement varies across methods, with RF exhibiting 
the most pronounced increase across taxonomic levels. 

SVM demonstrated the weakest performance among classifiers, achieving the lowest species accuracy 
and showing modest gains at broader taxonomic levels, with genus-level accuracy increasing to 9.1% and 
family-level accuracy to a final 21.05%. Traditional DT classifiers outperformed SVM showing moderate 
results, with gains reaching 24.4% at the genus level and 40.74 % at the family level. Methods leveraging 
DTs in gradient frameworks or ensembles yielded nuanced results. CatBoost, a gradient-boosting method 
that refines DTs iteratively, showed comparable performance to DT and larger absolute family-level gains, 
culminating in 40.01% family-level accuracy. RF, combining multiple DTs as ensembles, effectively 
enhanced the performance of traditional DTs, achieving the highest species-level accuracy and 
demonstrated consistent improvements at higher taxonomic levels reaching the highest family accuracy 
(48.93%). 

Figure 3.11: Venn diagram representing percentage of specimens correctly identified by three RF models (each trained 
directly at Species, Genus, and Family level); Intersected areas between models indicate percentage of specimens 
correctly identified by both techniques; Areas are proportionate to their printed percental value; The red printed value 
in the lower-left corner, represents the percentage of specimens misclassified across all taxonomic levels. 

Machine learning models were also trained directly on genus and family labels. To evaluate the consistency 
of taxonomic predictions for the same specimens, an ensemble agreement analysis was conducted, 
focusing on the RF model due to its superior performance. The distribution of correctly classified 

Incorrectly classified: 41.18 
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specimens across taxonomic levels was visualized using a Venn diagram (Figure 3.11), in which three 
overlapping circles represent the number of specimens accurately identified at the species, genus, and 
family levels. The relative area and numerical values within each section indicate the proportion of 
specimens correctly classified at one or more taxonomic levels. For example, 12.52% of specimens 
(highlighted in yellow) were correctly identified at the genus and family levels but misclassified at the 
species level. The white square enclosing the Venn diagram represents the total number of specimens 
misclassified at all taxonomic levels, with this subset highlighted in red in the lower-left corner of the figure. 

To compare both methods, predicting species labels and mapping higher taxonomic labels according to 
known taxonomy, and predicting labels at all taxonomic labels directly, was compared. For RF, the 
accuracy for all specimens with correct species predictions, independent of misclassification on the 
higher taxonomic levels resulted in 22.88%, matching the accuracy in Figure 3.10. The majority of which 
also had correct genus and family predictions (18.55% of all specimens). By directly predicting the genus 
label, the genus accuracy rose with a percentile value of 15.21% (2.69% only at the genus level and 12.52% 
at genus and family level), while the genus predictions by mapping the species predictions only resulted in 
a rise of nearly 9.96%. A similar pattern could be observed for family predictions, where the mapped 
species level predictions resulted in an accuracy rise of 16.09% on family predictions, while the direct 
family level classification resulted in an accuracy rise of 20.73%. The other 4.33% having mismatches for 
both or individual higher taxonomic levels (each between 1-2%). Correct classification, solely at species 
level, occurred in 1.01% of cases. Mismatched predictions across taxonomic levels were observed for 144 
different species, demonstrating that no species predominantly exhibited mismatched predictions, 
suggesting that classification inconsistencies cannot be attributed to specific species, genera, or families 
(see Supplementary materials Figure 8.2). 

Despite the demonstrated advantages of training models specifically for different taxonomic levels, the 
overall accuracy of both approaches—species-derived predictions and direct family or genus 
classification—reveals the limitations of the macroscopic features. A significant proportion of specimens 
were entirely misidentified across all taxonomic levels, underscoring the challenge of achieving consistent 
accuracy. For instance, using the species predictions, the proportion of specimens misclassified at all  
levels was substantial: 59.26% for DT, 78.95% for SVM, 51.07% for RF, and 59.99% for CatBoost. Even with 
RF, the most effective technique, misclassification persisted for over half of the specimens. When applying 
the second approach of directly classifying family and genus levels using RF, the error rate improved but 
remained considerable, with 41.18% of specimens still misclassified across all levels.  

3.4.5.2 Optimal number of taxa for Reliable identification 
To study how the different machine-learning classification techniques rank predicted classes across 
taxonomic levels, classes were ranked in descending order based on their predicted probabilities. CDF 
plots were generated for each machine-learning technique and aggregated per taxonomic level to illustrate 
how accuracy improves as additional top-k predictions are considered. The progression of accuracy was 
functioned against two different parameters. First, the value of k which shows how accuracy cumulatively 
increased by considering k additional top predicted classes. Second, cut-off thresholds for the predicted 
probabilities which shows how sensitive the techniques are by applying increasing thresholds, leaving out 
classes with consecutively higher probabilities. 

The CDFs against both parameters were visualized in different figures, where each taxonomic level is 
represented separately. At each level, the progression of top-k accuracy is depicted using aggregated 
coloured curves for each technique, obtained by averaging the values across the four validation folds. 
Additionally, a 95% cumulative threshold was computed for each taxonomic level and technique to identify 
the rank at which 95% of test specimens were correctly classified. These thresholds are indicated by 
vertical dotted lines corresponding to each technique. To assess the consistency of these thresholds 
across validation folds, a 95% confidence interval was calculated. This was done by determining the rank 
positions where the cumulative distribution curves exceeded 95%, computing the mean threshold rank, 
and deriving the standard error of mean (SEM). The SEM is visualized as semi-transparent shaded areas 
around each 95% rank threshold, with colours matching the respective techniques. The CDFs in function 
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of the value k were visualized in Figure 3.12. The CDFs in function of cut-off thresholds were visualized in 
Figure 3.13. 

Table 3.2 provides further insight into model performance of the techniques across taxonomic levels 
summarizing three key metrics of the CDFs in function of number of classes (k): AUC, the 95% threshold 
rank, and the standard error of mean (SEM) around this threshold. 

Table 3.2: Summary of metrics of the CDF plots for every Machine-learning technique across taxonomic levels: AUC, 
the 95% threshold rank, and standard error of mean (SEM) around this threshold. 

Across all models, accuracy improves as k increases (Figure 3.12) and declines as the cut-off probability 
threshold increases (Figure 3.13). The rank analysis (Figure 3.12) reveals that the DT classifier follows a 
predominantly linear growth pattern across taxonomic levels, with only modest accuracy gains as rank 
increases. This pattern suggests that DT extracts features that contribute minimally to class ranking, 
reflecting its basic and systematic nature. This is further reinforced by its low AUC values, as AUC values 
closer to 0.5 indicate a limited ability to effectively rank predicted classes (Table 3.2). The cut-off probability 
threshold analysis (Figure 3.13) further underscores this limitation—DT exhibits an immediate accuracy 
drop-off, suggesting that it assigns high confidence exclusively to its top predictions while neglecting lower-
ranked classes. This indicates an overconfident classification approach, where all probability mass is 
concentrated on the highest-ranked class, resulting in poor ranking robustness. 

In contrast, the other machine-learning techniques demonstrate greater ability to rank predicted classes. 
The rank analysis (Figure 3.12) shows that they follow a saturating growth pattern, characterized by rapid 
initial accuracy gains that gradually plateau as k increases. Among these, RF consistently ranks as one of 
the strongest performers, achieving high accuracy (Figure 3.12) and strong AUC values across taxonomic 
levels (Table 3.2). CatBoost also demonstrates strong performance, albeit with greater variability across 
taxonomic levels. While its top-1 accuracy is initially lower than RF’s, its ranking ability improves as k 
increases, surpassing RF in ranking lower-probability classes (Figure 3.12). This is reflected in notably lower 
95% threshold rank values, indicating that CatBoost requires fewer ranked predictions to classify 95% of 
test specimens correctly (Table 3.2). However, these advantages diminish at the family level, suggesting 
that CatBoost loses its edge when handling broader classification tasks with fewer, more general classes.  

The cut-off threshold analysis (Figure 3.13) further highlights RF as the most resilient technique. RF exhibits 
the most gradual decline in accuracy across taxonomic levels, indicating that it effectively distributes 
probability across ranked predictions rather than overemphasizing the top prediction. In contrast, 
CatBoost’s cut-off threshold curve (Figure 3.13) displays a sharp decrease in accuracy beyond the top 
predicted classes at all taxonomic levels. This suggests that CatBoost assigns a disproportionately large 
share of its probability mass to its top predictions, leaving little confidence distributed among lower-ranked 
classes. 

The SVM exhibits the most pronounced performance gains at higher taxonomic levels. At the family level, 
its top-k accuracy curve (Figure 3.12) and AUC values closely align with those of RF, and it achieves a lower 
95% threshold rank, indicating strong ranking performance (Table 3.2). However, as classification 
specificity increases, SVM’s accuracy and AUC values decline, its 95% threshold rank increases, and its 
ranking ability for lower-probability classes deteriorates. A distinctive "tail effect" emerges, where accuracy 
stabilizes at high values of k before abruptly increasing at the final ranks. This effect becomes more 
pronounced at finer taxonomic levels, highlighting SVM’s difficulty in ranking the least probable classes. 
The cut-off threshold analysis (Figure 3.13) confirms that SVM exhibits a more stable probability 
distribution across ranked predictions at higher taxonomic levels but also shows the greatest shift in 
probability distribution as taxonomic specificity increases.  

Technique DT RF CatBoost SVM 

Metric AUC 
95% 
threshold 
rank 

SEM AUC 
95% 
threshold 
rank 

SEM AUC 
95% 
threshold 
rank 

SEM AUC 
95% 
threshold 
rank 

SEM 

Family 0.703 62 0.80 0.936 21 6.28 0.908 22 3.98 0.942 17 1.30 
Genus 0.880 262 2.05 0.902 197 24.94 0.930 92 17.11 0.630 279 2 
Species 0.582 562 3.01 0.861 480 27.88 0.897 292 41.77 0.582 600 1 
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Figure 3.12: Cumulative distribution function plots, showing the increase in accuracy by considering k additional predicted classes for the 
four machine-learning techniques. The threshold, where each curve reaches 0.95 is indicated by a vertical dotted line with the standard 
error of mean around it, determined by aggregating the information across all 4 folds per technique. The top graph shows this for direct 
family predictions with x-axis range from 1 till the maximum number of classes (64 families), The central graph for direct genus predictions 
(286 genera), The bottom graph for direct species predictions (601 species).  
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Figure 3.13: Cumulative distribution function plots, showing the decrease in accuracy by applying higher cut-off threshold values for leaving 
out predicted classes for the four machine-learning techniques. The threshold, where each curve reaches 0.95 is indicated by a vertical 
dotted line with the standard error of mean around it, determined by aggregating the information across all 4 folds per technique. The top 
graph shows this for direct family predictions with x-axis range from 0 till the maximum threshold value of 1, The central graph for direct 
genus predictions, The bottom graph for direct species predictions. 
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3.4.5.3 Refining species prediction 
 

Figure 3.14: Stacked bar chart illustrates accuracy of four different machine-learning classification techniques (named 
on the y-axis) across the full range of predicted Congolese tree species labels (after filtering species predictions on the 
25 top predicted families); The stacked bar colours represent different taxonomic levels, with printed values 
representing the individual increase in accuracy gained at a higher taxonomic level. 

The rank analysis revealed that the top 20–25 directly predicted families allow the 95% accuracy threshold 
to be reached (3.4.5.2). These predicted family labels thereby also provide information for predictions at 
lower taxonomic levels. For example, predicted species labels (that do not belong to one of those families), 
can be ruled out, increasing accuracy. To assess this, species predictions were constrained to belong only 
to the top 25 families. Next, the same type of bar chart was produced as Figure 3.10, showing well the 
different machine learning techniques perform at genus and family levels, by mapping the filtered species 
predictions to their corresponding genus and family labels and re-evaluating performance. The new 
accuracy values were visualized in Figure 3.14, mirroring the representation of Figure 3.10. Marginal 
differences between both figures indicate that direct family prediction (using a reliable shortlist of 25 
families) does not significantly enhance species predictions for any techniques. Only DT (decision tree) 
demonstrated different accuracy on species and genus levels, although the cumulative accuracy of the 
three taxonomic levels does not improve. 

Species 
Genus 
Family 
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3.4.5.4 Assessing Recognition of InsideWood Descriptions for Commercial Species 

 

Figure 3.15: Stacked bar chart illustrates accuracy of four different machine-learning classification techniques (named 
on the y-axis) across Commercial Congolese tree species; The stacked bar colours represent different taxonomic 
levels, with printed values representing the individual increase in accuracy gained at a higher taxonomic level. The bars 
with grey borders show accuracy on the InsideWood descriptions, bars with black borders on SmartWoodID test 
specimens. 

To evaluate the applicability of macroscopic wood anatomical descriptions for identifying Congolese 
timber in trade, species predictions were visualized using horizontal stacked bar charts. These charts 
illustrate accuracy progression across taxonomic levels, grouped by machine-learning technique. For each 
technique, two stacked bars represent results based on InsideWood descriptions (grey border) and 
SmartWoodID descriptions (black border) (see Figure 3.15). 

Accuracy values in Figure 3.15 are notably higher than those in Figure 3.10, indicating that all techniques 
perform better on the commercial subset than on the full set of Congolese tree species. However, overall 
accuracy remains low, highlighting the limitations of macroscopic wood anatomical features for reliable 
field identification of commercial species. 

A comparison between SmartWoodID and InsideWood descriptions reveals consistently lower accuracy 
across all taxonomic levels when using InsideWood data. This discrepancy suggests that models struggle 
with descriptions based on other material (thin sections, variations in resolution and field of view). Notably, 
the proportional accuracy gain from genus to family level is larger for InsideWood predictions, indicating 
that macroscopic wood anatomical descriptions from external sources may be more stable at broader 
taxonomic levels.  
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3.5 Discussion 
The results indicate that macroscopic cross-sectional wood anatomical features do not enable accurate 
species predictions across most Congolese tree species. The two-way clustering analysis of macroscopic 
anatomical features across species corroborates this (section 3.4.4). Co-varying patterns across botanical 
species were observed on the heatmap. Namely, vessel arrangement, density, and diameter, were often 
grouped reflecting fundamental hydraulic trade-offs (Carlquist and Hoekman, 1985). Parenchyma types 
also clustered into meaningful groups, with banded, reticulate, and scalariform parenchyma forming one 
cluster, while lozenge-aliform, winged-aliform, and confluent parenchyma highlighted a structural 
continuum. In contrast, diffuse-in-aggregate parenchyma remained distinct, reinforcing the mutual 
exclusivity of species featuring either apotracheal or paratracheal parenchyma. Clustering the 601 species 
based on those accessible features in the field resulted in an optimal number of six broad clusters 
according to Mantel test. This underscores the limited ability to discern Congolese timber with 
macroscopic cross-sectional features. 

Regarding the classification analysis, mapping species-level predictions to their corresponding genus and 
family labels, confirmed improvement at broader taxonomic levels (3.4.5). This reflects the hierarchical 
nature of taxonomy and the phylogenetic relationships present in wood anatomy (de Luna et al., 2018; 
Kobayashi et al., 2019). Training models directly at the genus and family levels further supports this trend. 
Additionally, mismatching classifications (for example: family and species correct, but genus incorrect) 
occur across a diverse range of species rather than being concentrated in specific taxa, confirming that 
errors stem from general limitations in macroscopic anatomical features rather than model biases. These 
findings suggest that models perform more reliably when applied to broader taxonomic categories, where 
reduced anatomical variability enhances classification performance. However, it is important to note this 
may partly result from the smaller number of classes at broader taxonomic levels, simplifying the 
classification problem for the machine-learning models and inherently raising performance (Li et al., 2015; 
Sanlı et al., 2020). The results on the commercial subset (3.4.5.4), elucidates this further as accuracy is 
higher across all machine-learning techniques and taxonomic levels, because of the strong reduction in 
look-a-like timbers. Despite these trends, overall accuracy remains low at higher taxonomic levels and 
across all machine-learning techniques.  

The analysis of top-k rankings and probability cut-off thresholds reveals that all models struggle to rank 
predictions effectively, often assigning disproportionate confidence to top-ranked classes (3.4.5.2). 
Among them, RF demonstrates the most stable ranking ability and probability distribution. Several studies 
have demonstrated the potential of RF as a successful classification technique, suggesting that the dataset 
is likely the limiting factor explaining the poor performance (Biau and Scornet, 2016; Salman et al., 2024; J. 
Zhao et al., 2024). This highlights the necessity of considering multiple top-ranked predictions to mitigate 
misclassification risks in macroscopic timber identification, underscored by De Oliveira et al. (2019) noting 
the importance of considering classes beyond solely the best prediction (De Oliveira et al., 2019). The high 
number of taxa (families, genera, and species) required to achieve 95% accuracy, illustrates the limitations 
of macroscopic cross-sectional features for accurately identifying tree species across the full range of 
Congolese tree species. Refining species predictions through filtering on higher-level taxonomic 
predictions (e.g. top 25 families to attain 95% accuracy threshold) resulted only in marginal gains, 
confirming those limitations (section  3.4.5.3).  

The low performance across taxonomic levels emphasizes the constraints of macroscopic cross-sectional 
features for differentiating a large and diverse set of timbers. To further elucidate, Figure 3.16 visualizes the 
anatomical features of different taxa, using Millettia laurentii (Fabaceae) and Ficus bubu (Moraceae) as a 
clear example. When examined side by side, these species are easily distinguishable based on differences 
in colour and vessel size. However, their formal macroscopic feature descriptions are nearly identical, with 
the only recorded distinction being Millettia laurentii’s tendency toward confluent axial parenchyma. 
Vessel diameter of both species is assigned to class (>130 µm), while Millettia laurentii exhibits noticeably 
larger vessel diameters within this broad range. This underscores that fine-scale differences such as colour 
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variation and quantitative features measurements are not adequately captured within the framework of the 
standardized macroscopic descriptors. 

 

However, this does not imply that the macroscopic wood anatomical features contain no diagnostic value. 
Applying stricter hierarchical constraints on the classification analysis (e.g. within a single family or genus) 
revealed how feature combinations enable classification of species (undistinguishable across the full 
range of Congolese tree species). The clustering analysis shows this, as species within the same genus 
(e.g. Aningeria) were assigned to different broad clusters, indicating that in limited ranges, these features 
can still provide diagnostic value for identification. Visualizing the anatomy elucidates this further, as 
demonstrated for the Moraceae family (visualized on Figure 3.16). The genus of Ficus can be distinguished 
clearly from other Moraceae genera by differences in axial parenchyma expression: Ficus predominantly 

1.a 1.b 1.c 

2.a 2.b 2.c 

3.a 3.b 3.c 

4.a 4.b 4.c 

Figure 3.16: Macroscopic cross-sectional wood anatomy images (2400 dpi / 5.42x5.42mm) displaying 
differences between 1. Millettia laurentii (Fabaceae) (a: Tw3894, b: Tw425, c: Tw5227), 2. Ficus bubu 
(Moraceae) (a: Tw4824, b: Tw7602, c: Tw990), 3. Antiaris toxicaria (Moraceae) (a: Tw31032, b: Tw7338, 
c: Tw7568), and 4. Milicia excelsa (Moraceae) (a: Tw1121, b: Tw1462, c: Tw51741). 
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exhibits axial parenchyma bands wider than three cells {85}, whereas other genera, including Antiaris and 
Milicia, primarily display confluent axial parenchyma {83}. Additionally, Ficus tends to have fewer than four 
rays per millimetre {114}, while other Moraceae genera typically range between four and twelve {115}. The 
results for Milicia excelsa and Antiaris toxicaria underscore the potential for distinguishing species within 
a predefined taxonomic range. While identification of these species failed when considering the entire 
Congolese timber dataset (see Table 8.3), their anatomical profiles remain distinct within Moraceae. The 
combination of vasicentric axial parenchyma {79}, confluent axial parenchyma {83}, and a vessel frequency 
of 5–20 vessels per mm² {47} differentiates Milicia excelsa and Antiaris toxicaria from other Moraceae 
species. Moreover, Milicia excelsa can be further distinguished from Antiaris toxicaria by the presence of 
axial parenchyma in marginal or seemingly marginal bands {89}, a feature predominantly found in Milicia 
excelsa but absent in Antiaris toxicaria. 

The Lamiaceae species underscores this as vessel porosity enables clear distinction between species 
within this family. Tectona grandis displays clear ring-porous patterns on two specimens (Tw3805, 
Tw11055) and semi-ring-porous patterns on the others (Tw13935, Tw767). On the other hand, Premna 
angolensis and Vitex spp., display only limited semi-ring porosity, and Gmelina arborea consistently 
exhibits diffuse porosity. The Boraginaceae family, consisting only of the genus Cordia in Congolese tree 
species, mirrors this pattern, with Cordia africana being distinct by semi-ring porosity in three out of the 
four specimens (Tw2106, Tw6982, Tw7345). Similarly, in Bignoniaceae, semi-ring porosity is largely 
confined to the Markhamia genus, while other genera such as Spathodea, Kigelia, and Stereospermum 
exhibit diffuse porosity.  

The genus Pterocarpus underscores this further still, indicating how individual species (Pterocarpus 
tinctorius, Pterocarpus soyauxii, Pterocarpus rotundifolius, and Pterocarpus angolensis) can be 
distinguished (see Figure 3.17). All species within this genus were listed in CITES Appendix II at CoP19, as 
existing literature indicated that reliable field identification was not possible without access to advanced 
scientific techniques (CITES, 2022a). To elaborate, previous studies reported Pterocarpus species as 
indistinguishable without laboratory-based techniques such as microscopic wood anatomy, DART-TOFMS, 
and fluorescence spectrometry (Liu et al., 2023; Price et al., 2021). Pterocarpus rotundifolius and 
Pterocarpus angolensis exhibit semi-ring porosity {4} and vessel frequency of 5–12 vessels per mm² {47}, 
whereas Pterocarpus tinctorius and Pterocarpus soyauxii have fewer than five {46}. Pterocarpus tinctorius 
and Pterocarpus soyauxii are more difficult to differentiate but display slight differences in vessel diameter 
distributions, varying between medium (80–130 µm) and large (>130 µm), with Pterocarpus soyauxii 
displaying a higher prevalence of large vessels (medium: variable / Large: present), while Pterocarpus 
tinctorius displays the opposite. The results suggest that readily observable features, such as macroscopic 
cross-sectional anatomy (Koch et al., 2018; Ruffinatto et al., 2015), facilitate species differentiation within 
visually similar, commercially important timbers, underscoring the potential for refining of international 
enforced protection lists for threatened timber species. 
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The ability of SmartWoodID-trained models to identify InsideWood species descriptions illustrates the 
advantages of specimen-based databases that incorporate large surface areas, such as SmartWoodID(De 
Blaere et al., 2023), providing more comprehensive insights into wood anatomical variation (De Blaere et 
al., 2023). Species accuracy is consistently lower on InsideWood descriptions across all models, and 
genus accuracy is also reduced, highlighting the difficulty of resolving fine taxonomic distinctions within a 
generalized dataset (section 3.4.5.4). However, accuracy at the family level improves significantly for 
InsideWood descriptions, suggesting that broader taxonomic classifications mitigate the effects of 
overgeneralization and feature variability. Lower accuracy on InsideWood descriptions can be attributed to 
the following factors: First, although wood anatomists follow standardized IAWA definitions, subtle 
subjective differences in interpretation can arise (Gasson et al., 2011; NS, 1989). Second is the structural 
difference between the datasets. InsideWood provides species-level descriptions compiled from multiple 
sources rather than direct observations of individual specimens, potentially leading to overgeneralization 
and a loss of specimen-specific detail (Wheeler et al., 2020). In contrast, SmartWoodID descriptions are 
specimen-based, maintaining a direct link between observed features and physical specimens, and 
explaining the observed higher accuracy (De Blaere et al., 2023). Third, field-of-view of specimens can 
significantly impact identification. Traditional anatomical descriptions often rely on thin sections covering 
only ~1 mm², whereas SmartWoodID scans encompass a much larger area (~7 cm × 1–2 cm) (De Blaere et 
al., 2023). This broader perspective helps reveal structural variability and patterns that could be 
misinterpreted or missed entirely when focusing on a small region. For instance, a narrow field might 
suggest banded parenchyma, while a wider view could reveal an interrupted pattern indicative of confluent 
parenchyma (NS, 1989). The impact of these database differences was observed for images of Pterocarpus 
(see Figure 3.17), as key diagnostic features in the SmartWoodID database—such as the exclusively 

Figure 3.17: Macroscopic cross-sectional wood anatomy images (2400 dpi / 5.42x5.42mm) 
displaying differences between 1. Pterocarpus rotundifolius (Tw28123), 2. Pterocarpus 
angolensis (Tw768), 3. Pterocarpus soyauxii (Tw7654), 4. Pterocarpus tinctorius (Tw1010). 

1 2 

3 4 
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solitary vessel arrangement (≥90%) {9} distinguishing Pterocarpus angolensis within the genus 
Pterocarpus—were absent from the InsideWood database (Wheeler, 2011). Additionally, studying the 
anatomy of Pterocarpus (Figure 3.17)  revealed previously unrecorded trends in vessel diameter 
distribution between Pterocarpus soyauxii and Pterocarpus tinctorius, which were both broadly 
categorized as >200 µm in InsideWood (Wheeler, 2011) despite notable differences in observed 
distribution patterns, corroborated in the results. These findings underscore the value of expanding 
anatomical databases through large-area imaging and multi-specimen analysis to enhance the accuracy 
of species differentiation. 

However, the findings on differentiating Pterocarpus tinctorius and Pterocarpus soyauxii also underscore 
for enhanced feature extraction and alternative approaches to improve accuracy, as the broad 
categorization of macroscopic anatomical features (e.g. vessel diameter distributions varying between 
medium (80–130 µm) and large (>130 µm), with Pterocarpus soyauxii displaying a higher prevalence of large 
vessels (medium: variable / Large: present), while Pterocarpus tinctorius displays the opposite) and lack 
of fine-scale detail due to low resolution may limit classification between closely related taxa. Traditional 
methods, relying on expert-defined features, may miss critical information in raw anatomical images 
(Knauer et al., 2019). This stems in part not from the anatomy itself but from the subjective interpretation 
of most quantitative features within the IAWA framework. This is particularly evident for quantitative 
features such as vessel frequency, lumen diameter, and ray width, which are grouped into broad 
categorical states (NS, 1989). While these simplified categories (e.g., present, variable, absent) facilitate 
practical identification, more precise descriptors—such as means, ranges, and standard deviations—may 
better capture the inherent variability of wood samples (Beeckman and Yin, 2024; He et al., 2019; Van den 
Bulcke et al., 2025). Extracting such quantitative information presents additional challenges, as it requires 
precise measurements that account for the natural variability within and between species. This highlights 
the need for robust database construction methods and retrieval algorithms capable of effectively 
handling these quantitative features. Addressing this issue necessitates the preparation of large surface 
areas for analysis, digitization at a resolution high enough to enable accurate feature measurements (e.g., 
vessel diameter), and the development of advanced computational methods for automated feature 
extraction to enable measuring numerous individual features (e.g. vessel, rays). At 2400 dpi (or 10.58 
micron), SmartWoodID captures visually interpretable anatomical features but may introduce ambiguities 
for finer structures (De Blaere et al., 2023). For example, axial vasicentric parenchyma — parenchyma cells 
forming a complete circular to oval sheath around a solitary vessel or vessel multiple (NS, 1989) — may 
appear indistinguishable from vessel walls when thin layers are present, causing potential 
misclassification. Similarly, banded parenchyma is classified based on band height in cell count (NS, 
1989), but variations in cell size within a band can blur distinctions between wide- and narrow-banded 
parenchyma. Recent advances in automated digitization of wood anatomical surfaces, through robotics 
and neural network-based segmentation, provide a promising avenue for overcoming these limitations 
enabling fast and accurate digitization of large cross-sectional surfaces at higher resolution (2.25 micron), 
and automating measurement of large number of quantitative features (NS, 1989; Van den Bulcke et al., 
2025). 

It is important to recognize, however, that enhancing species-level identification accuracy through 
advanced imaging techniques and analysis of large wood surfaces remains difficult to implement under 
typical field conditions. In contexts where high volumes of timber must be rapidly assessed, the use of 
accessible tools—such as utility knives, sanding blocks, and low-cost imaging devices—does not support 
the acquisition of high-resolution data required for such advanced analyses. Nevertheless, research in CV 
has demonstrated that deep learning models applied directly to macroscopic cross-sectional images can 
effectively differentiate between closely related taxa across diverse timber types, including those 
commonly encountered in tropical regions (Ravindran et al., 2021, 2020, 2018). CNNs, in particular, show 
promise for extracting taxonomically informative features from end-grain images by leveraging subtle 
variations in colour, texture, and anatomical patterning, thereby enabling more accurate and scalable 
wood identification (Hwang and Sugiyama, 2021; Knauer et al., 2019).  
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3.6 Conclusion 
This study highlights the inherent limitations of the 31 expert-defined, accessible macroscopic cross-
sectional features for taxonomic identification across a diverse range of timber species, such as those 
found in the Congo Basin. While classification accuracy improves at higher taxonomic ranks, genus- and 
family-level predictions remain limited due to overlapping anatomical features among taxa. Nevertheless, 
macroscopic cross-sectional features retain diagnostic value when applied within narrower taxonomic 
scopes. The successful discrimination of Pterocarpus species—once considered indistinguishable 
without laboratory-based methods—demonstrates that readily observable anatomical features can 
enable species-level identification in the field. Further improvements in diagnostic accuracy can be 
achieved by incorporating high-resolution, large-area imaging and multi-specimen datasets. These 
approaches more effectively capture intra-specific anatomical variability than conventional single-sample 
methods and enable the extraction of quantitative anatomical information at a finer scale. Integrating such 
enhancements offers promising pathways to increase both taxonomic resolution and classification 
reliability. However, practical constraints in field environments—such as time pressures and limited 
equipment—necessitate alternative strategies for reliable in situ wood identification. Continued progress 
will depend on advancing CV–based identification systems, particularly CNNs, which can directly process 
macroscopic images to deliver accurate and rapid classification. These models offer strong potential for 
scalable, efficient, and field-ready timber verification applications. 
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4.1 Abstract 
Automating wood identification through CV offers improved objectivity, time-efficiency, and accuracy over 
traditional methods, using expert-defined features. Conventional wood anatomical assessments rely on 
intact mature tissue, avoiding damage (cracks, fungi deterioration, insect damage) and other anomalies 
(pith, bark, traumatic canals). The impact of using images from anomalous surfaces on automated 
identification remains underexplored in current research.  

This chapter evaluates the performance of CNNs for classifying the presence of anomalies on images, and 
studies the impact of anomalies on genus identification by in- or excluding image of anomalous surfaces 
in the training data and assessing recall on the test data. The Xception network architecture was used to 
train the two types of classification models, on macroscopic cross-sectional images of 26 Congolese 
wood genera. The first model was trained for binary classification on the presence or absence of anomalies 
on >250.000 images of ~1000 Congolese tree species, demonstrating accuracy, precision, recall and f1-
score of ~93% on 25.000 test images. This shows that CNNs can learn patterns to detect the presence of 
anomalies. The second model was trained and evaluated on a subset of those Congolese tree species, 
consisting of 26 timber genera with abundant different types of anomalies (cracks, fungi deterioration, 
insect damage, pith, bark, traumatic canals). Three different wood identification models were trained and 
evaluated on the images featuring a model trained only on all images (regardless of anomalies), a second 
model trained only on perfect (anomaly-free) images, and a third model trained only on images with 
anomalies. The three models were evaluated on different specimens and demonstrated macro-averaged 
recall scores of 88.4, 90.5%, and 79.1% for the respective models, showing that a model trained on images 
from intact end-grain wood/anomaly-free images performed best. Class (genus) specific recall scores 
demonstrated for the three models that model performance varies between genera. The class (genus) 
specific recall scores of Millettia, Tessmannia, Celtis, Afzelia, Beilschmiedia, and Vitex are highest for the 
model a trained on all images (with and without anomalies). Conversely, the recall scores of Cynometra 
and Microcos were lower for this model. Grad-CAM analysis was performed to visualizes which regions on 
images were more activated for classification (wood identification), and revealed that the model focuses 
more on anomaly-free regions for wood identification, underscoring the importance of clear wood 
anatomy in training CNNs for wood identification. 

This chapter was accepted for publication in the peer-reviewed Journal Wood Science and Technology 
(Springer) on 19/08/2025  



4.2 Introduction 
Wood identification has gained increasing interest due to rising concerns over sustainable sourcing, 
combating illegal logging, and ensuring product quality and authenticity (Hwang and Sugiyama, 2021; Silva 
et al., 2022). Traditional manual methods for wood identification can suffer from subjectivity, time 
inefficiency, and limited taxonomic accuracy. However, with the emergence and development of AI, there 
is a promising avenue for automatizing wood identification and providing additional insight in wood 
identification in a fast and accessible way (Andrade et al., 2020; Hwang and Sugiyama, 2021). Deep 
learning algorithms, and CNNs in particular, can learn complex patterns and features from large datasets, 
leading to more robust and accurate identification outcomes (Alzubaidi et al., 2021; Sarker, 2021; Taye, 
2023).  

CV-based wood identification, which emerged over the past decades, is a practise that uses images of 
wood as a source of diagnostic information (Hwang and Sugiyama, 2021; Silva et al., 2022). Often, 
researchers use macroscopic cross-sectional images to develop models that can distinguish timbers on 
multiple taxonomic levels (Hwang and Sugiyama, 2021; Silva et al., 2022). Such models have been 
achieving remarkable results in several studies in the last decade and often advocate for direct 
applicability in the field (Ravindran et al., 2021, 2020, 2019; Tang et al., 2018; Wiedenhoeft, 2020).  

Unlike many other CV domains, wood identification presents distinctive challenges. While advancements 
in CV have improved model robustness to variations in lighting, resolution, and image quality (e.g., blur) 
(Shorten and Khoshgoftaar, 2019), wood often exhibits physical anomalies that obscure key anatomical 
features and complicate classification (Goodell and Nielsen, 2023; Niemz et al., 2023a; Schmidt, 2006). 
As a biological material, wood is subject to degradation from disease, infestation, and physical stress. 
Insects and marine borers can damage wood, by removing wood material, and fungi and bacteria can 
cause discoloration and decay (Goodell and Nielsen, 2023; Schmidt, 2006). Furthermore, wood can crack, 
especially during drying (Niemz et al., 2023a). These anomalies can obscure diagnostic anatomical 
structures, thereby complicating identification.  

In comparison, wood anatomists typically prefer anomaly-free mature heartwood tissue for assessment 
because identification protocols and image databases such as atlases traditionally avoid juvenile wood 
(Burley, 2004). The main reason why juvenile wood is not used, is because its anatomy is highly variable 
even within a specimen (e.g. different average vessel diameter compared to mature tissue), making them 
less ideal for taxonomic identification. Furthermore, commerce usually targets larger trees for use as 
timber, which emphasizes the need for using mature tissue for developing CV-based wood identification 
models, which will likely encounter the same mature wood in traded cargo. Sapwood is considered 
valuable for wood identification, as it retains some diagnostic anatomical features. 

Aforementioned examples of anomalies are known to be often encountered in the field, but official 
numbers are seldom published. Similarly, there is little to no public record of anomalous surface area on 
collection material in wood collections. An example of a wood collection database that records the 
occurrence of anomalies on collection material is SmartWoodID (De Blaere et al., 2023). The overall 
presence of aforementioned anomalies on the SmartWoodID collection reveals that the majority of 
specimens portray anomalies on more than 50% of their surface area.  

However, the impact of these anomalies on CV-based wood identification remains largely unexplored. In 
related topics, Ravindran et al. (2023) has demonstrated that suboptimal surface preparation by cutting or 
sanding can hamper CV-based wood identification. Furthermore, Owens et al. 2024 has systematically 
tested how CNN predictions are affected by digital perturbations mimicking real-world wood degradation. 
This underscores the need to study the impact of the aforementioned anomalies on CV-based wood 
identification.  

Furthermore most other studies on CV-based wood identification have relied exclusively on anomaly-free 
specimens (Hwang and Sugiyama, 2021; Ravindran et al., 2021; Silva et al., 2022), overlooking the 
imperfections typically encountered in applied contexts. Ravindran et al. 2018, highlighted in their 
methodology that anomalies were annotated and excluded from training CNN for wood identification to 
rule-out influence caused by anomalies. To ensure reliable field deployment, it is therefore essential to 
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evaluate how such anomalies influence model predictions—and to develop mitigation strategies that 
improve classification resilience under realistic conditions.  

While recent studies (Owens et al., 2024; Ravindran et al., 2023) have assessed how models trained on 
clean, anomaly-free wood images perform when evaluated on imperfect test images, they have largely 
overlooked the potential impact of incorporating such anomalous images directly into the training process. 
As a result, the influence of training data quality—particularly the inclusion or exclusion of anomalies—on 
model robustness and generalizability remains insufficiently understood. 

This study addresses the aforementioned gaps by systematically evaluating how wood anomalies affect 
both the prediction performance of CNNs for wood identification under different images training datasets. 
Our investigation is structured around two central components. First, we trained a binary classification 
model to detect images with anomalies, exploring whether CNNs can reliably detect the diverse types of 
wood anomalies—such as cracks, fungal decay, insect damage, bark, pith, traumatic canals—and thereby 
enabling automated filtering of anomalous images data from training sets. This contributes to the field, as 
a means to automatically clean datasets according to the standards currently and widely used in CV-
based wood identification, e.g. to avoid the use of anomalous images. 

Second, we investigated the influence of anomaly inclusion in the training data on wood identification 
performance. Using the same CNN architecture, we trained three separate models on different image sets: 
(1) a balanced mix of anomaly-free and anomalous images, (2) only anomaly-free images, and (3) only 
anomalous images. All three models were trained to classify the same 26 Congolese timber genera using 
standardized macroscopic cross-sectional image patches. Each model was then evaluated on a test 
dataset composed of both anomaly-free and anomalous images, providing insight on how well each of 
those three training dataset configurations, perform on images independent test specimens with and 
without anomalies. Model performance was assessed using macro-averaged recall, allowing comparison 
across trained models and across individual classes (genera). By comparing these trained models and 
analysing classification behaviour, this study aims to clarify the role of anomalous image content in CNN-
based wood identification. 

To further enhance interpretability, we employed Grad-CAM, which visualizes the image regions most 
influential in the model’s predictions. These visualizations are targeted to deliver insight into whether 
models trained on perfect, anomaly-free images rely on diagnostically relevant features (e.g. the clean 
anatomy) or are distracted by present anomalies. 

4.3 Material and Methods 
4.3.2 Dataset Description 
This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the 
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of 
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in 
section 1.5 which provides an overview of all data used in each chapter. 

The database contains high-resolution RGB scans of the macroscopic end-grain surfaces of 3,742 wood 
specimens, representing 954 species native to the DRC. Each specimen was prepared by scanning the 
cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization of 
macroscopic features essential for wood identification.  

Given the large size of the scanned surface, working directly with the full images is computationally 
demanding and may lead to overfitting due to the limited number of images. Therefore, full images are 
cropped into smaller patches that still contain the required diagnostic features and capture the inherent 
variability across different specimens. We opted for patches of 512x512 pixels, which corresponds to a 
surface area of 5.42x5.42 mm, providing sufficient detail to effectively distinguish damage such as insect 
holes, cracks, and fungal growth, while also preserving the necessary macroscopic features visible on the 
end-grain surface for accurate wood identification (see Figure 4.1). Figure 4.1 shows the different types of 
anomalies regarded, upper from left to right: a) Traumatic canals (Millettia hockii / Tw28835), b) insect 
damage (Prioria gilbertii / Tw3601), c) fungal discoloration (Ficus vallis-choudae / Tw44423). Lower from 
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left to right, it shows d) cracks (Afzelia bipindensis / Tw26431), e) pith (Brachystegia spiciformis / Tw2002), 
f) bark (Diospyros bipindensis / Tw35708). 

 The image patches were labelled on the presence of anomalies. Patches without visible wood anatomy 
were excluded from the training and validation data. 

All full images with less than four patches were also left out, as their total endgrain surface area would 
accumulate to less than one square cm, a normal area size for anatomical assessment by humans. 

4.3.3 Model architecture 
Xception was used as a backbone due to its balance between required computational power and its 
satisfactory performance on classification of the ImageNet database [10] (a visualisation of the Xception 
architecture can be consulted in Supplementary materials Figure 8.3). The pre-trained Xception 
architecture (on the ImageNet database) was fine-tuned without freezing layers, using a batch size of eight 
and RMSprop as optimizer with a learning rate of 1e-4. Class weighting was employed during training to 
address class imbalance. Early stopping was implemented to mitigate overfitting by tracking the validation 
loss progression during training and preserving the model with the lowest validation loss. Training started 
with one hundred epochs, with early stopping triggered if there was no improvement in validation loss for 
ten consecutive epochs with less than 0.1. 

The following data augmentation techniques were applied to improve model robustness: random rotation 
(0-20 degrees), shearing (0-10 degrees), horizontal/vertical flipping, colour shifting (in a single, randomly 
selected, channel with -10-10 range) and random gaussian blurring (sigma range 0-4) (Owens et al., 2024). 
However, zooming and/or shifting the image along its height or width was avoided as that could 
inadvertently obscure anomalies. The CNN was implemented using TensorFlow (version 2.6.0, Python 
version 3.9.15). Pandas (version 1.5.3) and Matplotlib (version 3.7.1) were used for analysis and 
visualisation of the results. 

Figure 4.1: Anomalies on the end grain timber: a-c(upper/left-to-right) traumatic canals, insect damage, fungal discoloration, 
d-f(bottom/left-to-right) cracks, pith, bark. 
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4.3.4 Classification of image patches by presence or absence of anomalies 
The CNN was then customised to classify image patches by presence or absence of anomalies. The 
presence of anomalies is essentially a binary image classification problem. Patches labelled as 
‘containing anomalies’ were assigned to the positive class, patches labelled as anomaly-free to the 
negative class.  

In summary, the entire SmartWoodID database contains 4740 images cropped to 255712 patches from 
which 44.76% are annotated as ‘anomalous’ and 55.24% as ‘anomaly-free’. This ensures a balanced 
representation to develop CNN for anomaly verification  (De Blaere et al., 2023). All patches were randomly 
divided into training (60%), validation (30%), and test sets (10%). 

The Xception CNN architecture was implemented as described in section 2.2. The classification head was 
replaced with a GlobalAveragePooling layer and a fully connected layer with Sigmoid activation. Binary 
cross-entropy was used as the loss function and binary accuracy as the evaluation metric. The 
performance was assessed using the Precision, Recall, Accuracy and by visually inspecting individual 
misclassifications. 

Mislabbeled patches were reported and corrected before training models on genus classification to ensure 
labbeling to be correct. 

4.3.5 Classification of image patches by genus  
Classification is targeted at the genus level due to the high interspecific anatomical resemblance within 
most genera, and the limited number of specimens per species in the SmartWoodID database. Twenty-six 
botanical genera were selected for training the model architecture. As selection criterion, the number of 
specimens per genus was considered, prioritizing genera with a balanced representation of anomalous 
and anomaly-free specimens. For further comprehensive details regarding the species used in this study, 
see Table 8.4 in Supplementary materials. 

The specimens were allocated exclusively into either the training/validation or the test set to ensure fair 
evaluation. The specimens were grouped by species, before allocation into training and test sets, to 
preserve a balanced representation of species, ensuring the model's ability to manage anatomical 
differences across all species in a genus. This resulted in two datasets with approximately 80% of the 
patches as material for training and 20% as test data. After the initial split, the image patches for training 
were grouped, by the presence of anomalies, and consecutively divided into training (80%) and validation 
(20%) using a stratified sampling approach. This preserved proportional representation of specimens and 
anomalies in both datasets, and aims to minimize class imbalance.  

Due to the large variability in specimen size, the number of patches per specimen is very different, leading 
to a strong imbalance in the training set. Therefore, oversampling was implemented by randomly selecting 
additional patches from smaller specimens. Specifically, for each genus, the average number of patches 
was computed in the training data. Smaller specimens, with fewer patches than the genus-level mean, 
were then oversampled by randomly selecting additional patches until the number of patches matched 
the genus-level mean. Each new patch was evaluated by the binary anomaly classifier, ensuring balanced 
representation of anomalous and anomaly-free patches in the training data. For validation, patches were 
randomly sampled without replacement from specimens that were not oversampled, until the desired 
number of validation patches was obtained. This prevented data leakage to the validation data. For further 
comprehensive details regarding the specimen distribution in the training and test sets, see Table 8.5 in 
Supplementary materials. 

The CNN architecture was implemented as described in section 2.2. The classification head was replaced 
with a global average pooling layer and a fully connected layer with SoftMax activation. Categorical cross-
entropy was used as the loss function and accuracy as the evaluation metric on the training and validation 
data. Three training dataset configurations were investigated. The first model featured the entire training 
set with both anomaly-free and anomalous images. The second model and third model use exclusively 
anomaly-free patches and anomalous patches, respectively. The performance across models was 
evaluated by monitoring the evolution of accuracy and loss during training (for more information see 
Supplementary materials: 8.2) and comparing the recall scores on the test data. Recall with Macro 



4 
 

Averaging was selected as the evaluation metric on the test data to offer comprehensive assessment of 
CNN performance across and within the trained models. Recall measures the proportion of true positive 
predictions (correctly identified patches) out of all actual positive patches. Macro-Averaged Recall is a 
metric that computes the arithmetic mean of recall scores across different classes (here timber genera). 
For each model, the recall scores were used to compare, when discerning either anomaly-free patches or 
anomalous patches. To ascertain the model ability at correctly identifying the genus of entire specimens, 
the most frequently classified class was determined for every specimen. If the resulting majority vote 
differed from the true genus, the specimen was regarded as misidentified (False). The Boolean scores per 
specimen were then aggregated to Recall values par class and were further averaged across classes to 
obtain a “Specimen Recall score”. In addition, differences in recall scores for individual classes were 
studied. By averaging the recall values for each class, Macro Averaging accounts for class imbalances and 
variations in dataset characteristics, ensuring a fair comparison of model performance and offering 
insights into the model’s behaviour on individual classes in different training dataset configurations (three 
different models). Finally, Grad-CAM was used to elucidate patterns in the extracted features to classify 
anomalous timber images. Anomalous images were classified by the model trained only anomaly-free 
images. The generated heatmaps, represented as red-blue gradients, were overlaid onto those patches to 
pinpoint critical classification areas (Selvaraju et al., 2020; Wang and Zhang, 2023). The final convolutional 
layer’s output was selected for Grad-CAM generation due to its ability to capture essential hierarchical 
features for the classification.  
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4.4 Results 
4.4.1 Classification of patches by anomalies 
The test set consisted of 32,493 image patches, comprising 16,217 anomaly-free patches and 16,276 
anomalous patches. Each patch was classified by the model as either anomaly-free or anomalous, yielding 
four possible classification outcomes: true positive (anomaly-free patches correctly classified as anomaly-
free), true negative (anomalous patches correctly classified as anomalous), false positive (anomalous 
patches incorrectly classified as anomaly-free), and false negative (anomaly-free patches incorrectly 
classified as anomalous), as illustrated in Figure 4.2. The resulting performance metrics derived from the 
confusion matrix are as follows: accuracy of 93.1%, precision of 91.7%, recall of 94.8%, and an F1-score 
of 93.2%. 

At the centre of each quadrant of the confusion matrix, representative image patches are shown with 
overlayed Grad-CAM heatmaps. These visualizations, rendered in a blue-to-red colour gradient, indicate 
the regions within each image patch that contributed most strongly to the model’s classification decision. 
In the true negative category, the model consistently focuses on visually prominent anomalous features 
such as cracks (Figure 4.2.s), fungal hyphae (Figure 4.2.t), insect boreholes (Figure 4.2.u), pith (Figure 4.2.x), 
bark (Figure 4.2.v), and traumatic canals (Figure 4.2.w). In contrast, the heatmaps corresponding to true 
positives display broader regions of activation, often spanning substantial portions of the patch (Figure 
4.2a-f). 

False negatives offer an opportunity to examine whether anomaly-free patches exhibited latent 
characteristics that may have led the model to misclassify them. Upon visual inspection, 270 of the 840 
false negative patches were found to contain overlooked anomalies, suggesting mislabelling in the ground 
truth data. Heatmaps of these mislabelled patches, also shown in Figure 4.2, exhibit strong activation in 
areas corresponding to these hidden anomalies. For instance, Figure 4.2.g highlights insect damage, while 
Figure 4.2.h, I, and k show activation over traumatic canals, cracks, and bark tissue, respectively—
indicating that the model detected the anomalies. 
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The remaining 570 false negative patches were confirmed as correctly labelled (i.e., truly anomaly-free). In 
these cases, the heatmaps generally lacked consistent activation patterns. Figure 4.2.j provides an 
example where the model appears to have responded to colour contrast between heartwood and 
sapwood, which may have been mistakenly interpreted as indicative of fungal discoloration. Figure 4.2.l 
exemplifies the majority of patches in this group, where no systematic visual features were consistently 
highlighted, suggesting uncertainty or over-sensitivity in the model's anomaly detection in these contexts.  
As framed in Section 2: Material and methods, the 270 mislabelled patches were relabelled to avoid 

Figure 4.2: Confusion matrix showing the number of True positives (upper-left quadrant), False positives (lower-left 
quadrant), False negatives (upper-right quadrant), True positives (lower-right quadrant) of the binary anomaly detector 
model. The quadrants are coloured by a linear transparent blue colour gradient (shown on the left), in relation to the 
number of image patches (printed at the bottom of each quadrant). Each quadrant shows exemplary images overlayed 
with Grad-CAM to provide interpretation output in each quadrant. The level of activation of the Grad-CAM is shown on 
the right with a multi-colour gradient from blue to red. Pixel that have no colour overlay were not activated by the model 
during feature extraction. Letters (green) serve as unique identifiers for corroboration in text. 
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including this into the datasets for the genus classification models studied next. These mislabelled patches 
represent less than 1% of all test patches and thereby affirm that the labelling errors were rare. After 
updating the labels, this resulted in accuracy, precision, recall, and F1-score of 94.1%, 92.0%, 96.4%, and 
94.2% respectively. 

These observations highlight the importance of rigorous dataset validation. They also demonstrate the 
model’s capacity to localize anomalies, even in the presence of possible label noise in the training data.  

Further insights were gained from examining the false positive predictions. In these cases, the model 
identified anomalous features, but the corresponding patches were labeled as anomaly-free. 
Representative examples are presented in Figure 4.2. In Figure 4.2.m, o, and p, the model clearly activated 
on visible cracks. Figure 4.2.q shows the model responding to the boundary between wood and bark tissue, 
while Figure 4.2.r highlights areas affected by fungal degradation. Figure 4.2.n presents a patch where pith 
tissue was activated, in addition to other regions lacking visible anomalies.  
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4.4.2 Classification of patches by genus 
4.4.2.1 Model performance on test data 
Table 4.1 summarizes the macro-averaged recall scores for three training configurations (rows) evaluated 
on three filtered test sets (columns). For each configuration, recall is reported at the patch level (Recall (%)) 
and at the specimen level (Specimen Recall (%)), where the latter is based on majority voting across 
patches belonging to the same specimen.  

Table 4.1: Overview of recall scores across training configuration (Rows represent different models trained with either  
both anomaly-free images and anomalous images, only anomaly-free images, and only anomalous images)and across 
filtered test data (columns represent the test patches, with the first column (from-the-left) showing the result on all 
patches, the centre column showing the recall based only on anomaly-free test patches, and the third column (from-
the-left) showing the recall based only on anomalous test patches. 

The highest recall on anomaly-free test patches (column 2) was obtained by the model trained exclusively 
on anomaly-free training patches (row 2), exceeding the recall of the same model on anomalous patches 
(column 3) by 13.4 percentage points. This disparity indicates reduced generalization of the anomaly-free-
trained model to unseen anomalous samples. Despite this, the same model (row 2) achieved the highest 
specimen-level recall overall (column 1) (95.8%), with minimal variance between specimen recall scores 
on anomaly-free (column 2) and anomalous (column 3) test subsets (95.6% and 95.1%, respectively), 
suggesting stable genus prediction of entire specimens despite variability at the patch level. 

The model trained on both anomaly-free and anomalous patches (row 1) exhibited the most balanced 
recall between test subsets, with a difference of 8.4 percentage points between recall on anomaly-free 
(column 2) and anomalous test patches (column 3). Its recall on all patches (column 1) was comparable 
to the model trained only on anomaly-free patches (row 2), differing by only 0.2 percentage points. The 
specimen recall was higher across the test data (all columns) by ~3.0 percentage points if anomalous 
images were excluded from the training set (row 1 to row 2). 

The model trained only on anomalous patches (row 3), yielded the lowest recall across all conditions. 
Compared to the model trained on all patches (row 1), overall recall (column1) was 8.4 percentage points 
lower (78.4% vs. 86.8%), with reductions of 9.3 and 6.8 percentage points on anomaly-free (column 2) and 
anomalous (column 3) test subsets, respectively. Specimen recall was also lower to the other models (row 
1 and 2), with an average of 89.2% and a higher variance (1.21%). 

Across all three configurations, specimen recall consistently exceeded per-patch recall, with an average 
improvement of 10.1 percentage points and reduced variability across test conditions. This emphasizes 
the limited effect of adding or leaving out anomalous images of wood from the training data, on classifying 
test specimens based on the available surface (anomaly-free or anomalous).

 
All test patches (1) Only anomaly-free test patches (2) Only anomalous test patches (3) 

Recall (%) Specimen 
Recall (%) Recall (%) Specimen 

Recall (%) 
Recall (%) Specimen 

Recall (%) 
Model trained on   
anomalous and  

anomaly-free patches 
(1) 

86.8 92.7 88.4 92.9 80.0 91.9 

Model trained only on   
anomaly-free patches 

(2) 
87.0 95.8 90.5 95.6 77.1 95.1 

Model trained only on   
anomalous patches (3) 

78.4 89.1 79.1 90.3 73.2 88.1 
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Figure 4.3: Confusion matrices showing the percentual recall scores for the 26 classes (genera) on the test patches, evaluated by the model trained 
on both anomaly-free and anomalous images. For each confusion matrix, the actual genus label is presented as rows, and the predicted label is 
presented as columns. The cells of the confusion matrix are coloured by a linear colour gradient shown on the right of every confusion matrix. The 
three matrices each represent the result on a different part of the test data. The blue confusion matrix (left) represents the results on all test patches. 
The green confusion matrix (upper-right) represents the results only on the anomaly-free test patches. The red confusion matrix (lower-right) represents 
the results only on the anomalous test patches. 
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Figure 4.4: Confusion matrices showing the percentual recall scores for the 26 classes (genera) on the test patches, evaluated by the model trained on 
only anomaly-free images. For each confusion matrix, the actual genus label is presented as rows, and the predicted label is presented as columns. 
The cells of the confusion matrix are coloured by a linear colour gradient shown on the right of every confusion matrix. The three matrices each represent 
the result on a different part of the test data. The blue confusion matrix (left) represents the results on all test patches. The green confusion matrix (upper-
right) represents the results only on the anomaly-free test patches. The red confusion matrix (lower-right) represents the results only on the anomalous 
test patches. 
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Figure 4.5: Confusion matrices showing the percentual recall scores for the 26 classes (genera) on the test patches, evaluated by the model trained 
only on anomalous images. For each confusion matrix, the actual genus label is presented as rows, and the predicted label is presented as columns. 
The cells of the confusion matrix are coloured by a linear colour gradient shown on the right of every confusion matrix. The three matrices each represent 
the result on a different part of the test data. The blue confusion matrix (left) represents the results on all test patches. The green confusion matrix 
(upper-right) represents the results only on the anomaly-free test patches. The red confusion matrix (lower-right) represents the results only on the 
anomalous test patches. 
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The confusion matrices illustrates the class (genus)-specific performance of wood image classification 
models in the three training configurations using confusion matrixes with recall scores: Figure 4.3: model 
trained on balanced dataset of anomaly-free and anomalous images; Figure 4.4: model trained only on 
anomaly-free images; and Figure 4.5: model trained only on anomalous images. The confusion matrices 
on all test patches (blue (left) matrices) revealed that the recall scores on most genera were well over 70% 
recall in Figure 4.3, except for Cynometra (61.7%) and Tessmannia (60.2%). Transitioning to Figure 4.4, the 
recall were higher for Brachystegia (12.5 percentages points), Alstonia (13.9 percentages points), Millettia 
(14.6 percentages points), Leplaea (19.8 percentages points), and Microcos (26.1 percentages points), 
while recall was observed lower for Cynometra (12.9 percentages points) and Beilschmiedia (19.0 
percentages points). For the model only trained on anomalous patches (Figure 4.5), a decrease in recall 
was observed for Ficus (12.0 percentages points), Dialium (12.0 percentages points), Irvingia (13.2 
percentages points), Leplaea (16.9 percentages points), Gambeya (18.3 percentages points), Prioria (22.4 
percentages points), Diospyros (23.4 percentages points), Beilschmiedia (24.3 percentages points), 
Alstonia (25.4 percentages points), and Tessmannia (51.1 percentages points). However, recall improved 
for Cynometra (25.9 percentages points) and Microcos (21.1 percentages points). 

For anomaly-free test patches (green (upper-right) matrices), the recall change between Figure 4.3 and 
Figure 4.4 was limited for most genera (<10%), except for improvements in Alstonia (14.7 percentages 
points), Leplaea (21.6 percentages points), and Microcos (38.6 percentages points). Limiting the dataset 
to only anomalous images in the training data (from Figure 4.3 to Figure 4.5)  resulted in recall decreases 
for anomaly-free test patches (column 2) in Diospyros (57.8 percentages points), Tessmannia (57.1 
percentages points), Prioria (29.9 percentages points), Alstonia (25.5 percentages points), Gambeya (17.1 
percentages points), Beilschmiedia (17.1 percentages points), Leplaea (14.7 percentages points), Irvingia 
(14.7 percentages points), Ficus (13.2 percentages points), and Dialium (12.0 percentages points). 

Decrease in recall on anomalous test patches (red (lower right) matrices) was observed for Beilschmiedia 
(from 85.3% Figure 4.3 to 42.9% on Figure 4.4), Tessmannia (16.0 percentages points), Prioria (15.3 
percentages points), Gambeya (15.0 percentages points), and Dialium (13.8 percentages points). 
Conversely, improvements were observed for Leplaea (12.4 percentages points), Brachystegia (13.9 
percentages points), Microcos (15.5 percentages points), and Millettia (23.7 percentages points). 
Transitioning from Figure 4.3 to Figure 4.5, recall on anomalous patches (red (lower-right) matrices) 
decreased further for Beilschmiedia (36.5%), Tessmannia (29.3%), Leplaea (25.8%), Alstonia (24.5%), 
Gambeya (19.7%), Vitex (17.6%), Dialium (12.0%), Ficus (11.3%), Diospyros (11.2%), and Irvingia (11.1%), 
while an increase (from 70.1% to 84.2%) was observed for Microcos. Milicia did not feature in any analysis 
of anomalous test data due to the absence of anomalous specimens.  

The class-specific performance also differed within the three models between anomaly-free and 
anomalous patches. The effects are shown on the violin plots in Figure 4.6 and described underneath.  

Each subplot represents a different trained model: (left/blue) model trained on both anomaly-free and 
anomalous patches, (middle/green) model trained only on anomaly-free patches , and (right/red) model 
trained only on anomalous patches. The y-axis depicts the difference in recall percentage between the two 

Figure 4.6: Violin plots showing recall variation between anomaly-free and anomalous patches across the three training 
configurations (left/blue) model trained on both anomaly-free and anomalous patches, (middle/green) model trained only on 
anomaly-free patches , and (right/red) model trained only on anomalous patches.  
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test image types, providing insights into how different training data impact the model's performance on 
classifying wood images in varying conditions. 

For the (blue) model trained on both anomaly-free and anomalous patches, recall scores for anomaly-free 
test patches were generally higher than for anomalous patches in genera such as Millettia (85.8% vs. 
48.7%), Tessmannia (58.2% vs. 33.3%), Celtis (95.2% vs. 76.6%), Afzelia (93.2% vs. 78.3%), Beilschmiedia 
(97.2% vs. 85.3%), and Vitex (96.6% vs. 85.0%). Conversely, higher recall scores were observed on 
anomalous patches for Microcos (48.4% vs. 70.1%) and Cynometra (53.4% vs. 87.0%). 

Similar observations were made for the (green) model trained only on anomaly-free patches, with Millettia 
(95.2% vs. 72.3%), Tessmannia (57.5% vs. 17.3%), Celtis (97.4% vs. 76.5%), Afzelia (99.7% vs. 78.3%), 
Beilschmiedia (92.2% vs. 42.9%), Vitex (97.6% vs. 80.7%), Gambeya (93.9% vs. 80.9%), Pterocarpus 
(97.2% vs. 85.1%), Nauclea (100% vs. 87.9%), Leplaea (80.8% vs. 70.0%), and Alstonia (92.9% vs. 82.2%) 
all demonstrating improved identification on anomaly-free images. Once more, the reverse effect was 
observed for the recall value on Cynometra (39.1% vs. 78.3%), while Microcos showed smaller difference 
(87.0% vs. 85.6%). 

For the (red) model trained only on anomalous patches, higher recall was observed on anomaly-free 
patches for Beilschmiedia (80.1% vs. 48.8%), Millettia (87.6% vs. 59.4%), Afzelia (92.7% vs. 80.7%), Vitex 
(94.9% vs. 67.4%), Celtis (98.0% vs. 86.6%), Leplaea (44.5% vs. 31.8%), Pterocarpus (96.5% vs. 86.3%), 
and Brachystegia (88.2% vs. 77.7%). There was no recall difference obversed for Microcos, Cynometra, or 
Tessmannia, while patches of Diospyros (92.9% vs. 82.2%) and Prioria (92.9% vs. 82.2%) were more often 
predicted correctly when displaying anomalies. 

4.4.2.2 Class activation maps 
Figure 4.7 shows the Grad-CAMs derived from the neural network that classifies the wood at the genus level 
(for the model trained only on anomaly-free patches). The colour scale ranging from red to blue represents 
the relative intensity or importance of each pixel in the heatmap, relative to others within the same image. 
As such, although the same colormap is used, the specific colour intensities applied are unique to each 
image and cannot be directly compared across different images. These Grad-CAMs distinctly reveal that 

Figure 4.7: Grad-CAM heatmaps on image patches (originally shown in Figure ) highlighting natural timber damage: a-
c(upper/left-to-right) traumatic canals, insect damage, fungal discoloration, d-f(bottom/left-to-right) cracks, pith, bark. 



14 
 

areas exhibiting anomalies typically demonstrate comparatively lower activation levels. However, as 
illustrated in Figure 4.7, even anomaly-free wood anatomy regions do not consistently exhibit high 
activation levels. This behaviour can be attributed to the CNN's selective feature extraction process. The 
network focuses on specific image areas that are most indicative of the genus-level classification, rather 
than uniformly activating all clear anatomical structures. This selective activation ensures that the CNN 
prioritizes the most relevant and informative features for accurate classification.  
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4.5 Discussion 
The Xception architecture has demonstrated good performance on classifying the labelled ImageNet 
database, (Chollet, 2017). This study suggests that the architecture also successfully extracts features 
form the  wood anatomical image patches to distinguishing between anomaly-free patches and 
anomalous patches (featuring multiple types of anomalies), and identifying specific timber genera.  

The binary anomaly verification model (section 3.1) can effectively discern between anomalous and 
anomaly-free patches and effectively localize regions on correctly classified test patches with anomalies. 
False negatives (Figure 4.2) demonstrate difficulty classification, which could be cause by particular wood 
anatomical patterns e.g. heartwood to sapwood transition possibly mistaken as fungal staining. Regarding 
the false positives, we could not provide definitive explanations. One possible contributing factor may be 
ambiguity in the labelling protocol. The binary classification of patches as either anomaly-free or 
anomalous was based on the presence or absence of any visually identifiable anomaly. However, the 
threshold for what constitutes sufficient anomaly to warrant labelling was not absolute and may have 
varied across annotations. For example, the presence of a minor crack—whether centrally located or at the 
edge of the patch—may or may not have warranted a label of "anomalous," depending on the annotator’s 
subjective interpretation. Consequently, the model may have learned to detect such features but failed to 
align perfectly with the annotation heuristic, particularly when those features were subtle or limited in 
spatial extent. These findings underscore both the sensitivity of the model to complex visual patterns 
associated with anomalies, and the inherent challenges in curating high-quality labelled datasets for 
supervised learning in visual classification tasks. It is also important to note that the heatmaps on Figure 
4.2 show that activation is more pronounced on anomalies, though not all pixels that make up an anomaly 
are perfectly segmented. This is fundamental aspect also described in other previous literature in adjacent 
CV based classification domains (Jia and Shen, 2017; Liao et al., 2023; Yang et al., 2019). CNNs primarily 
activates regions it finds useful for classification, as demonstrated by class activation maps. These maps 
highlight specific areas contributing to predictions, indicating that not all image areas are utilized, but 
rather those deemed significant for the task at hand (Yang et al., 2019). 

The model architecture could also successfully extract patterns to classify the 26 Congolese timbers onto 
genus level, as apparent by the obtained recall scores on the training, validation, and test data. Filtering 
the training data on the presence of anomalies, has a nuanced effect on the recall. The recall scores across 
classes, increasing marginally from 88.4% (trained on both anomaly-free and anomalous patches) to 
90.5% (trained only on anomaly-free patches) and decreasing from 88.4% (trained on both anomaly-free 
and anomalous patches ) to 79.1% (trained only on anomalous patches), on all test patches, . This 
suggests a balanced trade-off in performance when removing anomalous patches, albeit with a high recall 
score for the model with lowest recall (e.g. trained only on anomalous patches: 79.1%).  

The overall recall score on specimens is further testimony that anomalies neither significantly improves 
nor decreases the model’s ability to classify them correctly. Additional findings on individual genera, 
however, suggest that while the overall performance change between training models was limited, 
individual genera exhibited varied responses to the presence of anomalies. Genera like Leplaea, Alstonia, 
Brachystegia, and Millettia demonstrated higher recall on the test data if the model was trained on 
anomaly-free images, whereas higher recall was observed for Cynometra when evaluated with models 
trained on anomalous patches. Other genera, including Diospyros, Tessmannia, and Ficus, were 
negatively affected by anomalies in training and did not improve when anomalous images were filtered out, 
indicating a preference for a balanced dataset. The peculiar case of Microcos, which showed higher recall 
regardless of anomalies for the model trained only on anomalous patches , suggests the need for further 
investigation. The performance of certain genera remained unaffected by altering the training data based 
on damage. The performance of Afzelia, Albizia, Entandrophragma, Pterocarpus, Xylopia, Uapaca, 
Gilbertiodendron, Nauclea, Vitex, Milicia were generally unaffected by altering the training data based on 
anomalies. Possible correlations between these findings and genus-specific statistics of the training data 
(See Supplementary materials Table 8.5) were difficult to pinpoint as the applied sampling approach in this 
study, implies that the specimen balance across models was constant and could not have contributed to 
differences in genus-specific performances. Our findings on this are added in Supplementary materials 
8.4 for further information. Our analysis, therefore, suggests that CNNs, like Xception, demonstrate higher 
recall in timber classification, when trained on anomaly-free images.  
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Overall, anomaly-free patches consistently yielded higher recall scores across all model evaluations than 
anomalous patches. Additionally, identical patterns can be observed concerning performance for the 
individual genera. In general, Millettia, Tessmannia, Celtis, Afzelia, Beilschmiedia, Vitex and other genera 
are more correctly identified (10-40% better using anomaly-free patches than anomalous patches). An 
exception to this is the genus Cynometra, for which the recall score was between 20-40% higher on 
anomalous test images in models trained with anomaly-free training images present (either only anomaly-
free or both anomaly-free and anomalous), though not for the model trained only on anomalous images. 
Our analysis, therefore, suggests that CNNs, like Xception, demonstrate the overall highest proficiency in 
general timber classification, when testing anomaly-free image patches. 

The Grad-CAM analysis adds further insight, revealing that the model prioritizes regions on patches without 
anomalies. This provides elucidation on the higher observed recall for models trained on anomaly-free 
patches. If the model predominantly focuses on anomaly-free regions for its classification, it follows 
logically that cleaner training images enhance its ability to capture diagnostic patterns, leading to 
improved discrimination between timbers. This also underscores the effectiveness of the model's 
convolutions in extracting diagnostically valuable patterns and applying it on anomalous wood specimen 
in the field. In addition, these findings affirm the reliability of employing Grad-CAMs as a way to provide 
valuable insights into the model's interpretability (Wang and Zhang, 2023) and its approach to handling 
anomalies on endgrain timber images. 

Still, other research also emphasizes the importance of data augmentation to improve model robustness. 
Owens et al. (2024) conducted a review that explored the impact of various digital perturbations on test 
images to assess the robustness of a macroscopic CV wood identification model, to classify 24 Peruvian 
timbers. To compare for instance, cracks can be likened to the introduction of scratches in the study. On 
the other hand, fungi, and/or bacterial damage, leading to wood deterioration or discoloration, pose a 
slightly greater challenge for direct comparison with the studied perturbations. The combination of colour 
shifts in the blue channel (mimicking the effects of blue staining fungi), digital scratches (similar to hyphae 
on wood), and blurring (impairing the visibility of diagnostic features) can approximate these effects. In 
their study, the 24-class model performance showed sensitivity to blue channel shifts and blurring with 
the percentage of correctly classified images dropping along with the magnitude of the colour shift/blur. 
Digital scratches seemed to have only mild impact on model performance. Other anomalies like large 
cracks or insect holes are more difficult to link to but can be compared to other frequently used 
augmentation techniques such as random erasing, where random patches of pixels on images are 
replaced by either set or random values—an approach inspired by dropout regularization (Zhong et al., 
2020). Similar parallels exist for images taken at the sides of specimens due to human error. The study by 
Owens et al. (2024) concludes by suggesting that the introduction of such digital perturbations on the 
training data could improve model robustness. Another study by Shorten and Khoshgoftaar (2019) 
conducted a review that explored various data augmentation techniques on CNN in general and their 
impacts on model performance. This study also suggests that applying such techniques or a combination 
can improve generalization on training images. This could have influenced the small differences between 
the recall scores of the different models, as the applied augmentation techniques during training (e.g. 
colour scaling and gaussian blurring (for more information see section 2.2)) could have improved the 
robustness of the models to better handle anomalous patches. However, Shorten and Khoshgoftaar (2019) 
also emphasizes the need for careful consideration in the design of data augmentation to align with the 
classification and not remove crucial diagnostic features. This is especially relevant for shallow datasets 
where excessive removal might lead to overfitting. This insight elucidates the observed tendency toward 
overfitting and the suboptimal evaluation of test specimens in models trained on image datasets lacking 
anomaly-free images in the training data.  

Closer examination of Grad-CAMs revealed no discernible correlation between the type of wood 
anomalies and misclassification, although severely deteriorated images with little to no clear wood 
anatomy were prone to misidentification due to the absence of diagnostic features. This finding aligns with 
findings of Owens et al. (2024) that their model became progressively less robust as the area of medium-
to-severe blur increases, suggesting that a CNN for macroscopic cross sectional wood identification 
requires intact regions of wood anatomy for correct classification. A peculiar pattern was also observed 
where severely deteriorated images were consistently misclassified as Diospyros, indicating that CNN 
classifiers might uniformly categorize such images without additional training classes. This suggests the 
need for including an unknown class to handle such anomalies. Supporting these findings, Ravindran et 
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al. (2023) demonstrated that the occlusion of wood anatomy negatively affects CNN performance, with 
multiple trained CNN architectures performing poorly on specimens sanded at low grits (80, 180) due to 
severe occlusion. Performance stabilized at higher grits (240 and onwards), underscoring the need for 
clear anatomical features for accurate classification, a requirement shared by both human observers and 
CNNs. 

4.6 Conclusion 
The results show that CNN, such as the applied Xception architecture, can successfully extract features 
for classifying image patches of sanded cross-sectional images to classify different timbers at the genus 
level, and distinguishing between anomaly-free and anomalous wood. The performance on the test data 
varied for individual genera, with some benefiting from training on anomaly-free images, while for other 
genera, like Cynometra, higher recall was observed for the model trained on anomalous images. However, 
the overall recall scores were higher for anomaly-free patches. Grad-CAM analysis revealed the model's 
preference for regions on patches showing unobscured wood anatomical tissue, underscoring the 
importance of clear wood anatomy in training CNNs for wood identification. This could enable CNNs to 
capture diagnostic patterns more effectively, which in turn would lead to better discrimination between 
timbers, even when applied to anomalous specimens in the field. The inclusion of anomalous patches had 
a limited impact, but subtly enhanced performance on anomalous patches. The findings therefore suggest 
that CNNs (like Xception) demonstrate the highest proficiency in timber classification when trained on 
anomaly-free images, making this approach highly effective for developing CV-based wood identification 
models for deployment in the field. 
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5.1 Abstract 
CNNs show strong potential for automated timber identification, yet most prior studies have relied solely 
on closed-world multiclass classification, which assumes that all species encountered during deployment 
are present in the training data. This assumption limits applicability in real-world contexts, where 
previously unseen species are common—a significant challenge given the global diversity of traded 
timbers. 

This chapter compares closed- and open-world genus-level identification methods using macroscopic 
cross-sectional wood anatomy. Four approaches were evaluated: (i) closed-world multiclass RF trained on 
expert-defined anatomical features (Chapter 3); (ii) closed-world multiclass CNN with CCE loss trained on 
5.42 × 5.42 mm image patches (Chapter 4); (iii) open-world embedding-based CNN with triplet loss; and 
(iv) open-world binary verification CNN using composite images and BCE loss. All models were trained and 
tested on the SmartWoodID dataset, with performance assessed across all Congolese species and a 
subset of commercially important Congolese timbers. 

For commercial Congolese timbers, the multiclass CNN achieved the highest metrics (accuracy = 0.86, 
precision = 0.87, recall = 0.85, F1 = 0.84), followed by binary verification (accuracy = 0.75, precision = 0.73, 
recall = 0.71, F1 = 0.69) and RF (accuracy = 0.58, precision = 0.56, recall = 0.54, F1 = 0.53). The embedding-
based CNN performed substantially worse (accuracy = 0.28, precision = 0.21, recall = 0.24, F1 = 0.21), likely 
due to the sensitivity of the triplet loss function. 

Top-k analysis confirmed the superior ranking ability of CNN-based models: for all Congolese species, 95% 
correct identification was reached by considering the top 16% of genera for the multiclass CNN and top 
7% for commercial species, compared to 72% and 64%, respectively, for RF. Binary verification required 
slightly larger k values than the multiclass CNN but outperformed RF. In contrast, the embedding-based 
CNN required k values of 84% (all species) and 71% (commercial species) to reach the same accuracy 
threshold. 

Open-world performance was further tested on an independent dataset of non-Congolese timbers. The 
binary verification approach successfully identified unseen genera, achieving 95% correct identification 
when considering the top 30% of genera. These findings demonstrate that CNN-based methods—
particularly multiclass classification and binary verification—substantially outperform feature-based RF 
models. Moreover, binary verification offers flexibility for identifying previously unseen timbers, supporting 
forensic and enforcement applications by enabling rapid screening and flagging of potentially suspicious 
shipments. 

Embedding-based methods offer a powerful framework for open-world recognition with strong advantages 
regarding computational efficiency. However, observed performance in this chapter was poor, suggesting 
the need for more robust training strategies, improved loss formulations, and potentially the integration of 
complementary data sources (e.g., microscopic anatomy, chemical signatures) to reach their full potential 
for scalable, generalizable timber identification. 

This chapter is not submitted to a peer-reviewed journal on 19/08/2025.  
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5.2 Introduction 
Illegal logging remains a significant driver of deforestation, biodiversity loss, and environmental 
degradation, requiring the development of rapid and reliable wood identification techniques to enforce 
regulations and international conventions (Dormontt et al., 2015; Tacconi, 2012; Thompson and Magrath, 
2021). Recent advancements in wood forensics have leveraged deep learning techniques to classify timber 
species, with the analysis of macroscopic cross-sectional images of wood anatomy emerging as a popular 
approach (Silva et al., 2022; Wheeler and Baas, 1998). Cross-sectional images are particularly 
advantageous due to their distinct structural patterns and accessibility, enabling non-experts to locate the 
appropriate cross-section for evaluation with relative ease (Chen et al., 2022; Hwang and Sugiyama, 2021; 
Wu et al., 2021). 

Traditional deep learning approaches, such as multiclass classification, have been widely applied to wood 
classification tasks (Silva et al., 2022). However, a multiclass approach faces inherent limitations when 
applied to biological data (McCarthy and Hayes, 1981; Yoshihashi et al., 2019). First, they operate under a 
closed-set assumption, meaning the model is trained only on a predefined set of classes and struggles 
with unknown species encountered during inference (Sünderhauf et al., 2018; Wilber et al., 2013). While 
opt-out mechanisms or "other" classes can partially mitigate this limitation, they remain imperfect 
solutions (Entezari and Saukh, 2020; Geifman and El-Yaniv, 2019). Second, these approaches generally rely 
on balanced class distributions, with minor imbalances managed using class weight dictionaries. This 
requirement places a burden on projects aiming to classify a broad range of timbers, as it demands 
extensive and rigorous data collection. Reliable specimens often originate from fieldwork guided by 
experienced botanists or from curated wood collections. While wood collections are advantageous due to 
their pre-processed samples with clear anatomical planes and reliable metadata, they typically offer 
limited replicates per species. This scarcity makes it challenging to ensure sufficient variability for robust 
model generalization (Ravindran et al., 2018; Silva et al., 2022). 

To address the limitations of multiclass classification, deep learning research has increasingly focused on 
open-world recognition, with object re-identification emerging as a powerful open-world alternative for 
image classification(Geng et al., 2020; Scheirer et al., 2012; Yoshihashi et al., 2019). In contrast to 
multiclass models that produce discrete class labels, object re-identification networks are trained to 
compute image similarities, enabling the identification of the most corresponding reference image(s) (Ye 
et al., 2021). Object re-identification networks have achieved significant success in fields like facial 
recognition, relying on prominent methods such as binary verification and triplet learning (Schroff et al., 
2015). Binary verification determines whether two given samples belong to the same class by learning an 
optimal decision threshold for similarity scores (Chen et al., 2017). In contrast, triplet learning maps 
images into an embedding space. In this space, each image is represented by an embedding vector. These 
vectors encode distinctive features, with smaller distances between vectors indicating greater similarity. 
This essentially creates a "digital fingerprint" for each class, enabling comparisons against a reference 
database of embeddings. A smaller distance between the embeddings of a sample and the embeddings of 
a reference sample indicates a stronger match (Ghosh et al., 2023; Ye et al., 2021). While these techniques 
enhance generalization, they also introduce new challenges, such as the need for hard example mining to 
maximize learning efficiency (Bai et al., 2018; Chen et al., 2017; Hermans et al., 2017). Additionally, 
balancing and generating appropriate sample pairs are crucial for effective training, requiring careful 
attention to loss function design and data preparation (Hermans et al., 2017). At present, applying object 
re-identification for wood identification is underexplored in literature (Hwang and Sugiyama, 2021; Silva et 
al., 2022).  

This study provides a comprehensive evaluation of CNN-based classification strategies for timber 
identification, comparing traditional multiclass classification with object re-identification approaches, 
providing insights into the trade-offs between closed-world and open-world approaches for timber 
identification, and ultimately guiding the development of more robust forensic wood identification 
methods for field deployment. A high-performing CNN architecture was trained to classify wood at the 
genus level using the SmartWoodID dataset (De Blaere et al., 2023). Three distinct CNN-based 
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classification approaches were developed and evaluated: 1) traditional multiclass classification, where a 
CNN was trained as a conventional closed-world multiclass classifier; 2) object re-identification, where an 
embedding-CNN was trained, which subsequently allows to differentiate between specimens based on 
learned feature embeddings; 3) object re-identification, with binary verification  using composite twin 
images, where each input pair was labelled as either belonging to the same genus or different genera.  

To systematically assess and compare the performance of these models, we conducted a series of 
experiments using the same scenarios as Chapter 3. The first scenario features  601 Congolese species 
from SmartWoodID to validate the use of macroscopic anatomical features for classifying taxa within the 
Congo Basin’s biodiverse ecosystem, thereby in supporting biodiversity research and conservation efforts. 
The second scenario features  a subset of 78 Congolese commercial species to evaluate the models’ 
capacity to classify high-demand timber species commonly traded in international markets, supporting 
legal compliance and sustainable timber trade practices. 

To test the hypothesis that deep learning models trained on raw wood images outperform traditional 
classifiers based on expert-defined anatomical features, we conducted a series of comparative 
experiments using the SmartWoodID dataset. These experiments build on the scenarios presented in 
Chapter 3, enabling direct comparison of model performance across consistent taxonomic and ecological 
contexts. Next, we compared the traditional multiclass CNN with object re-identification approaches—
triplet learning and binary verification—to test the hypothesis that open-world frameworks offer greater 
classification flexibility and better accommodate intra-species variability. Model evaluation was extended 
using top-k accuracy metrics, quantifying the likelihood that the correct class appears among the model’s 
top predictions. Finally, to test generalization capacity beyond the training domain, object re-identification 
models were applied to a separate dataset of non-Congolese timber species digitized using the same 
protocol. This experiment examines the hypothesis that open-world strategies provide scalable, region-
independent solutions to wood identification, even under increasing classification complexity and the 
presence of unseen taxa.  
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5.3 Material and methods 
5.3.2 Dataset Description 
This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the 
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of 
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in 
section 1.5 which provides an overview of all data used in each chapter. 

The database contains high-resolution RGB scans of the macroscopic end-grain surfaces of 3,742 wood 
specimens, representing 954 species native to the DRC. Each specimen was prepared by scanning the 
cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization of 
macroscopic features essential for wood identification.  

Species and lower taxa are represented by multiple specimens, capturing both intra- and interspecific 
anatomical variation. This makes the database well-suited for studying wood identification using 
macroscopic anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et 
al. (2023) (De Blaere et al., 2023), while Supplementary Materials Table 8.1 all unique specimen identifiers 
and metadata. To enable machine learning analysis, we selected only species represented by at least two 
specimens. This set comprises 2,296 digitized specimens across 601 species, 286 genera, and 64 families. 
Discriminatory power was mainly assessed by training and evaluating classification models on the 
specimens. Therefore, specimens were allocated random to training (75%) or test set (25%), while 
preserving distribution of species across both sets. Within both sets, a subset of 78 commercially 
important species was defined for targeted evaluation. An overview of the chapters, designated datasets 
used in each chapter and of which hypothesis they target is provided in section 1.4. 

Given the large size of the scanned end-grain surfaces, directly processing full images is computationally 
expensive and may lead to overfitting due to the limited number of images. To address this, the full images 
were cropped into smaller, non-overlapping patches that retained diagnostic features while capturing 
anatomical variability. We selected patch dimensions of 512×512 pixels, corresponding to a physical area 
of approximately 5.42×5.42 mm, ensuring sufficient detail for anatomical analysis without obscuring 
critical features. Full images yielding fewer than four patches (i.e., total end-grain surface area below 1 cm²) 
were excluded to maintain consistency and relevance for anatomical assessment.  

Patches were allocated random to training (75%) or validation set (25%), while preserving distribution of 
specimens across both sets, using different regions of the same specimens for training and validating. 
Furthermore, any full image yielding fewer than four usable patches was removed, as these would cover 
less than one square centimetre—below the typical area assessed by a human expert during wood 
anatomical identification. 

5.3.3 CNN Backbone Architecture 
The Xception architecture was chosen as the CNN backbone due to its balance between computational 
efficiency and strong classification performance on large-scale datasets such as ImageNet (Chollet, 2017). 
The model was pretrained on ImageNet and fine-tuned on the SmartWoodID patches using a batch size of 
8 and RMSprop as the optimizer with a learning rate of 1×10⁻⁴. Early stopping was implemented to prevent 
overfitting, with validation loss monitored during training. Training was capped at 100 epochs, with early 
stopping triggered after 10 consecutive epochs of no improvement in validation loss (<0.1).  

5.3.4 Classification Techniques 
Four different approaches were used to develop CNNs for wood genus identification, ranging from 
multiclass and multilabel classification to representation learning via embedding networks and binary 
classification. The output layers and loss functions were customized to suit the unique requirements of 
each classification task.  
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5.3.4.1 Multiclass Classification 
The multiclass classification model aims to assign each image patch to one of the available classes. The 
CNN backbone was extended with a global average pooling layer and a classification head. The 
classification head consisted of a fully-connected layer with a SoftMax activation to output probabilities 
across all genera. The model was compiled using the categorical cross-entropy loss function (LCCE: see 
Equation 1) quantifying the difference between the predicted class probabilities and the actual class 
labels across all samples. Specifically, for a total of N samples and C classes (in this case, genera), the loss 
is calculated based on the binary indicator yᵢ,ⱼ, which equals 1 if sample i belongs to class j, and 0 
otherwise. The predicted probability for class j for sample i is denoted as ŷᵢ,ⱼ.  

𝐿𝐶𝐶𝐸  = −
1

𝑁
 ∑ ∑ 𝑦𝑖,𝑗 log(𝑦̂𝑖,𝑗)
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Equation 1: CCE Loss function 

5.3.4.2 Object Re-Identification Network with Triplet Learning 
To explore open-world recognition, we implemented an object re-identification network trained with triplet 
loss. This approach maps input image patches into a lower-dimensional embedding space where 
embeddings from the same genus are closer together, and those from different genera are further apart. 
This enables comparison of the test images to reference images based on the learned feature embeddings. 
A triplet loss function was employed to train the model to minimize the distance between embeddings of 
images belonging to the same genus (anchor-positive pairs) while maximizing the distance from images 
belonging to different genera (anchor-negative pairs). Figure 5.1 shows how triplet loss operates on the 
embedded versions of these image patches. Figure 5.2 shows an example of a triplet of image patches.  
The Xception backbone was trained to map the images to into fixed-length feature embeddings. The model 
outputs the concatenated embedding vectors of the anchor, positive, and negative image patches for triplet 
loss computation. The triplet loss function (Ltriplet: see Equation 2) calculated the distance between anchor-
positive pairs and anchor-negative pairs, optimizing the network to maximize inter-class separation while 
minimizing intra-class variation. For each triplet of samples—consisting of an anchor (xa

i), a positive 
sample from the same class (xp

i), and a negative sample from a different class (xn
i)—the loss is computed 

based on the squared Euclidean distances (||.||22) between the embedded representations f(x) of these 
samples. Formally, the loss ensures that the distance between the anchor and the positive embedding is 
smaller than the distance between the anchor and the negative embedding by at least a predefined margin 
α (e.g., α = 0.2). This is achieved through the hinge function ([.]), which returns the value if positive, or zero 
otherwise, thus preventing negative loss values. The total number of triplets is denoted as N, and the loss 
encourages the condition: 

The loss measured the margin between the positive and negative distances, penalizing configurations 
where the negative distance was not sufficiently larger than the positive distance. Key hyperparameters, 
such as the margin (α = 0.2) and learning rate (1×10⁻5), were fine-tuned for optimal performance. 
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Equation 2: Triplet Loss function  

5.3.4.3 Object Re-Identification Network with Binary Verification 
This approach serves as an intermediate method between an embedding network for object re-
identification and a binary classification network. The added layers closely resemble those used in binary 
classification, where the extracted features are passed through a Global Average Pooling layer followed by 
a fully connected layer. The fully connected layer contains a single output neuron with a sigmoid activation 
function, designed to perform binary classification. The model was compiled using binary cross-entropy 
loss (LBCE: see Equation 3) with one class, a suitable choice for binary tasks as it quantifies the error 
between the predicted probabilities and the true labels for each genus. For a total of N samples, each with 
a true label yi (where 1 indicates the positive class and 0 the negative), and a predicted probability ŷ i, the 
binary cross-entropy loss penalizes the model based on how far off each prediction is from its 
corresponding true label. 

𝐿𝐵𝐶𝐸  = −
1

𝑁
 ∑[𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 

Figure 5.1: Visualisation of the concept of triplet loss optimization in an exemplary 2D feature space. The generated 
embeddings of the triplet model are converted into points in the feature space. The different colours (red, yellow, blue, 
green) represent different classes. Triplet learning aims to learn representations where the distance between anchor(A) 
and positive(P) is smaller than the difference between anchor(A) and negative(N). 

Figure 5.2: Example of hard triplet consisting of an anchor (left: Afzelia; Tw11081), positive (centre: Afzelia; Tw47200), 
and negative image (right: Anthonotha; Tw95) for Object Re-Identification network training with triplet loss. 
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Equation 3: BCE Loss function 

The images themselves encode the anchor-positive-negative relationship. For each anchor image, two 
composite images are created, each consisting of two halves: (anchor-positive) labelled as 1 and another 
(anchor-negative) labelled as 0 (an example is presented in Figure 5.3). This design allows the model to 
learn to distinguish between images from the same genus and those from different genera. Class balance 
is inherently maintained, as for each anchor, both composite images are always generated. This ensures 
the model does not inadvertently focus more on one class over the other, promoting equitable learning 
across both categories. 

As previously discussed in 4.5, restricting the training dataset to include only undamaged image patches 
is crucial for this method. This is because the patches are reduced to half their original area to form 
composite images. Including damaged patches could result in the removal of areas containing key 
diagnostic information during this reduction process. 

5.3.5 Balancing the dataset 
The dataset's inherent imbalance—arising from some genera containing more specimens and producing 
more image patches due to larger cross-sections—was addressed using a sampling strategy at the start of 
every epoch. To ensure fairness, each genus was limited to a predefined number of three specimens by 
randomly sampling unique specimen identifiers. For each specimen, a fixed number of four image patches 
was selected, with replacement applied for specimens with fewer available patches. By exposing the 
model to a diverse set of images in each epoch, this approach balanced representation across genera and 
allowed the model to capitalize on all data during the whole training process without biasing the model 
towards more prolific genera. The samples were also shuffled to prevent the memorization of image 
sequences, prior to being loaded into the CNN. 

To ensure a robust evaluation and facilitate direct comparison with the machine learning classification 
techniques in Chapter 3, specimens are allocated into the same subsets (training and testing) as described 
in that chapter. An additional stratified split was applied on the training dataset, allocating 75% of the 
patches for actual training and 25% for periodic validation after each epoch. This approach guaranteed that 
every specimen was represented in both training and validation while maintaining distinct patches to 
prevent data leakage. 

5.3.6 Data augmentation 
Data augmentation involves artificially inflating the training dataset to prevent overfitting by warping 
available data (Shorten and Khoshgoftaar, 2019). This is achieved by applying transformations to the 
images to increase variability, improve model generalisation, and simulate the diversity of real-world 
conditions—such as changes in orientation, scale, lighting, or background—without the need for 

Figure 5.3: An example of two composite images representing on the left the 
anchor (Afzelia; Tw11081)-positive (Afzelia; Tw47200), and on the right anchor 
(Afzelia; Tw11081)-negative (Anthonotha; Tw95) image relationship for Object 
Re-Identification network training with Binary Cross Entropy. 
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additional manual data collection. All data augmentation techniques were applied uniformly across the 
experiments to maintain consistency in training conditions while adapting the CNN architecture to specific 
classification tasks. The augmentation was only applied to the training data to ensure that the validation 
and test datasets remained representative of the original data distribution, reflecting its ability to 
generalize. These techniques were applied using custom built data generators to leverage the images 
though the model. 

To enhance the robustness and generalization of the CNN, an advanced data augmentation pipeline was 
implemented. The pipeline combines traditional augmentation techniques with custom filters and random 
erasing to introduce variability while preserving key diagnostic features of wood anatomy. Standard 
augmentations were applied, including random rotations up to 45°, horizontal and vertical shifts up to 20% 
of the image dimensions, random brightness scaling within a range of 0.5–1.0, shearing up to 30°, horizontal 
and vertical flipping, and normalizing the pixel intensities. To further increase variability and simulate 
realistic imperfections, the pipeline included custom filtering and random erasing. A randomly selected 
filter from the following pool was applied to each image; Gaussian blur: Random σ-values between 0.0 and 
3.0; Median filtering: Random kernel sizes between 1×1 and 5×5; Minimum, maximum, and uniform filters: 
Kernel sizes randomly chosen between 1×1 and 5×5; Percentile filtering: Random percentiles between 1 
and 99 with a 3×3 kernel; Colour channel manipulation: Random scaling of pixel intensities in red, green, 
or blue channels within a range of ±20 

Each filter was applied with a randomly selected mode (reflect or nearest) to further diversify the outputs. 
Next, random erasing was applied replacing random small rectangular regions of the image with random 
colour noise. The number and size of these erased regions were determined by a random sampling of the 
image area (0.1–1.0% per region).  

This augmentation strategy not only ensured variability in training data but also introduced robustness 
against noise and potential artifacts in real-world applications, such as damage to wood surfaces or 
inconsistencies in imaging conditions. The range of each augmentation step was constrained to avoid 
excessive damage to diagnostic features. This was assessed by generating augmented patches and 
enhancing specific augmentation steps, verifying if the anatomical features were still recognizable through 
trial-and-error. 

5.3.7 Hard mining for Object Re-Identification approaches 
Training object re-identification networks with triplet learning effectively requires guiding the model 
towards learning from challenging examples (Hermans et al., 2017). This logic is also applicable to the 
binary verification approach, as binary classification problems are known to prioritize minimizing 
classification error through optimal threshold selection rather than optimizing ranking accuracy. 
Consequently, while binary verification may achieve low misclassification rates, it risks ranking errors in 
closely related genera, potentially leading to incorrect top-1 predictions (Chen et al., 2017). Challenging 
triplets or pairs, where the positive sample is visually similar to the anchor but still belongs to the same 
class, or where the negative sample is visually similar to the anchor but belongs to a different class, are 
critical for maximizing the network's ability to discern fine-grained differences (Ghosh et al., 2023; 
Hermans et al., 2017). These challenging examples force the network to focus on subtle and discriminative 
features rather than relying on easy-to-learn patterns, thereby enhancing its robustness and generalization 
capability.  

To effectively guide the model toward learning from challenging triplets and pairs, three key aspects were 
addressed. First, a structured understanding of inter-class similarity was necessary. To facilitate this, 
domain knowledge of macroscopic cross-sectional anatomical features was integrated into the selection 
process for both object re-identification approaches. Integrating domain knowledge can improve the 
selection of informative training samples by ensuring that the model learns from biologically meaningful 
variations rather than relying solely on data-driven feature extraction (Guo and Lovell, 2024). Specifically, 
macroscopic features (Table 2.2) were numerically encoded to construct a similarity matrix for all 
specimens. Each feature was assigned a numerical value: present = 1, variable = 0.5, absent = 0, and NA = 
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0. Pairwise Euclidean distances were then computed between the average feature vectors of each 
specimen group, and these distances were transformed into similarity scores using a reciprocal 
transformation to emphasize smaller distances. 

Second, the performance of object re-identification models benefits from diversity in triplet and pairwise 
combinations, as repeated exposure to the same combinations may lead to overfitting (Chen et al., 2023; 
Ying, 2019). To enhance diversity, new triplet and pair selections were generated at the start of each training 
epoch, preventing the model from memorizing specific relationships and improving generalization (Kumar 
et al., 2020). 

Finally, while prioritizing the most challenging positive and negative examples, i.e., selecting within-genus 
specimens that are most dissimilar to the anchor and between-genus specimens that are most similar to 
the anchor, is crucial for fine-grained discrimination, exclusively sampling the hardest cases can hinder 
generalization (Schroff et al., 2015; Shi et al., 2016). Overexposure to outliers may cause the model to focus 
disproportionately on rare cases rather than learning broader inter-class relationships (Hermans et al., 
2017). To mitigate this, the similarity scores were used as weights during sampling of positive and negative 
examples. This ensured that challenging pairs and triplets were more likely to be sampled while still 
allowing occasional exposure to easier combinations. By maintaining a balanced representation of difficult 
and diverse training examples, this approach enhanced the robustness of the object re-identification 
models to subtle anatomical variations. 

5.3.8 Standardizing CNN output for model comparison 
To ensure comparability across classification models, the output of all three CNN approaches is 
transformed to align with the output format of the RF model. This ensures a standardized probability range 
for each test specimen. 

For the multiclass CNN, the model generates a probability distribution across all classes for each image 
patch. These probabilities are averaged per specimen across patches and subsequently normalized across 
classes to ensure consistency with the RF model. Two different models are trained for each set of timber 
genera: one for all Congolese tree species and one using only the subset of commercial timbers. 

The evaluation of object re-identification models differs due to their reliance on a reference database for 
comparison. In this study, training and validation specimens serve as reference samples. To evaluate the 
object re-identification models' performance across the full timber dataset, encompassing all tree 
species, and the commercially relevant subset, non-commercial species were excluded from the 
reference dataset when assessing the subset. This approach is valid because object re-identification, 
unlike multiclass classification, does not necessitate training distinct models for varying class ranges. 

For object re-identification using Triplet Learning, the CNN generates an embedding vector for each image 
patch. These vectors are aggregated at the specimen level by averaging. The resulting embeddings from the 
training and validation specimens are then used to train a separate RF model, following the methodology 
outlined in Chapter 3. To optimize classification performance, randomized grid search is employed, 
systematically sampling parameter combinations from a predefined hyperparameter grid (see Chapter 3, 
Table 8.2). Class weights are incorporated to mitigate class imbalance, and 4-fold cross-validation ensures 
robustness across different data splits. To maintain consistency and reproducibility, all random number 
generators were seeded with a fixed value. Consequently, the output of this RF model on the embedded 
vectors aligns with the output of the RF model trained on wood anatomical descriptions. 

The binary verification approach requires generating a large set of composite image pairs, where each test 
image patch is matched against reference patches to produce a similarity score between 0 and 1, reflecting 
the likelihood of a genus match. Given the dataset's size—37,577 test patches, 18,136 validation patches, 
and 54,405 training patches—an exhaustive comparison using all training and validation patches as 
references would result in 2,725,873,157 image pairs. With an estimated computation time of 0.05 
seconds per image for the applied workstation (single standard GPU (NVIDIA GeForce RTX 3080 Ti)), this 
approach would require approximately >1500 days, rendering it computationally infeasible. 
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To address this, a sampling strategy was implemented; Thirty percent of the patches were retained for each 
test specimen. Four reference patches were sampled per reference specimen. And finally, one reference 
specimen per genus was selected from the training/validation set. This down-sampling resulted in 1,144 
reference patches and 12,525 test patches, leading to 14,329,362 comparisons and a significantly reduced 
computation time of approximately 9 days. After generating similarity scores, the results were aggregated 
in two stages : first, per reference and test specimen by averaging the output scores; second, per reference 
genus yielding a probability distribution (0–1) for each test specimen across all genera; and finally 
normalization, ensuring that the output probabilities of this model align with those of the multiclass CNN 
and the RF model, allowing for direct comparison. 

5.3.9 Model evaluation 
The performance of all classification models was evaluated using Accuracy, Precision, Recall, and F1-
Score, calculated from standardized test predictions for both the full set of Congolese timbers and the 
commercially relevant subset (Definitions of those metrics are provided in supplementary materials 
section 8.2.). The experiments include model comparisons on African timber genera and the generalization 
of the object re-identification approach to a distinct group of different timber genera for which the model 
was not trained. Model comparisons were conducted in three distinct scenarios: 

1. Comparison of multiclass Classification Models – The performance of the multiclass CNN 
classifier was compared with that of a RF model, previously trained on manually extracted wood 
anatomical features (see Chapter 3). This analysis assessed the relative effectiveness of deep 
learning-based feature extraction versus human-engineered anatomical descriptors for wood 
classification. 

2. Comparison of CNN-Based Models – The traditional multiclass CNN was evaluated against both 
object re-identification models to examine the differences between direct class prediction and 
similarity-based classification. 

3. Top-k Accuracy Analysis – To better understand the reliability of each model, we extended the 
evaluation beyond top-1 accuracy by assessing the classification accuracy of all four models 
(RF/multiclass-CNN/object re-identification-CNN (Triplet learning)/object re-identification-CNN 
(binary verification)), when considering the top-k predictions. This analysis offers deeper insight 
into the reliability of model predictions, particularly in highly biodiverse settings where multiple 
timber species may exhibit similar macroscopic characteristics.   

To systematically compare classification behaviour across techniques, four complementary analyses were 
conducted on the first two scenarios: 

1. Performance Metrics Summary – Accuracy, Precision, Recall, and F1-Score were computed across 
classes. Macro-averaging was applied to Precision, Recall, and F1-Score to ensure that each class 
contributed equally to the overall evaluation, mitigating the impact of class imbalances. 

2.  Matrix Comparison – The relationship between model predictions was assessed by constructing 
matrices. These matrices captured the number of specimens correctly classified by both models, 
only one, or neither, providing insight into classification overlap and discrepancies. 

3. Genus-Level Performance Analysis – To assess classification performance across taxa, F1-scores 
were calculated per genus for each model. These values were plotted in scatter plots, with one 
model's performance on the x-axis and the other on the y-axis. The F1-score was selected as the 
primary evaluation metric due to its balanced consideration of precision and recall, ensuring that 
both false positives and false negatives were accounted for. 

To compare classification performance beyond the top-ranked prediction between all models (scenario 3), 
we evaluated each model’s ability to correctly identify the true class within the top-k predicted classes. 
CDF plots were generated to show classification accuracy improvement with increase of k. A 95% 
cumulative accuracy threshold was included to indicate the smallest k value at which the model's top-k 
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accuracy surpasses 95%, offering a practical benchmark for classification reliability. Additionally, the AUC 
was computed for each model's CDF curve, providing a single quantitative measure of overall classification 
performance across multiple k levels. 

To study the generalization capabilities of the object re-identification approach, another image dataset was 
created of non-Congolese timber genera, through the same methodology as the SmartWoodID database. 
The end-grain surfaces of the specimens were also sanded to a fine grit of 4000 and digitized as high-
resolution RGB images using a flatbed scanner at 2400 dpi. Each species or lower taxon in the database is 
represented by multiple specimens from different trees, providing coverage of both intra- and inter-species 
anatomical variability. This diversity makes the dataset a robust resource for applying to the trained object 
re-identification models in this study. A summary of the taxonomic range of the included timbers is 
provided in supplementary materials Table 8.8. The dataset covers 58 families, 135 genera, and 234 
species. The "Training and Testing Specimens" section provides statistical measures of specimen 
distribution per class. Specifically, the minimum indicates the number of specimens in the smallest class, 
the maximum represents the number in the largest class, the average reflects the mean number of 
specimens across all classes, and the standard deviation quantifies the variability in specimen 
distribution. 

Table 5.1: Summary of the taxonomic range and specimen distribution in the datasets of non-Congolese timbers (for 
full list see Table 8.8). The "Training and Testing Specimens" section provides statistical measures of specimen 
distribution per class, including the minimum, maximum, average, and standard deviation. 

 
Training Specimens Testing Specimens 

Minimum Maximum Average Standard deviation Minimum Maximum Average Standard deviation 

Family 1 88 18 23 1 39 8 10 

Genus 1 83 8 10 1 28 3 4 

Species 1 83 5 7 1 28 2 2 

As stated earlier, a reference database is required to assess an object re-identification model. Therefore, 
the dataset was partitioned into a reference set (75%) and a test set (25%), ensuring that images from the 
same specimen were allocated exclusively to one set to prevent data leakage. 

To evaluate the model’s generalization performance, a simulation framework was employed in which N 
classes were randomly sampled and the evaluation repeated m times per value of N. As N increased, 
performance trends at higher class counts were examined. To maintain computational efficiency while 
ensuring statistical reliability, the number of repetitions m was reduced for larger N. All simulations were 
conducted using predefined random seeds to ensure reproducibility. Full simulation details, including 
values of N and m, are provided in Supplementary materials Table 8.9. 

For this experiment the binary verification model, using composite images, was evaluated by predicting a 
similarity score for paired images, composed of reference and test specimens. The model's output scores 
were processed using the same aggregation approach applied to African timbers, converting them into a 
probabilistic distribution across genera for each specimen. For each class size, key performance metrics 
were computed, including accuracy, macro-averaged precision, macro-averaged recall, macro-averaged 
F1-score, and the area under the CDF of ranked genus predictions. Performance trends across different 
class sizes were visualized using metric curves, with confidence intervals estimated via the standard error 
of multiple simulation results.  
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5.4 Results 
5.4.2 Comparison of multiclass classification models 
Two subsets of the dataset were used: all Congolese tree species (Blue) and the commercially traded 
Congolese timber species (Green). Table 5.2 presents the performance metrics for multiclass 
Classification (RF model trained on the described macroscopic cross-sectional anatomical features VS 
CNN trained on the macroscopic cross sectional image patches). 

Table 5.2: A summary of the general metrics across classes (genera) for both sets of timbers and for both multiclass 
classification techniques (RF and CNN). 

Subset All Congolese tree species Commercial Congolese Timbers 
Techniques RF CNN RF CNN 
Accuracy 0,36 0,63 0,58 0,86 
Precision 0,25 0,48 0,56 0,87 
Recall 0,28 0,54 0,54 0,85 
F1-Score 0,25 0,49 0,53 0,84 

Across both subsets, the CNN consistently outperforms the RF model in terms of accuracy, precision, 
recall, and F1-score. The performance metrics of the subset of commercial timbers are significantly higher 
than the full set of Congolese tree species. 

All tested specimens were accounted in matrices to study the correlation between both techniques. The 
matrices indicate the number of specimens correctly or incorrectly classified by both or either technique, 
with a colour gradient indicating a higher number of specimens (see  Figure 5.4).  

The matrices reveal a strong positive correlation between the predictions of both classifiers. When RF 
correctly classifies a sample, CNN is also correct in 82.2% of those cases for all Congolese tree genera and 
92.7% for the commercial subset. Likewise, when CNN is correct, RF is also correct 46.4% of those cases 
in the full dataset and 62.2% in the commercial subset. Notably, the correlation between the two classifiers 
is stronger within the commercial subset (higher conditional probabilities). The asymmetry in the matrices 
further reveals that CNN correctly classifies a substantial number of test specimens where RF fails, but the 
reverse is less common. For the commercially important subset, both classifiers improve in performance. 
However, the CNN approach still has fewer misclassifications and a stronger ability to differentiate closely 
related genera. 

Figure 5.4: Matrices showing the number of specimens classified correctly by both, either, or none of the multiclass 
classification techniques (for both sets of timbers). The number of each case is indicated by the intensity of the colour 
gradient. 
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Individual genera may exhibit varying classification performance. To account for these differences, F1-
scores were computed for each genus across both classification techniques. These values were visualized 
in a scatter plot, with the x-axis representing RF performance and the y-axis representing CNN performance 
(see Figure 5.5). To better illustrate the distribution of genera according to classification performance, the 
scatter plot is divided into four quadrants. Genera positioned in the upper and right quadrants achieved an 
F1-score ≥ 0.5 for the respective models. To facilitate interpretation, the number of genera in each quadrant 
is displayed at its centre. These counts provide a balanced representation of model performance across 
taxa compared to the matrices (Figure 5.4), which is inherently skewed by class distribution and absolute 
specimen counts.  

Genera such as Triplochiton and Piptadeniastrum exhibit an F1-score of 1 for the CNN in the full dataset of 
Congolese tree genera, while the RF model fails to recognize them (F1-score = 0). This suggests that 
macroscopic cross-sectional IAWA features alone are insufficient for distinguishing these genera among 
all Congolese tree genera, whereas the CNN’s extracted features enable recognition. Similarly, genera like 
Alstonia, Morus, Pycnanthus, Klainedoxa, Amphimas, and Canarium achieve F1-scores of 1 with both 
techniques, indicating their clear distinction from all other genera in the dataset. On the other hand, certain 

Figure 5.5: Scatterplots visualizing the F1-scores of individual genera with the Random forest model F1-score on the x-
axis and the multiclass CNN model F1-score on the y-axis. The plots are divided into four quadrants of equal size to 
indicate performance. The number of genera in each quadrant is printed centrally in each quadrant. 
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genera, including Aningeria, Antiaris, Antrocaryon, and Erythrophleum, are poorly recognized by both 
methods, highlighting their morphological similarity to other genera based on macroscopic features. A 
distinct group of genera, such as Baillonella, display a clear contrast in recognition performance between 
the two techniques, with CNN failing to extract distinguishing features while RF succeeds.  

When models are trained exclusively on the commercial subset, shifts in performance are expected, 
reflecting improvement in F1-scores due to a reduced complexity (e.g. taxonomic scope). Notably, 
Triplochiton and Piptadeniastrum transition from the upper left quadrant (misclassified by RF) to the upper 
right quadrant (perfect recognition by both models), suggesting that the presence of non-commercial 
lookalike genera in the full dataset previously impeded their classification. Additionally, Antrocaryon moves 
from the lower left quadrant to the upper left, indicating that while macroscopic features and RF do not 
enable accurate classification, the CNN successfully differentiates it within the commercial subset. 
Certain genera show improved recognition by both techniques in the commercial subset, including 
Maesopsis, Ongokea, Tieghemella, and Lovoa. However, some genera, such as Pycnanthus, Pericopsis, 
Klainedoxa, Canarium, Baillonella, Amphimas, and Aningeria, do not experience enhanced recognition 
despite the reduced taxonomic scope. Some commercial genera demonstrate a decrease in F1-score 
when restricting training to only commercial genera. For instance, the RF model's performance significantly 
drops for Alstonia, Morus, Millettia, Pachylobus, Gambeya, and Tessmannia. A similar but less pronounced 
effect is observed with the CNN, where performance decreases only for Irvingia, Albizia, and 
Beilschmiedia.  



32 
 

5.4.3 Comparison of CNN-based approaches  
Table 5.3 presents the performance metrics for three different CNN classification approaches—
multiclass classification, Object Re-Identification (trained with either triplet learning or binary 
verification)—evaluated on two subsets of the dataset: all tree genera found in the DRC (Blue) and the 
commercially traded timber species (Green). 

Table 5.3: A summary of the general metrics across classes (genera) for both sets of timbers and for all CNNs 
techniques (multiclass classification, Object re-identification (Triplet learning), and Object re-identification (binary 
verification). 

Subset All Congolese tree species Commercial Congolese Timbers 

Technique Multi-class 
Object re-identification 

Multi-class 
Object re-identification 

Triplet 
learning 

Binary 
verification 

Triplet 
learning 

Binary 
verification 

Accuracy 0.63 0.13 0.46 0.86 0.28 0.75 
Precision 0.48 0.07 0.32 0.87 0.21 0.73 
Recall 0.54 0.08 0.34 0.85 0.24 0.71 
F1-Score 0.49 0.07 0.30 0.84 0.21 0.69 

Across both subsets, the traditional multiclass classification approach consistently outperforms the 
object re-identification techniques in terms of accuracy, precision, recall, and F1-score. The performance 
gap is particularly pronounced for object re-identification trained with Triplet learning, which has low 
values for the metrics. However, the binary verification approach demonstrates considerably better 
performance than triplet loss, achieving scores much closer to those of the traditional multiclass CNN. The 
performance metrics of the subset of commercial timbers are significantly higher than the full set of 
Congolese tree species.  

All tested specimens were accounted in matrices to study the correlation between the multiclass CNN on 
the one hand and the object re-identification techniques on the other. The matrices indicate the number of 
specimens correctly or incorrectly classified by both or either technique, with a colour gradient indicating 
a higher number of specimens (see Figure 5.6). The relationship between multiclass - object re-
identification (Triplet learning) is shown in the upper matrices, The relationship between multiclass - binary 
verification is shown in the lower matrices. 

The matrices for the multiclass vs. object re-identification (Triplet learning) models demonstrate a strong 
skew in favour of the multiclass CNN, indicating that misclassifications tend to occur in either both models 
or that only the multiclass CNN can correctly identify. Specifically, when the multiclass CNN correctly 
classifies a specimen, the object re-identification CNN (Triplet learning) is also correct in only 18.5% of 
cases for the full set of Congolese tree genera and 30.1% for the commercial subset. On the other hand, 
when the Triplet Loss CNN correctly classifies a specimen, the multiclass CNN is also correct in 89.3% of 
cases for the full dataset and 93.5% for the commercial subset. The binary verification CNN shows a 
stronger alignment with the multiclass CNN. When the multiclass CNN correctly classifies a specimen, 
the binary verification CNN is also correct in 60.0% of cases for the full dataset and 82.5% for the 
commercial subset. In contrast, when the binary verification CNN correctly classifies a specimen, the 
multiclass CNN is also correct in 82.8% of cases for the full dataset and 95.2% for the commercial subset.  

Similar with the comparison of multiclass classification models, F1-scores were computed for each genus 
across both classification techniques to address differences between individual genera. These values were 
visualized as scatter plots using the same principles (quadrant counts), with the x-axis representing the 
multiclass CNN performance and the y-axis representing either object re-identification performance (See 
Figure 5.7).  
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Figure 5.6:  Matrices showing the number of specimens classified correctly by both, either, or none of the multiclass 
classification techniques (for both sets of timbers). The number of each case is indicated by the intensity of the colour 
gradient. The top matrices show the correlation between the multiclass CNN on the x-axis and the Object reidentification 
model (Triplet learning) on the y-axis; The bottom matrices show the correlation between the multiclass CNN on the x-
axis and the Binary verification model on the y-axis. 

Figure 5.7: Scatterplots visualizing the F1-scores of individual genera with the multiclass CNN model F1-score 
on the x-axis and the object reidentification model F1-score on the y-axis. The top plots visualize the correlation 
with the triplet loss object reidentification model, the bottom plots with the Binary Cross Entropy loss object 
reidentification model. The blue plots on the left show the results for the full set of Congolese tree species, the 
green plots on the right for the subset of commercial timbers. The plots are divided into four quadrants of equal 
size to indicate performance. The number of genera in each quadrant is given in the centre of each quadrant. 
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Figure 5.7 shows that specific genera have markedly higher associated F1-scores for the multiclass CNN 
compared to the object re-identification model trained with triplet learning (top graphs), as the majority of 
the points (genera) are in the lowest quadrants indicating either a low F1-score according to both models 
or only high score for the multiclass model (bottom right quadrant). This is different for the relation between 
the multiclass model and the binary verification model (bottom graphs), where for all Congolese tree 
species (bottom left graph), the genera are more evenly distributed across quadrants. For the commercial 
subset, this shifts to nearly all genera having high F1-scores with both approaches. 
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5.4.4 Top-k classification accuracy analysis 
The classification performance of the different models, assessed beyond the top-ranked prediction, is 
visualized in Figure 5.8 using CDF plots. The plots demonstrate the increase in accuracy as the number of 
considered classes (k) expands. The coloured values on the y-axis represent the accuracy for k=1, which 
corresponds to the accuracy (see Table 5.2 and Table 5.3). A key reference point in the plot is the 95% 
cumulative accuracy threshold, marked by a vertical dotted line, which represents the minimum k value at 
which each model achieves at least 95% top k accuracy. Furthermore, the AUC values are displayed for 
each model, providing an aggregated metric that encapsulates overall classification performance across 
varying k levels. 

Figure 5.8: Cumulative distribution function plots, showing the progression of top k accuracy with increasing numbers 
oof k ranked predictions for multiclass models (Random Forest, CNN (Categorical Cross Entropy (CCE)) and Object 
Reidentification models (Triplet loss and Binary Cross Entropy loss). The vertical dotted lines represent the value k 
where the top k accuracy exceeds 0.95. The coloured values on the y-axis represent the top-1 accuracy (normal 
accuracy). The text box on the left displays the Area Under Curve for the CDF of each model. The top plot (blue) shows 
the results for all Congolese tree species, the bottom plot (green) shows this for the subset of commercial timbers. 
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Top-1 accuracy serves as a reference point for evaluating model performance, providing insight into initial 
classification effectiveness. Across all models, accuracy improves with increasing values of k, following a 
characteristic saturating pattern—where initial gains are pronounced but progressively diminish as k 
increases.  

Across both the full dataset and the commercial timber subset, the RF model consistently underperforms 
compared to the multiclass CNN and the object re-identification CNN trained for binary verification. RF 
exhibits lower top-1 accuracy, a slower rate of accuracy improvement, and lower AUC values, indicating 
weaker overall classification performance. Notably, RF requires a substantially higher k value to exceed 
95% accuracy, suggesting that its predictions stabilize at a slower rate compared to the CNN-based 
approaches. 

When tested on the full dataset, the multiclass CNN outperforms the binary verification CNN, achieving 
higher top-k accuracy across k = 1 to 40. However, a different pattern emerges for the commercial timber 
subset. While the multiclass CNN initially surpasses the binary verification CNN at k = 1, this trend reverses 
beyond k = 2, where the binary verification model achieves superior accuracy. By k = 10, both models reach 
similar top-k performance, with accuracy approaching 1. These findings are further contextualized by the 
95% cumulative accuracy threshold. For the full dataset, the multiclass CNN maintains superior 
classification performance. However, for the commercial subset, the binary verification CNN 
demonstrates stronger performance at lower k values. In contrast, the object re-identification CNN trained 
with Triplet Loss demonstrates the weakest performance across all k values. It exhibits the lowest top-1 
accuracy, the slowest rate of accuracy improvement, and the lowest AUC values. Furthermore, it requires 
a substantially higher k value to exceed 95% accuracy, indicating a slower stabilization of predictions.  

5.4.5 Generalization to unseen taxa 
Open-world recognition through the binary verification model, trained on Congolese timber genera, was 
assessed on unseen non-Congolese timber genera through the implementation of a structured simulation 
framework. The evaluation involved partitioning non-Congolese timber specimens into a test set and a 
reference set to facilitate genus similarity assessment. A subset of N genera was sampled, and all 
corresponding specimens from both sets were selected. Composite images were generated by pairing 
each test specimen with each reference specimen, enabling the binary verification model to produce 
similarity scores that indicate the likelihood of genus correspondence between the two images. These 
similarity scores were then transformed into a normalized probability vector of length N, where each 
probability represented the likelihood of the test specimen belonging to a particular genus in the sample. 
This transformation followed the methodology detailed in Section 5.3.8 of the Materials and Methods. 

To assess the model’s performance under increasing classification difficulty, the evaluation was repeated 
across seven values of N, representing the number of genera sampled (see Table 8.2). As N increased, the 
classification task became more challenging due to a larger verification set. For each value of N, the 
sampling process was repeated m times (e.g., N = 10 with m = 50 repetitions) to ensure result robustness. 
In each repetition, key performance metrics were calculated, including accuracy, macro-averaged 
precision, recall, and F1-score. Additionally, top-k accuracy was analysed by computing the area under the 
cumulative distribution of ranked genus predictions and identifying the smallest k required to achieve 95% 
accuracy. Results are summarized in Figure 5.9, which includes six subplots—one for each metric—
showing performance trends as a function of N. Each data point reflects the average metric across 
repetitions, with error bars indicating the standard error of the mean (SEM), and numerical values of mean 
± SEM displayed above. 



37 
 

The accuracy, precision, recall, and F1-score, in Figure 5.9 curves exhibit matching decreasing patterns 
across all tested values of numbers of genera (N). For each N, the average values of these metrics are close 
to one another, and their associated standard errors of the mean are consistently between 0.01 and 0.02, 
indicating a high degree of stability in the model’s predictions across all X simulation runs for each N. As 
the number of considered genera (N) increases, the accuracy, precision, recall, and F1-score decrease, as 
the curves stabilize. The AUC of the top-k CDF remains relatively stable across all values of N, suggesting 
that the model consistently maintains its ability to rank the correct genus among the top predictions across 
numbers of considered genera (N). AUC values closer to 1 indicate ideal model ranking performance and 
values near 0.5 suggest random guessing. The observed values between 0.90-0.94 suggest that the model 
is generally successful in prioritizing the correct genus in its ranked predictions. The 95% rank for top-k 
accuracy further supports this interpretation. As N increases, a larger number of top predicted classes 
must be considered to capture 95% of the correct predictions. For example, when classifying among 100 
unknown genera, the correct genus falls within the top 23 predictions in 95% of cases. However, the 
proportion of genera remains stable across different values of N, with the average proportion and standard 
mean of error being 0.29 ± 0.02, indicating that approximately the top 30% predicted genera must be 
considered to be correct in 95% of the cases.  

Figure 5.9: Performance evaluation of a binary verification model on unseen non-Congolese timbers, showing accuracy (top left, 
green), precision (top right, red), recall (centre left, blue), F1-score (centre right, purple), AUC for top K accuracy (bottom left, yellow), 
and 95% rank for top K accuracy (bottom right, pink) across different numbers of genera (x-axis). Metrics for each number of genera 
are visualized as points with metric value (y-value) printed on the right of each point. Each point demonstrates error bars representing 
the 95% confidence interval around every metric value, based on the metric values of each simulation for that point. 
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5.5 Discussion 
The results indicate that, despite methodological differences, all models capture similar underlying 
patterns, as evidenced by the positive correlation between their predictions in the matrices. This is further 
demonstrated by the fact that the probability of a model with a correct classification, given that another 
model is correct, consistently exceeds the model’s overall accuracy—an observation that holds for all 
models. This suggests that models tend to classify the same specimens correctly more frequently than 
expected by chance. Correlations between human and CNN-based classification have been explored in 
other research domains, where studies have examined that both extract similar patterns and achieve 
comparable accuracies (Thoidis et al., 2023). Despite this shared capacity for pattern recognition, CNNs 
consistently outperform the RF model, likely due to their ability to directly extract discriminative features 
from images rather than relying on predefined expert-defined features. This is evident in the skewed 
matrices, where CNNs correctly classify test specimens that RF misclassifies more frequently than the 
reverse. This aligns with the expectation that CNNs, by learning image representations, capture finer-
grained details that RF models cannot access. These findings are corroborated by literature, such as the 
study by Knauer et al. (2019), which demonstrated that CNNs surpassed machine-learning approaches like 
RF and SVMs in tree species identification based on hyperspectral image data (Knauer et al., 2019). The 
CNN model in that study was able to intrinsically integrate spectral and spatial information, achieving 
superior performance levels comparable to RF and SVM models that relied on handcrafted features, 
reinforcing the broader advantage of CNNs in feature extraction. 

In commercial timber classification, the good performance metrics are primarily attributed to the reduced 
taxonomic scope, which simplifies the classification task and generally leads to higher accuracy (Ali et al., 
2024). However, this trend does not apply uniformly across all genera. Certain genera exhibit lower F1-
scores when trained exclusively on a restricted dataset of commercial timbers. This phenomenon could be 
attributed to CNNs trained on the full dataset learning more generalized, texture-based features, whereas 
models trained on commercial genera only can be overfit to superficial differences, thereby reducing their 
capacity for generalization. 

The top-k accuracy findings further underscore the effectiveness of deep learning in timber genus 
identification across both ecological and commercial contexts. In high-diversity environments (such as the 
broad range of tree species in the Congo basin), CNN-based models achieve a 95% probability of correct 
genus classification when considering the top 40–50 ranked predictions of the 286 genera (approximately 
top 16% of all genera), whereas for commercial timber classification, this confidence threshold is reached 
with only the top 4–6 predicted genera for the 56 commercial genera (approximately top 7% of all genera). 
These results quantify the practical utility of CNN-based classification pipelines for large-scale timber 
identification with only the macroscopic cross-sectional wood anatomy. They also emphasize the 
importance of considering not only the timber class with this highest probability. Research by De Oliveira 
et al. (2019) confirms that CNNs trained for wood classification can frequently assign the correct timber 
label as the second or third most probable prediction, highlighting the importance of considering 
predictions beyond the top-ranked classification (De Oliveira et al., 2019). However, these outcomes do 
not represent the upper limit of what can be achieved using macroscopic cross-sectional data. Increasing 
the number of specimens in the training dataset has the potential to further enhance model performance. 
This is supported by findings from a study published as part of conference proceedings at the 26th IUFROO 
world congress (Stockholm, Sweden 2024), demonstrating that multiclass classification of the same 
Congolese commercial genera, using five-fold cross-validation, achieved stable accuracies of 0.95 across 
folds (De Blaere et al., 2024). Their dataset, which comprised 1,519 specimens digitized similarly as the 
SmartWoodID specimens, featured a broader range of cross-sections, contributing to improved 
classification robustness. 

Object re-identification offers expanded opportunities for automated wood identification beyond 
traditional multiclass classification. The binary verification approach achieved performance comparable 
to the multiclass CNN. This method presents a viable and accessible alternative for developing wood 
identification models, with the added advantage of successfully verifying timbers it had never encountered 
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during training. Although performance on the non-Congolese timber genera decreases when verifying to a 
higher number of considered classes, the proportion of considered classes to reach 95% probability 
remains stable at approximately the top 30% of predicted genera. This indicates that the identification 
probability of unseen timbers is lower, compared to the Congolese timber genera the model was trained 
on. Object re-identification offers additional advantages for wood identification, particularly in terms of 
scalability and adaptability. Unlike traditional multiclass classification models, which require training on a 
fixed set of timbers and must be retrained whenever new timbers are introduced, an object re-identification 
model can operate flexibly across diverse datasets. This eliminates the need for maintaining numerous 
separate multiclass models, reducing the burden of data collection and enhancing deployment efficiency. 
Additionally, running multiple independent classification models can lead to inconsistencies, reduced 
interpretability, and challenges in maintaining model stability. In contrast, a re-identification approach 
allows a single model to generalize across different timber datasets, facilitating seamless updates and 
broader applicability. Forensic research also benefits from object re-identification, as it not only classifies 
specimens but also retrieves the most closely matching reference samples. This enhances interpretability 
by providing direct comparisons to vouchered specimens, strengthening the reliability of forensic 
conclusions. Furthermore, a single re-identification model can integrate digitized specimens from multiple 
institutional collections worldwide, allowing forensic cases to be examined against a far more extensive 
and diverse set of reference materials. This level of global collaboration significantly improves 
identification accuracy, as the model can match with the most well-documented and vouchered 
specimens across various collections, rather than relying on a single institutional dataset. A key limitation 
of the binary verification approach is its reduced ability to rank multiple class predictions effectively, as it 
prioritizes minimizing classification error through optimal threshold selection rather than optimizing 
ranking accuracy (Chen et al., 2017). Unlike multiclass classification, which assigns probabilities to all 
possible classes and facilitates ranking based on confidence scores, binary verification generates only a 
similarity score for each pairwise comparison, necessitating post-classification processing to derive a 
ranked list. Consequently, the binary verification model is more prone to misranking closely related timber 
genera, increasing the likelihood of incorrect top-1 predictions. This limitation is reflected in the lower top-
1 accuracy observed in the top-k accuracy analysis for both the full set of Congolese tree species and the 
commercial subset. Furthermore, the 95% cumulative threshold analysis confirms this discrepancy, as the 
binary verification approach requires eight additional predicted classes (ranks k) to reach this threshold 
compared to the multiclass model for the full Congolese dataset. However, results also indicate that 
reducing the taxonomic scope can mitigate this issue. For the commercial subset, the binary verification 
model achieves the 95% cumulative threshold with fewer additional ranks than the multiclass CNN. The 
assessment of performance on unseen non-Congolese timbers underscores this, as a lower number of 
possible genera resulted in higher accuracy, precision, recall, and F1 score. Chen et al. (2017) suggests 
that integrating a ranking-based loss function could enhance the model’s ability to distinguish between 
highly similar genera while preserving classification performance (Chen et al., 2017). Performance could 
also potentially be improved by changing the backbone architecture, loss functions or hyperparameters 
(e.g. batch size, learning rate, …). Another key limitation of the binary verification approach is its reliance 
on generating large numbers of image pairs between test and reference specimens, which significantly 
increases computational demands (Chen et al., 2017; Hermans et al., 2017). We note that this could have 
influenced the results by limiting the scope of the reference database and the number of available patches 
per test specimen to accommodate evaluation in this study. Still the results provide clear indication of this 
techniques’ potential for field application and for further accuracy improvement. In addition, while the 
computational demands pose challenges for large-scale applications—where processing times may 
become prohibitively long (see 0)—it remains a practical solution for forensic casework. For example, 
comparing a single unknown specimen (1×1 cm or four 0.5×0.5 cm patches) against a reference set of 600 
commercial genera would take approximately six minutes using the computational resources available in 
this study. Processing time could be further reduced by optimizing hardware, using a smaller reference set, 
or implementing a multi-step approach. One such approach could involve an initial stage that narrows 
down the verification to a limited set of reference specimens per genus. This refined selection could then 
be verified against multiple specimens and multiple image patches per specimen, ensuring a reliable 
identification while maintaining efficiency. The binary verification approach also provides promising 
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perspectives for ruling out certain timbers. Wood verification is a crucial process in tiered approaches to 
highlight suspicious cargo for further forensic in-depth analysis. The binary verification methodology aligns 
with the desired output for wood verification, producing a single independent score representing possible 
matches to a selection of timbers. For example, the binary verification model can reference expertise 
samples to a limited number of internationally protected timbers, providing a direct similarity score and 
enabling a fast and accurate screening of cargo. 

In contrast, the embedding-based object re-identification approach using triplet loss provides less doubt 
in ranking classes and is more computationally efficient (Chen et al., 2017; Hermans et al., 2017; Schroff 
et al., 2015). By transforming reference images into embedding vectors, the reference database can be 
stored in tabular form, requiring minimal memory while enabling rapid predictions using machine-learning 
methods such as RF or K Nearest Neighbours with cosine similarity. However, in this study, embedding-
based object re-identification consistently underperformed across all evaluation metrics—including 
accuracy, precision, recall, F1-score, matrices, scatterplots, and top-k accuracy—indicating poor 
generalisation. This contrasts with the performance of the binary verification approach, despite both 
methods utilizing the same backbone CNN architecture, augmentation strategies, dataset balancing 
techniques, and an identical mining strategy that selected hard anchor-positive-negative examples based 
on macroscopic wood anatomical descriptions to optimize learning for look-alike genera. Existing literature 
suggests that embedding-based performance can be improved by incorporating more advanced mining 
strategies, such as online learning, where the model dynamically selects the most challenging triplet 
combinations based on its own performance rather than relying on predefined macroscopic wood 
anatomical features (Hermans et al., 2017; Schroff et al., 2015). This approach enhances training efficiency 
by prioritizing samples where the model struggles most. While these techniques have been successfully 
implemented in frameworks like PyTorch, their integration within TensorFlow proved challenging in this 
study. Further improvements may be achievable using more advanced loss functions, such as histogram 
loss, which can optimize the distribution of embeddings in feature space more effectively (Ustinova and 
Lempitsky, 2016). Additionally, integrating classification-reconstruction learning approaches, such as the 
CROSR framework, could enhance open-world classification performance (Yoshihashi et al., 2019). 

Despite the suboptimal performance observed in this study, embedding-based object re-identification 
remains a promising avenue for advancing CV-based wood identification, given its success in other 
domains (Bai et al., 2018; Chen et al., 2023; Ghosh et al., 2023; Hermans et al., 2017; Kumar et al., 2020; 
Schroff et al., 2015; Shen et al., n.d.; Ye et al., 2024). Beyond its computational efficiency, this approach 
holds significant potential for integration with other diagnostic information within a unified framework. The 
embeddings generated by the CNN function as numerical fingerprints of macroscopic wood anatomy, 
encoding diagnostic features as fixed-length vectors. This data format aligns well with other established 
methods, such as microscopic wood anatomical assessment and DART-TOFMS. Microscopic wood 
anatomy, the most traditional wood identification approach, encodes diagnostic traits from all three 
anatomical planes into a structured vector based on qualitative observations (Committee, 2004; NS, 1989; 
Wheeler, 2011). DART-TOFMS generates chemical fingerprints by ionizing wood compounds and analysing 
their mass-to-charge ratios (Deklerck, 2022, 2019; Deklerck et al., 2020). Since all three techniques 
produce structured numerical representations of wood characteristics, they offer the potential for 
integration into machine-learning or deep learning models. By combining macroscopic, microscopic, and 
chemical data, future models could substantially enhance diagnostic accuracy, potentially enabling fine-
grained identification at the species, subspecies, or populations. This is also suggested by Knauer et al. 
(2019) demonstrating that combining different models for tree identification can yield improved results 
(Knauer et al., 2019).  
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5.6 Conclusion 
This study demonstrates the potential of deep learning for automated timber genus identification. The 
results highlight that while all classification models capture similar underlying patterns, CNNs outperform 
RF models on IAWA anatomical features due to their ability to extract discriminative image features without 
relying on predefined descriptors. Performance trends across different taxonomic scopes emphasize the 
importance of training data diversity, as models trained on broader datasets exhibit greater generalization 
capabilities compared to those trained exclusively on commercial timbers. 

Beyond standard multiclass classification, object re-identification approaches provide valuable 
alternatives, particularly in forensic contexts where identification may be less critical than ruling out 
certain timbers. The binary verification approach demonstrates strong performance in this regard, though 
effectiveness is constrained by ranking limitations and computational demands. Embedding-based re-
identification, while computationally efficient, underperforms in this study, suggesting that improved 
mining strategies and loss functions could enhance its reliability. Additionally, object re-identification 
produces information on similarity to specific reference specimens, rather than producing a direct 
prediction of classes (e.g. genera in this study), providing valuable information for forensic researchers.  

Future research should address the limitations of embedding-based models using the current state-of-the-
art to offer a powerful approach for automated wood identification. These models should be explored in 
hybrid studies that integrate multiple diagnostic data modalities—macroscopic images, microscopic 
wood anatomy, and chemical fingerprinting—to improve classification accuracy and enable identification 
at sharper taxonomic resolution. As global efforts to combat illegal logging and enforce sustainable trade 
regulations intensify, advancing AI-driven timber identification will be essential for strengthening forensic 
capabilities and ensuring responsible resource management. 
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6.1 Abstract 
As reported in Chapter 3, using expert-defined anatomical features for classifying commercial timbers 
results in limited accuracy, with genus-level identification reaching only around 53%. However, these 
features were effective for distinguishing closely related taxa, such as different species of Pterocarpus. In 
contrast, Chapter 5 demonstrated that CNNs perform well across broad taxonomic ranges (e.g. all 
Congolese tree species and commercial species). The binary verification approach, in particular, showed 
strong generalization with high accuracy, precision, recall, and F1-score on both trained (Congolese) and 
untrained timbers—including the correct genus in 95% of the specimens when considering the top 7% of 
predicted genera for Congolese timbers and up to 30% for non-Congolese timbers. Still, CNNs do not 
necessarily rely on the diagnostic patterns used by wood anatomists for classification. Therefore, expert-
defined anatomical features may offer complementary information that can help refine or validate the top 
predicted taxa generated by a CNN.  

This chapter evaluates a re-ranking framework where expert-defined features are used in RF models to 
refine CNN genus predictions. This chapter explores the tiering of computer-extracted CNN and expert-
defined macroscopic cross-sectional wood anatomy to improve the accuracy, precision, and sensitivity 
(recall) of genus identification. Results show that while CNNs extract diagnostic patterns, targeted re-
ranking—especially within the top three to five predictions—yields modest but consistent performance 
gains. Beyond this range, refinement leads to general performance becoming lower than without re-
ranking, particularly in genera with overlapping or ambiguous anatomical traits. Moreover, re-ranking is not 
always beneficial: around one-third of the 56 evaluated genera showed decreased performance, most 
notably in sensitivity (recall). This decline in recall is especially concerning in regulatory applications, 
where speed, accessibility, and high sensitivity are essential—such as verifying timber species noted in 
trade documentation and identifying protected taxa. Misclassifying CITES-listed species, such as within 
the genus Khaya, would be problematic. These findings underscore the value of integrating CNNs with 
expert knowledge but emphasize the need for targeted, genus-specific refining to enhance diagnostic 
accuracy without compromising the reliability or practicality of field-based timber verification systems. 

This chapter is not submitted to a peer-reviewed journal on 19/08/2025.  
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6.2 Introduction 
Macroscopic cross-sectional wood anatomy has been studied thoroughly for wood identification in field 
settings, due to the ease with which diagnostic features can be observed (Ravindran et al., 2021; Ruffinatto 
et al., 2015). Identification is typically performed by examining the endgrain surface of a cut or sanded 
specimen, using the naked eye or a hand lens to assess anatomical features such as vessel arrangement, 
ray width, and parenchyma patterns (Koch et al., 2018; Naturalis Biodiversity center, 2025; Ruffinatto et al., 
2015). These observations are then entered with identification keys, which are available online for different 
geographic or taxonomic groups of timbers (Malaysian Timber Council, 2018; Richter et al., 2017; 
Ruffinatto and Crivellaro, 2019). In CV-based wood identification, an image of the endgrain surface is 
captured and processed directly by an AI model (Hwang and Sugiyama, 2021; Silva et al., 2022). One 
example is the Xylotron, which uses a purpose-built imaging device (the ‘xyloscope’) to standardize image 
acquisition, ensuring compatibility with the data used to train the model (Ravindran et al., 2020, 2019). 
Other tools, such as the Xylorix smartphone app, rely on integrated smartphone cameras, requiring careful 
image augmentation to minimize decrease in performance due to differences in camera hardware and 
settings (Artemov, 2025; Tang and Tay, 2019). 

In Chapter 3 of this dissertation the classification performance of expert-defined anatomical features was 
investigated, while in Chapter 4 and 5 features were extracted automatically through CV (specifically 
CNNs). Expert-defined macroscopic features yielded limited accuracy—achieving a maximum of 52.86% 
accuracy across Congolese commercial timber genera using a RF classifier. However, within narrow 
taxonomic groups, such as species within the genus Pterocarpus, these features proved more effective. By 
contrast, CNNs demonstrated significantly higher classification performance across broader taxonomic 
ranges. In particular, the binary verification approach studied in Chapter 5 produced high accuracy, 
precision, recall, and F1-score not only on timbers from the training set (Congolese species) but also on 
unseen timbers from other regions. Nevertheless, for accurate genus-level classification, it was necessary 
to consider the top 7% of predicted genera for Congolese timbers and up to 30% for non-Congolese 
specimens to include the correct genus in 95% of cases. For practical applications, this translates to 
reviewing the top 4–6 predictions for the 56 Congolese commercial genera (see section 5.4.4). 

These findings highlight the potentially complementary strengths of both approaches. While expert-
defined features are effective at distinguishing among similar-looking timbers within a narrow range, CNNs 
are better suited for broader classification tasks. The integration of both methods leverages their 
complementary strengths, enhancing both the accuracy and precision of timber identification. Combining 
methodologies that rely on different diagnostic patterns has proven to increase the performance of wood 
identification (Dormontt et al., 2015; Knauer et al., 2019). Chapter 4 further supports this integration, 
showing that CNNs activate regions on images with clear anatomy for classification, as visualized through 
gradient-weighted class activation maps. However, the features used by CNNs do not align directly with 
traditional anatomical descriptors, suggesting that expert-defined features could add complementary 
value. 

This study investigates whether integrating expert-defined macroscopic wood anatomical features can 
improve genus-level timber identification by refining the predictions of a CNN binary verification model. 
Using specimens of Congolese commercial timber from the SmartWoodID database, we evaluate a tiered 
re-ranking approach that applies anatomical features to the CNN’s top-k predicted genera (from top-2 to 
top-10). The aim is to assess the extent to which expert knowledge can enhance classification accuracy, 
precision, recall, and F1-score—both overall and at the genus level—for the forensic identification of traded 
timber products.  
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6.3 Material and methods 
6.3.1 Dataset Description 
This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the 
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of 
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in 
section 1.5 which provides an overview of all data used in each chapter. 

The database contains high-resolution RGB scans of the macroscopic end-grain surfaces of 3,742 wood 
specimens, representing 954 species native to the DRC. Each specimen was prepared by scanning the 
cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization of 
macroscopic features essential for wood identification.  

Species and lower taxa are represented by multiple specimens, capturing both intra- and interspecific 
anatomical variation. This makes the database well-suited for studying wood identification using 
macroscopic anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et 
al. (2023) (De Blaere et al., 2023), while Supplementary Materials Table 8.1 all unique specimen identifiers 
and metadata. To enable machine learning analysis, we selected only species represented by at least two 
specimens. This set comprises 2,296 digitized specimens across 601 species, 286 genera, and 64 families. 
Discriminatory power was mainly assessed by training and evaluating classification models on the 
specimens. Therefore, specimens were allocated random to training (75%) or test set (25%), while 
preserving distribution of species across both sets. Within both sets, a subset of 78 commercially 
important species was defined for targeted evaluation. An overview of the chapters, designated datasets 
used in each chapter and of which hypothesis they target is provided in section 1.4. 

Macroscopic wood anatomical features were described for each end-grain image of the SmartWoodID 
specimens (see chapter 2, Table 2.2; and De Blaere et al. (2023) (De Blaere et al., 2023)). Each feature is 
assigned a Macroscopic IAWA feature number (Ruffinatto et al., 2015). We did not use descriptions on the 
presence of growth rings as the discernability at the used resolution was often not high enough to assess 
this feature with certainty. Each feature is annotated with one of four states: Present (clearly visible), 
Variable (sporadically observed), Absent (rarely observed, below the threshold for Variable), or NA 
(undiscernible due to resolution limits or ambiguous visual cues).  

Given the large size of the scanned end-grain surfaces, directly processing full images is computationally 
expensive and may lead to overfitting due to the limited number of images. To address this, the full images 
were cropped into smaller, non-overlapping patches that retained diagnostic features while capturing 
anatomical variability. We selected patch dimensions of 512×512 pixels, corresponding to a physical area 
of approximately 5.42×5.42 mm, ensuring sufficient detail for anatomical analysis without obscuring 
critical features. Full images yielding fewer than four patches (i.e., total end-grain surface area below 1 cm²) 
were excluded to maintain consistency and relevance for anatomical assessment.  

Patches were allocated random to training (75%) or validation set (25%), while preserving distribution of 
specimens across both sets, using different regions of the same specimens for training and validating. 
Furthermore, any full image yielding fewer than four usable patches was removed, as these would cover 
less than one square centimetre—below the typical area assessed by a human expert during wood 
anatomical identification. 

This chapter only applied images and annotations of the subset of commercial timbers. First, the binary 
verification CNN (chapter 5) was applied to each test specimen to generate a normalized vector of class 
probabilities across 56 commercial timber genera. For further details regarding the image data, data pre-
processing, CNN architecture, training procedures, model selection, and hyperparameter optimization, 
see section 5.3.  

The second component of the tiered approach involves re-ranking the CNN’s top predictions—genera with 
the highest assigned probability—by using expert-defined macroscopic anatomical features to refine the 
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initial ranking. These features are described in detail in section 2.3.6. For each test specimen, a custom 
machine-learning classifier was trained using the anatomical annotations of training specimens belonging 
to the top-k predicted genera. The re-ranking process was structured incrementally: starting with the top 
two predicted genera per specimen, then increasing to the top three, and so on up to the top ten. In Chapter 
5 it was shown that for the commercial genera subset, the correct genus is present within the top four 
predictions in 95% of test cases and within the top ten in approximately 99%, justifying the choice to restrict 
re-ranking to a range of k from two to ten. RF was selected as the classification technique based on its 
consistently strong performance across taxonomic levels. The RF technique was then applied to the same 
test specimen to produce a refined probability distribution over the top-k genera. These RF models were 
trained using the optimal hyperparameters of the hyperparameter grid (see Table 8.2), which consisted of 
200 DTs, a maximum DT depth of 20 nodes, a minimum of two samples to split and a minimum of 1 sample 
per leaf. Class weighting was applied to prevent overfitting to genera with more training specimens. 

Overall, this integration framework provides a structured means to assess the added value of expert-
defined anatomical features in refining CNN-based genus predictions within a commercially relevant 
timber dataset. 

A flowchart of the tiered approach is shown in Figure 6.1.  

Predicting 
Top k predicted genera 

Training model 

CNN 
Genus A  0.6 

Genus B  0.2 

Genus C  0.1 

Genus D  0.1 

Image (5.42x5.42 mm) 

31 expert defined 
anatomical 

features 

Annotating 

31 expert defined 
anatomical 

features only of 
top k genera 

Random Forests 

Annotating 

Input for 
re-ranking 

predicting model on 
input for re-ranking 

Genus B  0.7 

Genus A  0.1 

Genus D  0.1 

Genus C  0.1 

Re-ranked top k  genera 

Other 
specimens 

Figure 6.1: Flowchart showing the re-ranking approach 
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6.4 Results  
 The overall performance trends of the tiered approach are presented in Figure 6.2, which plots accuracy 
(green), recall (blue), precision (red), and F1-score (purple) as a function of the number of top predicted 
genera included for re-ranking. Definitions of those metrics are provided in supplementary materials 
section 8.2. The first x-value corresponds to the metric values obtained from the binary verification 
approach without any re-ranking. Subsequent points reflect metric values when only the top n predicted 
genera (e.g., top 2, top 3, etc.) were re-ranked using a RF classifier trained on macroscopic wood 
anatomical features. In the recall, precision, and F1-score plots, each x-value also includes a boxplot 
representing the distribution of class-specific (i.e., genus-level) scores, with the grey bar representing the 
interquartile range, the points being the macro-average and the coloured line representing the median. 

Figure 6.2 demonstrates that refining CNN genus predictions with expert-defined anatomical features 
results in moderate but meaningful improvements in classification performance, particularly within the 
top-4 predicted genera. Across all considered top-k levels, the averaged metrics (points) remain relatively 
stable, with overall means and standard errors of mean (0.741 ± 0.012), Recall (0.700 ± 0.015), Precision 
(0.711 ± 0.018), and F1-score (0.677 ± 0.017), suggesting only minor changes in performance. The median 
values of the recall and precision remain 1 for re-ranking in the top four genera, suggesting that most genera 
are well classified regardless of re-ranking. In fact, including more top predicted classes allows median 
recall and median precision to decrease, indicating that most genera perform worse, likely due to 
misclassifications with the macroscopic features. The median values of the F1 score elucidates the 
discrepancy between genera with likely different genera having high precision and high recall. The highest 
median F1 score is observed when re-ranking the top 2 predicted classes. 

Figure 6.2: Performance metrics plotted against the number of top predicted genera included in the random 
forest re-ranking step using macroscopic wood anatomical features. Accuracy (green), recall (blue), precision 
(red), and F1-score (purple) are shown as macro-averaged values across all genera. For recall, precision, and 
F1-score, boxplots display the distribution of class-specific values at each level of re-ranking. The first point 
represents performance without re-ranking (CNN-only output), while subsequent points reflect increasing 
numbers of top predicted genera included in the re-ranking process. 
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The points (macro-averaged values) and interquartile ranges (boxes on the boxplots) provide further detail 
on re-ranking within the top 4 predicted genera by the CNN. All metrics experience an increase in average 
value by re-ranking the top predicted genera, with the highest values ranging in re-ranking within the top 4 
predicted genera by the CNN. Accuracy peaks when the top two predicted genera are re-ranked using 
expert-defined anatomical features. Extending the re-ranking to the top three or four predictions results in 
only marginal changes, after which accuracy gradually decreases. Macro-averaged recall improves with re-
ranking up to the top three genera. The stability of the interquartile range suggests that little variability is 
introduced in the recall by re-ranking. Precision follows a similar trend, with the highest values observed at 
ranks four and five. The interquartile range decreases most notably at rank four, from Q1 = 0.78 to Q3 = 1.00, 
indicating greater consistency and less genus-specific variability in precision at this point. A narrow Q1–Q3 
range in this context implies that the refinement process yields uniformly higher precision across most 
genera. F1-score, which balances recall and precision, is also highest for re-ranking up to the top four 
predictions. The median values of F1 are consistently lower than those of recall and precision, starting at 
0.8 for the CNN output, peaking at 0.85 for re-ranking the top three predictions, and returning to 0.8 through 
rank four before declining after rank 5. This discrepancy suggests that individual genera can exhibit uneven 
gains in recall versus precision. The interquartile range for F1 decreases most at rank three/four, indicating 
a convergence of genus-specific F1 scores toward higher values and greater uniformity. 

To evaluate the impact of re-ranking for each genus individually across different re-ranking depths, recall, 
precision, and F1-score were assessed and summarized in Table 6.1,Table 6.2, and Table 6.3. These tables 
use a Viridis colour gradient—ranging from yellow (high) to green (intermediate) to blue (low)—to facilitate 
visual interpretation of performance changes from no re-ranking (column 1) to re-ranking the top ten 
predicted classes. Across these tables, five distinct patterns emerge. The first represents a clear 
improvement in metric values due to re-ranking, where the values in column 1 are lower than in subsequent 
columns. The second pattern is a decrease in performance, where values decrease relative to the initial 
CNN output. The third pattern indicates no substantial change across all re-ranking depths. The fourth 
captures genera that show a temporary increase in performance, which then returns to the original (non-
re-ranked) value. Conversely, the fifth scenario involves an initial decrease followed by a return to the 
original value. Fourteen genera increase (pattern 1) and sixteen decrease (pattern 2) in recall with re-
ranking, fourteen increase and twenty-two decrease in precision, and sixteen increase and twenty-five 
decrease in F1-score. Most remaining genera fall into pattern three, with little to no change observed: 18 
for recall, 10 for precision, and 7 for F1-score. Only a small number of genera belong to patterns four and 
five. For recall, four genera increase and stabilize, and four other genera show a temporary decrease; for 
precision, three genera increase then return to baseline, while seven show the opposite; and for F1-score, 
five genera increase then return to baseline, while three show the opposite. 

Importantly, the effect of re-ranking is not consistent across genera. Certain genera, such as Antiaris, 
Berlinia, Copaifera, Gilbertiodendron, Khaya, Leplaea, Milicia, Terminalia, and Zanthoxylum, show a 
decrease in both precision and recall following re-ranking. In contrast, genera including Aningeria, 
Autranella, Baillonella, Canarium, Celtis, Klainedoxa, Pachylobus, Staudtia, and Tessmannia show 
concurrent improvements in both metrics. Some genera, such as Alstonia, Morus, Ricinodendron, and 
Triplochiton were already classified correctly by the CNN and thus remained unaffected by re-ranking. 
Others, like Antrocaryon and Beilschmiedia, were consistently misclassified and did not benefit from 
refinement. In several cases, re-ranking decreased or increased recall and increased or decreased 
precision respectively. For example, genera such as Entandrophragma, Guibourtia, Irvingia, and 
Turraeanthus show an increase in one metric and a decrease in the other. Additional genera showed 
stability in one metric with either a decrease or increase in the other, further illustrating the lack of a uniform 
effect of re-ranking. Despite general improvements when re-ranking is limited to the top four predictions, 
the results clearly demonstrate that refinement using macroscopic anatomical features does not benefit 
all genera equally. Approximately 30% of the genera suffer notable decreases in recall and 40% in precision 
due to re-ranking. Genera such as Antiaris, Gilbertiodendron, Zanthoxylum, Nauclea, Khaya, and Irvingia 
consistently decrease in recall across all re-ranking depths. For Guibourtia, Lovoa, and Terminalia, recall 
performance decreases notably when re-ranking beyond the top four CNN predictions.  
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Table 6.1: Genus-specific recall values across different numbers of top predicted genera included in the re-ranking step 
using macroscopic wood anatomical features. Column "1" represents recall values from the original binary verification 
model without re-ranking (CNN-only output). Columns "2" through "10" represent increasing numbers of top predicted 
genera (e.g., top 2, top 3, etc.) included in the re-ranking step. Recall values range from 0 to 1, with a colour gradient 
applied to highlight trends (yellow = high recall, green = intermediate, blue = low recall). 

Genus 
Number of top predicted genera reshuffled 
1 2 3 4 5 6 7 8 9 10 

Afzelia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Albizia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Alstonia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Amphimas 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Aningeria 0,00 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,00 0,00 
Antiaris 0,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Antrocaryon 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Autranella 0,33 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 
Baillonella 0,00 1,00 0,00 0,50 1,00 1,00 1,00 1,00 1,00 1,00 
Beilschmiedia 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Berlinia 1,00 0,33 1,00 1,00 1,00 1,00 0,67 0,33 0,33 0,33 
Bobgunnia 1,00 0,50 1,00 0,50 0,50 1,00 0,50 0,50 1,00 0,50 
Brachystegia 0,50 0,50 1,00 1,00 0,50 0,50 0,50 0,50 0,50 0,50 
Canarium 0,50 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Celtis 0,00 0,33 1,00 0,33 0,33 0,33 0,33 0,67 0,33 0,67 
Copaifera 1,00 0,50 1,00 0,50 0,50 0,50 0,50 0,50 0,50 0,50 
Cynometra 0,67 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Daniellia 1,00 0,00 1,00 1,00 1,00 1,00 1,00 0,00 1,00 0,00 
Diospyros 0,50 0,00 0,50 0,50 0,00 0,00 0,00 0,00 0,50 0,50 
Entandrophragma 0,82 0,94 0,82 0,88 0,88 0,82 0,88 0,88 0,88 0,82 
Erythrophleum 0,33 0,00 0,67 0,67 0,33 0,00 0,00 0,00 0,00 0,00 
Gambeya 0,33 0,33 0,00 0,33 0,33 0,33 0,33 0,33 0,33 0,33 
Gilbertiodendron 1,00 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 
Guibourtia 1,00 0,75 1,00 1,00 0,75 0,75 0,75 0,75 0,75 0,75 
Holoptelea 0,50 0,50 1,00 1,00 1,00 1,00 0,50 0,50 0,50 0,50 
Irvingia 0,67 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 
Julbernardia 1,00 0,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Khaya 0,83 0,33 0,50 0,50 0,50 0,50 0,33 0,33 0,33 0,33 
Klainedoxa 0,50 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Leplaea 1,00 0,89 1,00 0,89 0,89 0,89 0,89 0,89 0,89 0,89 
Lophira 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Lovoa 1,00 0,67 1,00 1,00 0,83 0,67 0,83 0,67 0,83 0,83 
Maesopsis 0,50 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Milicia 1,00 0,67 1,00 1,00 1,00 0,67 0,67 0,67 0,67 0,67 
Millettia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Mitragyna 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Morus 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Nauclea 1,00 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 
Nesogordonia 0,50 0,75 0,75 0,50 0,75 0,75 0,75 0,75 0,50 0,75 
Ongokea 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Pachylobus 0,00 1,00 0,00 0,00 1,00 1,00 1,00 1,00 1,00 1,00 
Pericopsis 1,00 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 
Petersianthus 1,00 0,00 0,50 0,50 0,50 0,00 0,00 0,50 0,50 0,50 
Piptadeniastrum 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Prioria 1,00 0,50 0,75 0,75 0,75 0,75 0,75 0,75 1,00 0,75 
Pterocarpus 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Pterygota 1,00 0,33 1,00 0,67 0,33 0,33 0,33 0,33 0,33 0,33 
Pycnanthus 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Ricinodendron 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Staudtia 0,00 0,00 0,00 1,00 1,00 0,50 0,50 0,50 0,50 0,50 
Terminalia 0,67 0,00 0,67 0,67 0,33 0,33 0,33 0,33 0,00 0,00 
Tessmannia 0,50 0,75 1,00 1,00 1,00 0,50 0,75 0,75 1,00 1,00 
Tieghemella 0,25 0,75 0,50 0,75 1,00 1,00 0,75 0,75 0,75 0,75 
Triplochiton 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Turraeanthus 0,33 1,00 1,00 1,00 0,67 1,00 1,00 1,00 1,00 1,00 
Zanthoxylum 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
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Table 6.2: Genus-specific precision values across different numbers of top predicted genera included in the re-ranking 
step using macroscopic wood anatomical features. Column "1" represents precision values from the original binary 
verification model without re-ranking (CNN-only output). Columns "2" through "10" represent increasing numbers of 
top predicted genera (e.g., top 2, top 3, etc.) included in the re-ranking step. Precision values range from 0 to 1, with a 
colour gradient applied to highlight trends (yellow = high precision, green = intermediate, blue = low precision). 

Genus 
Number of top predicted genera reshuffled 
1 2 3 4 5 6 7 8 9  

Afzelia 1,00 0,67 1,00 1,00 1,00 0,75 0,67 0,67 0,60 0,67 
Albizia 1,00 0,67 1,00 1,00 1,00 1,00 1,00 0,67 1,00 0,67 
Alstonia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Amphimas 1,00 0,67 1,00 1,00 0,67 0,67 0,67 1,00 1,00 1,00 
Aningeria 0,00 0,33 0,20 0,20 0,20 0,33 0,33 0,33 0,00 0,00 
Antiaris 0,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Antrocaryon 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Autranella 0,33 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 
Baillonella 0,00 1,00 0,00 1,00 1,00 0,67 1,00 1,00 1,00 1,00 
Beilschmiedia 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Berlinia 1,00 0,50 0,75 0,75 0,50 0,50 0,50 0,50 0,50 0,50 
Bobgunnia 0,67 0,33 1,00 1,00 1,00 1,00 1,00 1,00 0,67 0,50 
Brachystegia 0,50 1,00 0,50 1,00 1,00 1,00 1,00 0,50 0,50 0,50 
Canarium 0,50 0,67 0,67 0,67 0,67 0,67 0,67 0,50 0,67 0,67 
Celtis 0,00 0,50 1,00 1,00 1,00 1,00 1,00 0,67 0,50 0,67 
Copaifera 1,00 0,33 0,67 0,50 0,50 0,33 0,33 0,50 0,50 0,33 
Cynometra 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Daniellia 1,00 0,00 1,00 1,00 1,00 1,00 1,00 0,00 0,33 0,00 
Diospyros 0,20 0,00 0,50 0,50 0,00 0,00 0,00 0,00 0,50 1,00 
Entandrophragma 0,93 0,80 0,82 0,79 0,79 0,78 0,75 0,75 0,75 0,78 
Erythrophleum 1,00 0,00 1,00 1,00 1,00 0,00 0,00 0,00 0,00 0,00 
Gambeya 1,00 1,00 0,00 0,50 1,00 1,00 1,00 1,00 1,00 1,00 
Gilbertiodendron 1,00 0,50 1,00 1,00 1,00 1,00 0,50 0,50 0,50 0,50 
Guibourtia 0,67 0,75 1,00 1,00 1,00 0,75 0,75 0,75 0,75 0,75 
Holoptelea 0,20 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Irvingia 0,67 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Julbernardia 0,33 0,00 1,00 0,50 0,50 0,50 0,50 0,50 1,00 0,50 
Khaya 0,71 0,29 0,50 0,60 0,50 0,38 0,29 0,29 0,29 0,29 
Klainedoxa 0,50 1,00 0,50 0,67 0,67 0,67 0,67 0,67 1,00 0,67 
Leplaea 1,00 0,80 1,00 0,89 0,80 0,80 0,80 0,80 0,89 0,73 
Lophira 1,00 1,00 1,00 0,50 0,67 0,67 0,67 0,67 0,50 0,67 
Lovoa 1,00 0,67 1,00 1,00 1,00 0,80 1,00 0,80 1,00 1,00 
Maesopsis 1,00 1,00 1,00 1,00 1,00 0,67 1,00 1,00 1,00 1,00 
Milicia 1,00 0,50 1,00 1,00 0,75 0,67 0,67 0,67 0,67 0,67 
Millettia 1,00 0,67 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Mitragyna 1,00 0,60 1,00 0,75 0,75 0,60 0,60 0,60 0,50 0,60 
Morus 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Nauclea 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Nesogordonia 1,00 0,60 1,00 1,00 0,75 0,75 0,75 0,75 0,67 0,60 
Ongokea 1,00 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 
Pachylobus 0,00 1,00 0,00 0,00 0,50 1,00 1,00 0,50 1,00 1,00 
Pericopsis 1,00 0,50 0,67 1,00 1,00 0,67 0,67 1,00 1,00 1,00 
Petersianthus 1,00 0,00 1,00 1,00 1,00 0,00 0,00 1,00 1,00 1,00 
Piptadeniastrum 0,50 0,67 1,00 1,00 1,00 1,00 0,67 1,00 0,67 0,67 
Prioria 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Pterocarpus 1,00 0,67 1,00 0,80 0,73 0,80 0,73 0,67 0,73 0,67 
Pterygota 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Pycnanthus 1,00 0,50 1,00 1,00 1,00 1,00 0,50 0,50 0,50 0,50 
Ricinodendron 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Staudtia 0,00 0,00 0,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Terminalia 0,67 0,00 0,50 0,50 0,33 0,33 0,25 0,50 0,00 0,00 
Tessmannia 0,67 1,00 0,80 0,67 1,00 1,00 1,00 1,00 1,00 1,00 
Tieghemella 1,00 1,00 1,00 0,75 1,00 0,80 0,75 0,60 0,75 0,75 
Triplochiton 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Turraeanthus 1,00 0,50 0,75 0,75 0,33 0,43 0,60 0,60 0,60 0,60 
Zanthoxylum 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
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Table 6.3: Genus-specific F1-scores across different numbers of top predicted genera included in the re-ranking step 
using macroscopic wood anatomical features. Column "1" represents F1-scores from the original binary verification 
model without re-ranking (CNN-only output). Columns "2" through "10" represent increasing numbers of top predicted 
genera (e.g., top 2, top 3, etc.) included in the re-ranking step. F1-scores range from 0 to 1, with a colour gradient applied 
to highlight trends (yellow = high F1-score, green = intermediate, blue = low F1-score). 

Genus 
Number of top predicted genera reshuffled 
1 2 3 4 5 6 7 8 9  

Afzelia 1,00 0,80 1,00 1,00 1,00 0,86 0,80 0,80 0,75 0,80 
Albizia 1,00 0,80 1,00 1,00 1,00 1,00 1,00 0,80 1,00 0,80 
Alstonia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Amphimas 1,00 0,80 1,00 1,00 0,80 0,80 0,80 1,00 1,00 1,00 
Aningeria 0,00 0,40 0,29 0,29 0,29 0,40 0,40 0,40 0,00 0,00 
Antiaris 0,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Antrocaryon 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Autranella 0,33 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 
Baillonella 0,00 1,00 0,00 0,67 1,00 0,80 1,00 1,00 1,00 1,00 
Beilschmiedia 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Berlinia 1,00 0,40 0,86 0,86 0,67 0,67 0,57 0,40 0,40 0,40 
Bobgunnia 0,80 0,40 1,00 0,67 0,67 1,00 0,67 0,67 0,80 0,50 
Brachystegia 0,50 0,67 0,67 1,00 0,67 0,67 0,67 0,50 0,50 0,50 
Canarium 0,50 0,80 0,80 0,80 0,80 0,80 0,80 0,67 0,80 0,80 
Celtis 0,00 0,40 1,00 0,50 0,50 0,50 0,50 0,67 0,40 0,67 
Copaifera 1,00 0,40 0,80 0,50 0,50 0,40 0,40 0,50 0,50 0,40 
Cynometra 0,80 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Daniellia 1,00 0,00 1,00 1,00 1,00 1,00 1,00 0,00 0,50 0,00 
Diospyros 0,29 0,00 0,50 0,50 0,00 0,00 0,00 0,00 0,50 0,67 
Entandrophragma 0,87 0,86 0,82 0,83 0,83 0,80 0,81 0,81 0,81 0,80 
Erythrophleum 0,50 0,00 0,80 0,80 0,50 0,00 0,00 0,00 0,00 0,00 
Gambeya 0,50 0,50 0,00 0,40 0,50 0,50 0,50 0,50 0,50 0,50 
Gilbertiodendron 1,00 0,50 0,67 0,67 0,67 0,67 0,50 0,50 0,50 0,50 
Guibourtia 0,80 0,75 1,00 1,00 0,86 0,75 0,75 0,75 0,75 0,75 
Holoptelea 0,29 0,67 1,00 1,00 1,00 1,00 0,67 0,67 0,67 0,67 
Irvingia 0,67 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 
Julbernardia 0,50 0,00 1,00 0,67 0,67 0,67 0,67 0,67 1,00 0,67 
Khaya 0,77 0,31 0,50 0,55 0,50 0,43 0,31 0,31 0,31 0,31 
Klainedoxa 0,50 1,00 0,67 0,80 0,80 0,80 0,80 0,80 1,00 0,80 
Leplaea 1,00 0,84 1,00 0,89 0,84 0,84 0,84 0,84 0,89 0,80 
Lophira 1,00 1,00 1,00 0,67 0,80 0,80 0,80 0,80 0,67 0,80 
Lovoa 1,00 0,67 1,00 1,00 0,91 0,73 0,91 0,73 0,91 0,91 
Maesopsis 0,67 1,00 1,00 1,00 1,00 0,80 1,00 1,00 1,00 1,00 
Milicia 1,00 0,57 1,00 1,00 0,86 0,67 0,67 0,67 0,67 0,67 
Millettia 1,00 0,80 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Mitragyna 1,00 0,75 1,00 0,86 0,86 0,75 0,75 0,75 0,67 0,75 
Morus 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Nauclea 1,00 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 
Nesogordonia 0,67 0,67 0,86 0,67 0,75 0,75 0,75 0,75 0,57 0,67 
Ongokea 1,00 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 
Pachylobus 0,00 1,00 0,00 0,00 0,67 1,00 1,00 0,67 1,00 1,00 
Pericopsis 1,00 0,50 0,80 1,00 1,00 0,80 0,80 0,67 0,67 0,67 
Petersianthus 1,00 0,00 0,67 0,67 0,67 0,00 0,00 0,67 0,67 0,67 
Piptadeniastrum 0,67 0,80 1,00 1,00 1,00 1,00 0,80 1,00 0,80 0,80 
Prioria 1,00 0,67 0,86 0,86 0,86 0,86 0,86 0,86 1,00 0,86 
Pterocarpus 1,00 0,80 1,00 0,89 0,84 0,89 0,84 0,80 0,84 0,80 
Pterygota 1,00 0,50 1,00 0,80 0,50 0,50 0,50 0,50 0,50 0,50 
Pycnanthus 1,00 0,67 1,00 1,00 1,00 1,00 0,67 0,67 0,67 0,67 
Ricinodendron 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Staudtia 0,00 0,00 0,00 1,00 1,00 0,67 0,67 0,67 0,67 0,67 
Terminalia 0,67 0,00 0,57 0,57 0,33 0,33 0,29 0,40 0,00 0,00 
Tessmannia 0,57 0,86 0,89 0,80 1,00 0,67 0,86 0,86 1,00 1,00 
Tieghemella 0,40 0,86 0,67 0,75 1,00 0,89 0,75 0,67 0,75 0,75 
Triplochiton 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
Turraeanthus 0,50 0,67 0,86 0,86 0,44 0,60 0,75 0,75 0,75 0,75 
Zanthoxylum 0,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
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6.5 Discussion 
Previous research has emphasized the value of combining multiple techniques to enhance wood 
identification. Dormontt et al. (2015) proposed that integrating several methods is essential for improving 
diagnostic accuracy and narrowing the taxonomic resolution in forensic wood investigations (Dormontt et 
al., 2015). Research by Knauer et al. (2019), also demonstrated that refining CNN predictions with RF 
classifiers (of different size and operating in different feature spaces) for tree species identification using 
hyperspectral image information can significantly improve tree species identification (Knauer et al., 2019). 
These studies all indicate that leveraging diverse diagnostic features—such as microscopic anatomical 
characteristics, wood chemical composition, or DNA—can offer complementary information, thereby 
improving both the accuracy and the taxonomic specificity of wood identification systems. 
The results of our approach on the accessible macroscopic cross-section, which combines CV with expert-
defined anatomical features, highlight the nuanced effects of re-ranking CNN genus predictions using 
expert-defined macroscopic wood anatomical features on the endgrain. While the integration of expert-
defined features through RF models can lead to modest improvements in performance (accuracy, recall, 
and precision), the benefits are not uniform across all genera. Median values of recall and precision remain 
stable up to the top 4 re-ranked predictions, indicating that most genera are well classified by the CNN 
output alone. This is underscored by the analysis on individual genera, with no change in recall observed 
for 18 out of the 56 genera and no change in precision observed for 10 out of 56 genera. This suggests that 
the CNN approach already captures valuable taxonomic signals from the images, and in many cases, re-
ranking may offer limited or no added benefit.  

This limited improvement in performance following re-ranking may be attributed to the hard mining strategy 
employed during training of the binary verification CNN (for additional details see section 5.3.7). In object 
re-identification tasks—such as binary verification—model robustness is enhanced by selectively training 
on the most challenging specimen pairs rather than on easy (highly dissimilar) examples (Ghosh et al., 
2023; Hermans et al., 2017). For this model, hard negatives were systematically generated based on the 
same expert-defined macroscopic anatomical features, prioritizing specimen pairs that shared similar 
standardized anatomical patterns in endgrain sections. As a result, the binary verification CNN was 
implicitly encouraged to learn discriminative features that extend beyond those defined by traditional 
anatomical descriptors. This training strategy likely enabled the CNN to extract subtle diagnostic signals 
from the wood images that are not easily captured by predefined macroscopic features alone, thereby 
explaining the limited gains observed through subsequent re-ranking using RF models.  

Nonetheless, improvements can be observed when re-ranking is applied judiciously. Across various 
metrics, re-ranking within the top two to four CNN predictions resulted in increased performance (averaged 
across genera). Specifically, the top 3 yields the most consistent gains across accuracy, recall, precision, 
and F1-score, with the narrowest interquartile range in precision and F1-score occurring at this number of 
genera. Beyond the top four predictions, classification performance begins to decrease, indicating that 
incorporating macroscopic features for lower-ranked genera may introduce noise. This is likely due to the 
RF model assigning proportionally larger probabilities to incorrect genera suggesting that re-ranking with 
lower-ranked genera introduces noise, and thereby misguiding the re-ranking process. This underscores 
the limitations of macroscopic wood anatomical features observed in chapter 3 and provides perspective 
on the limited range where these anatomical features can provide compelling value at refining CNN-based 
predictions. 

The analysis on individual genera further supports this interpretation. While recall improvement is 
observed in 25% of the genera (for example for Aningeria, Canarium, and Tessmannia) across all three 
metrics (recall, precision, and F1-score) due to re-ranking, 29% of genera shows a decrease. This 
divergence highlights that re-ranking with expert-defined anatomical features is not uniformly 
advantageous and may be taxon-dependent. A key explanation could lie in differences in field-of-view. 
Whereas the CNN operates on fixed-size cropped patches, the expert-defined features were annotated 
across entire scans, reflecting a broader context. Certain diagnostic traits—such as banded or confluent 
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parenchyma, or irregular vessel groupings—are not uniformly distributed across the wood surface and may 
only become apparent at larger scales or through multi-scale assessment. Consequently, the CNN may 
miss features that experts can reliably recognize by zooming in and out or scanning across surfaces, 
enhancing the synergy between the two approaches. This underscores the importance of future research 
on how FOV, image resolution, and multi-scale anatomical integration affect CV-based wood identification. 
Developing strategies that explicitly incorporate scale-adaptive representations could help bridge the gap 
between patch-based cv-based models and anatomical assessment.  

The diverging results on the individual genera also underscores that re-ranking is not a universally beneficial 
strategy, and application in forensic cases should be targeted at specific cases (genera) and not be 
performed blindly. This awareness raises the difficulty of applying such approaches in the field. Moreover, 
the results show that recall and precision do not always move in the same direction. Several genera 
experience increased precision but reduced recall, or vice versa. This asymmetry carries important 
implications in the context of timber verification for detecting illegal logging of protected timbers. From a 
regulatory screening standpoint, a decrease in recall is more problematic than in precision. Failing to 
identify a true positive (e.g. a protected timber species) is a more critical error than generating a false 
positive. This trade-off is particularly evident for high-priority genera such as Khaya, listed under CITES 
Appendix II (CITES, 2022c; UNEP-WCMC (Comps.), 2022). Applying the re-ranking approach on specimens 
of threatened timber genera resulted in an immediate and consistent decrease in recall. This outcome 
poses a tangible risk in real-world applications, as it may lead to under-detection of protected species, 
potentially facilitating illegal trade. Therefore, caution must be exercised when applying refinement 
methods that rely on macroscopic cross-sectional features. Additional diagnostic information, such as 
microscopic anatomical features or visual assessment using visual keys (Leggett and Kirchoff, 2011), may 
provide the necessary detail to improve identification accuracy without compromising recall. Incorporating 
such features, albeit easy to observe in field conditions (e.g. warehouse, forest, roadside), could help 
capture taxonomically relevant traits, enabling more reliable refinement of CNN predictions in forensic 
timber identification in field conditions. 

An additional factor influencing the effectiveness of re-ranking could be the presence of taxonomic look-
alikes. Many timber genera share macroscopic in cross-sectional features as evident from the observed 
clusters in section 3.1.6 such as similar vessel arrangements or parenchyma patterns. When such genera 
co-occur in the top k CNN predictions, re-ranking has the potential to refine the ordering by leveraging 
complementary anatomical descriptors. However, in cases where the CNN has already implicitly learned 
to discriminate these subtle traits—partly due to the hard negative mining strategy employed during 
training—the added value of re-ranking diminishes.  

The critical challenge then lies in defining what constitutes a look-alike. Both CV-based extracted features 
and expert-defined features are derived from the same underlying visual information, but the effective field-
of-view may shift the balance. A CNN restricted to cropped patches may fail to capture diagnostic traits 
visible only at larger scales, while expert annotations operate across the full cross-section, potentially 
recognizing features outside the CNN’s receptive field. This raises the question of whether look-alike 
relationships should be determined primarily by CNN similarity metrics, anatomical descriptors, or a 
hybrid strategy. Multi-scale approaches offer a promising way forward, as they could align the CNN’s 
representational scope more closely with expert assessment, enabling more robust differentiation of 
visually similar genera and a better understanding of when re-ranking adds diagnostic value.  



53 
 

6.6 Conclusion 

This study demonstrates that while integrating expert-defined macroscopic anatomical features can yield 
moderate improvements in CNN-based genus predictions, these benefits are highly dependent on both 
the specific genera and the depth of re-ranking applied. The overall results affirm that CNN models alone 
already encode substantial taxonomic information, likely due to their training on challenging diagnostic 
comparisons that extend beyond traditional anatomical descriptors. Crucially, re-ranking within the top 
two to five CNN predictions offers the most consistent performance gains across accuracy, precision, and 
recall—especially at the top three threshold. Beyond this range, performance diminishes due to 
misclassifications introduced by overemphasizing weak or misleading anatomical features. This finding 
underscores the limited but strategic utility of macroscopic cross-sectional wood anatomy for refining 
identifications. From a field application perspective, particularly in the context of frontline timber 
verification, the implications are twofold. First, the CNN model offers a rapid and accessible method for 
genus-level identification that already performs well in most cases. Second, refinement methods such as 
re-ranking must be applied selectively, as indiscriminate use—especially on protected taxa—can reduce 
recall, increasing the risk of overlooking high-priority timbers such as Khaya. Future research on field 
implementations should aim for using different diagnostic information that provides complementary value 
for refining wood identifications. 

6.7 Acknowledgements 
This work was realized through the combined efforts of the staff at the service of Wood biology at the RMCA 
in Tervuren, Belgium, and the staff at the UGent-Woodlab (Department of Environment, Faculty of 
Bioscience Engineering) of Ghent University.  

6.8 Availability of code and metadata 
Scripts and metadata can be requested by contacting the first author: 

Contact: ruben.de.blaere@africamuseum.be   

mailto:ruben.de.blaere@africamuseum.be


54 
 

7 General discussion 
7.1 Evaluating expert-defined macroscopic cross-sectional features 

for identification of Congolese tree species 

The need for rapid and accessible wood identification remains pressing, particularly in the context of 
regulating timber trade and enforcing regulations to halt illegal logging (Gasson et al., 2021; Hirschberger, 
2008; Hoare, 2015; Magrath et al., 2009; Piabuo et al., 2021; Van Brusselen et al., 2023). Given the volume 
of timber shipments and the limited movement space often encountered in warehouses and containers, 
speed and practicality are essential (Dormontt et al., 2015; Tacconi, 2012; Thompson and Magrath, 2021). 
Therefore, field officers currently rely primarily on manual macroscopic assessment using simple, low-
cost tools such as a sharp cutter, a 10× or 15× hand lens, and a field guide (Koch et al., 2018; Wheeler and 
Baas, 1998). Typically, cross-sectional wood anatomy is exposed, and the specimen is compared against 
standardized anatomical descriptors or reference images of expected timber species (Leggett and 
Kirchoff, 2011; Tardif and Conciatori, 2015; Wheeler and Baas, 1998). The objective of this study was to 
assess the feasibility of authenticating the botanical identity of timbers in species-rich contexts, where 
many morphologically similar taxa coexist, using the most accessible diagnostic information in the field: 
macroscopic cross-sectional wood anatomy. Chapter 3 assessed the diagnostic potential of expert-
defined macroscopic features using the SmartWoodID dataset (hypothesis 2). While practical for field use, 
these features had not been systematically evaluated. However, as demonstrated in Chapter 3, the 
discriminatory power of those accessible and frequently used expert-defined anatomical features is 
limited when applied across the diverse range of timbers in the DRC. Two-way clustering of 601 species 
suggested an optimal partitioning into six groups based on Mantel test (Borcard et al., 2011), indicating a 
broad anatomical overlap. Predictive modelling (classification) using these features achieved 
approximately 50% accuracy at the genus level when restricted to 56 Congolese commercial genera. 
Chapter 5 underscored these findings, showing that macroscopic cross-sectional features also yielded 
low recall and precision, approximately 50% for commercial genera and around 30% when considering all 
Congolese species (hypothesis 4.1). Moreover, rank-based accuracy analysis confirmed the limited 
discriminatory capacity of macroscopic features: to achieve a 95% probability of including the correct 
genus among the top predictions, one would have to consider 36 out of 56 commercial genera. These 
results indicate that, in species-rich contexts such as the DRC, macroscopic anatomical assessment of 
the cross-section alone is insufficiently reliable for wood identification across a broad range of timbers. 
This emphasizes the importance of incorporating more anatomical features available across all three 
principal anatomical planes—cross-section, radial, and tangential—and at multiple levels of 
magnification, to improve diagnostic accuracy and enable finer taxonomic resolution in wood 
identification workflows. 

The low performance of classification based on expert-defined features in this study is likely due to the 
limited number of anatomical features observable on the cross-section at macroscopic resolution. A full 
anatomical assessment incorporates up to 163 anatomical features observed on all three sections of 
(cross-section, radial section, tangential section) (Gasson, 2011; NS, 1989; Wheeler, 2011) rather than the 
31 cross-sectional features used in this study. These microscopic features remain to this day the standard 
method for taxonomic identification (Koch et al., 2015; Richter and Dallwitz, 2000; Wheeler, 2011). As 
such, it is essential to study additional microscopic features for identifying Congolese timbers through 
wood anatomy. The limited accessibility to these features currently poses challenges regarding the 
feasibility in field conditions, underscoring the need for further research developing methods for rapid 
visualization.  

Low performance is also influenced by the current interpretation of the IAWA framework (Gasson et al., 
2011; NS, 1989). Categorical states—such as “present,” “variable,” or “absent”—fail to capture the full 
spectrum of quantitative variation. For example, vessel diameter is typically recorded in broad ranges, 
obscuring important differences within those classes (small (<80 µm), medium (80–130 µm) and large 
(>130 µm)) (NS, 1989). An illustrative example is the genus Pterocarpus, specifically the challenge of 
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distinguishing P. tinctorius from P. soyauxii (see chapter 3: Figure 3.17). P. soyauxii tends to exhibit 
predominantly large vessels (small (<80 µm) is absent, medium (80–130 µm) is variable and large (>130 
µm) is present), whereas P. tinctorius shows a predominance of medium-sized vessels (small (<80 µm) is 
absent, medium (80–130 µm) is present and large (>130 µm) is variable). This scrutinized form of coding 
highlights the limitations of the conventional binning strategies, which can mask subtle yet diagnostically 
useful anatomical patterns. Improving taxonomic resolution may thus depend on extracting finer-grained 
data, such as mean and standard deviation of vessel sizes or ray width. This also underscores that higher 
resolution is crucial in that regard as it enables more precise measurements. However, acquiring such 
data requires digitization of wood surfaces at high resolution, along with algorithms capable of automated 
feature extraction. These automated procedures are becoming more accessible as time progresses with 
recent advances showing opportunity for automating digitization at high resolution (Van den Bulcke et al., 
2025). Advances in wood anatomy digitization—through high-resolution scanning, robotics, and deep 
learning—offer promising avenues for addressing these limitations (Van den Bulcke et al., 2025). Systems 
operating at ~2.25 µm resolution can now automatically segment and measure thousands of vessels, rays, 
and parenchyma structures (Van den Bulcke et al., 2025). While these techniques are impractical under 
field conditions, they hold tremendous potential for curating high-quality reference databases and 
developing downstream classification tools that outperform conventional feature-based methods (Van 
den Bulcke et al., 2025). 

7.2 The importance of colour and subtle patterns for identification 

In field settings, expert-defined anatomical assessments are frequently complemented by expert visual 
comparison, where law enforcement officers evaluate the macroscopic cross-sectional appearance of 
wood specimens against reference images (Leggett and Kirchoff, 2011). This step allows the inclusion of 
colour and texture, beyond the scope of the expert-defined anatomical features (Committee, 2004; 
Gasson, 2011; NS, 1989; Wheeler, 2011). Unlike the codified expert-defined features, these visual 
estimations are based on tacit experience and offer potentially valuable, albeit subjective, discriminatory 
patterns (Kirchoff et al., 2011). Although this informal visual component was not explicitly assessed in the 
present study, it remains a plausible contributor to improved identification accuracy and warrants further 
empirical investigation. This was studied in Chapter 5 by training and evaluating CV models that can learn 
directly from these subtle, non-standardized patterns (hypothesis 4.1). This chapter explored traditional 
‘closed-set’ multiclass classification and ‘open-set’ recognition techniques for identification of the same 
Congolese tree species studied in chapter 3. The performance of CV-based models in chapter 5 indirectly 
highlights the diagnostic value of these subtle, non-standardized patterns. By training CNNs directly on 
macroscopic colour images of cross-sections, the models preserved key visual information—achieving 
approximately 0.85 in precision, recall, and accuracy for identifying commercial Congolese timber genera 
(Chapter 5). Rank-based evaluation further showed that the correct genus appeared within the top six 
predictions in over 95% of cases across 56 genera.  

These results highlight that raw image data, retaining subtle differences in colour and texture, carries 
significantly more discriminatory information than expert-defined anatomical features alone (Knauer et 
al., 2019). This reinforces the notion that such subtle patterns—routinely leveraged by human experts—
can be systematically captured through CV, making it a robust and scalable approach for field-based wood 
identification. 

7.3 Refining CV-Based wood identification using expert-defined 
features 

However, as previously noted, field-based wood identification draws on both standardized anatomical 
features and holistic visual impressions from full cross-sectional images. This highlights the importance 
of evaluating these two information sources both independently and in combination to determine whether 
their integration enhances identification accuracy. Chapter 5 demonstrated that CV-based techniques on 
macroscopic cross-sectional images do not provide full proof identification as the top 4-6 genera must be 
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considered among all 56 commercial genera in order not to exclude the correct answer in 95% of the test 
specimens. Chapter 3 demonstrated that expert-defined features can facilitate reliable differentiation 
between narrow ranges of taxa (such as within a single family or genus). For instance, within Moraceae, 
Ficus species show wide axial parenchyma bands and fewer rays per millimetre than genera like Antiaris 
and Milicia. Similarly, vessel porosity effectively distinguishes Lamiaceae genera: Tectona displays ring-
porous wood, while Vitex and Premna show diffuse or semi-ring porosity. Another notable example are all 
African Pterocarpus species, which were amended to CITES Appendix II due to challenges in field 
identification (CITES, 2022a). Contrary to prior claims that macroscopic features were insufficient (Liu et 
al., 2023; Price et al., 2021), our study revealed clear differences between species in this genus. For 
example, P. rotundifolius and P. angolensis exhibit semi-ring porosity and moderate vessel frequency 
compared to P. tinctorius and P. soyauxii.  

Chapter 6 attempted to address whether the expert-defined features provide complementary information 
for refining CV-based classifications or whether they provide little added value or can even result in 
misidentifications (hypothesis 5). This was evaluated by re-ranking the top k CNN predictions using 
tailored RF models trained on expert-defined features for distinguishing only the top k genera (with k 
ranging from 2 to 10). This showed that re-ranking in the top 4 predicted genera improves performance 
(accuracy, recall, precision) in general across genera, though the effect is small, the averaged metrics 
(points) remain relatively stable, with overall means and standard errors of mean (0.741 ± 0.012), Recall 
(0.700 ± 0.015), Precision (0.711 ± 0.018), and F1-score (0.677 ± 0.017), suggesting only minor changes in 
performance and additionally the added recall and precision is only for specific genera. Approximately 30% 
of the genera suffer notable decreases in recall and 40% in precision due to re-ranking. Genera such as 
Antiaris, Gilbertiodendron, Zanthoxylum, Nauclea, Khaya, and Irvingia consistently decrease in recall 
across all re-ranking depths. For Guibourtia, Lovoa, and Terminalia, recall performance decreases notably 
when re-ranking beyond the top four CNN predictions.  

This underscores that while integrating expert-defined macroscopic anatomical features can yield 
moderate improvements in CNN-based genus predictions, these benefits are highly dependent on both 
the specific genera and the depth of re-ranking applied. The overall results affirm that CNN models alone 
already encode substantial taxonomic information, likely due to their training on challenging diagnostic 
comparisons that extend beyond traditional anatomical descriptors. This finding underscores the limited 
but strategic use of expert-defined macroscopic cross-sectional wood anatomy for refining identifications. 
Refinement methods such as re-ranking must be applied with caution, as blind use—especially on 
protected taxa—can reduce recall, increasing the risk of overlooking high-priority timbers such as Khaya 
(CITES, 2022c). 

7.4 Reflecting on future research for wood identification 

Collectively, our findings—on hypotheses 2, 4.1, and 5—highlight the importance of periodically and 
critically reassessing established methodologies in wood identification, particularly in light of evolving 
demands in forensic and regulatory contexts. Macroscopic cross-sectional wood anatomy remains a 
valuable and accessible diagnostic tool for rapid field-based screening. However, our results indicate that 
expert-defined features alone offer limited discriminatory power when applied to Congolese tree species. 
This suggests that further research is needed to systematically evaluate the diagnostic value of 
macroscopic features across a broader taxonomic spectrum, that represents all traded timber species. 
This effort should be coupled with parallel research into complementary techniques—improving their field 
accessibility and exploring opportunities for integrated identification strategies to refine taxonomic 
specificity. Furthermore, greater attention should be given to understanding how visual similarity—both in 
terms of intra- and interspecific variation—influences the reliability of visual comparisons with reference 
material. It is essential that regulatory agencies and enforcement bodies are aware of the intrinsic 
limitations of traditional approaches. This awareness is not to diminish the contributions of expert-based 
methodologies, but rather to foster a more adaptive, evidence-driven strategy that integrates conventional 
practices with complementary technologies to preserve the operational advantages of in-field expertise 
while bolstering accuracy and consistency. 
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In this context, CV -based approaches using CNNs have emerged as promising tools for large-scale, 
automated wood identification. Collectively, the findings of this study —on hypotheses 4.1, 4.2, 4.3—
affirm the potential of CV as a viable strategy for enabling scalable and reliable wood identification in field 
conditions (Andrade et al., 2020; Hwang and Sugiyama, 2021; Ravindran et al., 2021, 2020, 2019; Silva et 
al., 2022; Tang et al., 2018; Wiedenhoeft, 2020). The findings in chapter 4—on hypotheses 3—provide 
further key insight into the robustness of CV for wood identification. However, deploying CV-based models 
in operational contexts (e.g. border inspections, roadside checks, or timber warehouses) not only depends 
on quantified performance in controlled experiments. It is essential to consider the differences between 
both contexts when constructing databases and developing models (Ravindran and Wiedenhoeft, 2022; 
Spiecker et al., 2000; Tardif and Conciatori, 2015). For database construction, these differences are related 
to factors such as specimen selection, processing methods, and image acquisition techniques. 

7.4.1 Database construction 
A critical factor in the development of reliable CV-based classifiers is the extent to which the training data 
reflect the intra-class anatomical variability that may be encountered during deployment (Halevy et al., 
2009; Kala et al., 2022). This includes anatomical variation among specimens of the same species and 
within individual trees (e.g., across growth rings or along the trunk axis). The analysis in Chapter 3, which 
focused on predicting expert-defined features from wood anatomy, extends to the full images and sheds 
light on the importance of capturing the variability of the wood anatomy. The SmartWoodID dataset was 
constructed as a specimen-database with this in mind, using a minimum of four specimens per species 
and linking each anatomical description to specific, digitized specimens (De Blaere et al., 2023). In 
contrast, InsideWood aggregates species-level descriptions compiled from disparate sources (Wheeler, 
2011; Wheeler et al., 2020)(Wheeler et al., 2020). This difference in design was reflected in model 
performance: models trained on SmartWoodID consistently achieved higher accuracy when evaluated on 
SmartWoodID specimen descriptions than when tested on generalized InsideWood descriptions. Further 
empirical support for the importance of specimen-based data comes from a small study published in the 
conference proceedings of the 26th IUFRO World congress (Stockholm, Sweden 2024), evaluating CV-
based classification using an expanded dataset with an increased number of specimens per Congolese 
wood genus (De Blaere et al., 2024). Results showed that, using identical model architectures, training 
parameters, and image augmentation protocols as applied in this study, and increasing the number of 
digitized specimens per genus led to a performance increase from 0.85 (observed in Chapter 5) to 0.94. 
Because both studies used the same target genera and similar imaging protocols, these findings show that 
covering intra-species variability is a key driver for building robust CV-based wood identification models. 
This underscores the importance of collaboration efforts between institutions for building comprehensive 
reference databases. 

Beyond the number of specimens, the anatomical surface area captured per specimen also influences 
model performance. Traditional anatomical descriptions often rely on thin sections covering only ~1 mm², 
whereas SmartWoodID scans encompass a much larger area (~7 cm × 1–2 cm) (De Blaere et al., 2023), 
offering broader visual coverage of structural variation within a single piece of wood, potentially revealing 
diagnostically relevant features that might be absent from smaller samples. For instance, Pterocarpus 
angolensis, which in SmartWoodID has ≥90% solitary vessels—a diagnostic trait within the genus—was 
not represented different in InsideWood (Wheeler, 2011). In addition, this study identified notable 
interspecific differences in vessel diameter distributions between P. soyauxii and P. tinctorius, despite both 
being described as “>200 μm” in InsideWood (Wheeler, 2011). We note that this comparison is limited by 
the lack of information on how many specimens were used in the InsideWood descriptions; nonetheless, 
it underscores the importance of using multiple specimens to reliably capture interspecific variation in 
quantitative features. While these examples concern expert-defined features, they affect CV-based wood 
identification model’s ability to learn such distinctions from raw imagery indirectly. This emphasizes the 
need for further research into optimal thresholds for either the number of specimens or the anatomical 
surface area required for effective training. Identifying the point of diminishing returns in model accuracy 
with respect to increased anatomical representation could enable more efficient dataset construction 
strategies, reducing unnecessary labour while preserving classification performance (Szyc, 2020). 
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Variation in anatomical features across a pith to bark gradient, at different heights of a tree or in specific 
organs (branches) were not explicitly quantified in this study. However, these aspects could potentially be 
measured in subsequent studies and could help guide the field forward to improving database 
construction for robust model development. 

A further critical consideration in developing robust CV-based wood identification models lies in how 
datasets are partitioned for training and evaluation of models. This is essential to ensure realistic 
performance assessment: when images from the same specimen appear in both training and test sets, 
models risk exploiting specimen-specific artefacts rather than learning generalizable anatomical signals 
(Ravindran and Wiedenhoeft, 2022). Enforcing splits at the specimen level, where distinct specimens are 
used for training, validation, and testing, provides a stricter but more ecologically valid test of model 
robustness, reflecting real-world deployment where unknown specimens will be encountered.  

Beyond the anatomy, wood can however also show different anomalies—such as cracks (Niemz et al., 
2023a), insect damage (Goodell and Nielsen, 2023; Schmidt, 2006), and fungal deterioration (Goodell and 
Nielsen, 2023; Schmidt, 2006)—that are the result of the nature of wood being a natural material. Although 
this factor is rarely addressed in the CV wood identification literature, it is highly relevant for field 
applications, where perfect specimens are rarely available. This was investigated in the context of model 
performance in chapter 4, evaluating the impact of wood damage on CV–based identification using CNNs 
(hypothesis 3). This was studied by training a CNN architecture to classify 26 timber genera under three 
training conditions: (1) mixed sets containing both damage-free and damaged patches, (2) only damage-
free patches, and (3) only damaged patches. Each model was evaluated on a balanced test set including 
both types of wood, and macro-average recall was used to assess overall and class-specific performance. 
Grad-CAM visualizations were applied to enhance interpretability by highlighting regions used for 
classification. Results show that models trained exclusively on damage-free image patches showed the 
highest recall (90.5%), followed closely by mixed-condition patches (88.4%) and, to a lesser extent, 
damaged-only patches (79.1%). Grad-CAM visualizations revealed that the CNN focused on intact 
anatomical regions and largely ignored areas affected by anomalies. Our research sheds light on this gap 
in literature affirming that intact wood anatomical surfaces provide the most important information for CV-
based wood identification models. However, it also suggests that while damage-free specimens should be 
prioritized during database construction, the inclusion of imperfect but anatomically interpretable 
samples does not substantially compromise predictive performance—so long as diagnostically relevant 
features remain discernible. 

The method of specimen preparation significantly influences the quality of anatomical information 
available for wood identification (Spiecker et al., 2000). In this study, all cross-sectional surfaces were 
prepared using a standardized sanding protocol involving a sequence of fine-grit abrasives to ensure 
smooth, high-quality surfaces optimized for observing the wood anatomy (De Blaere et al., 2023). While 
this method is ideal for generating high-quality reference images (Van den Bulcke et al., 2025), quality is 
more difficult to achieve in the field due to limitations in equipment, time, and operator expertise (Spiecker 
et al., 2000). Cutting with a sharp blade represents an alternative for field use, though it may introduce 
surface irregularities such as scratches or warp surfaces which in turn can affect magnification (Ravindran 
et al., 2023). Relevant work by Ravindran et al. (2023) demonstrated that CV models trained on high-quality 
sanded specimens maintained strong performance when evaluated on images of cut surfaces or on those 
sanded with intermediate grits (P240 or finer) (Ravindran et al., 2023). This suggests that reduced 
preparation quality does not impair accurate classification, which underscores the use of high-quality 
surface preparation for image database construction (Ravindran et al., 2023). 

Image acquisition plays a central role in any CV-based model. Two stable parameters—field-of-view and 
resolution—directly affect diagnostic patterns on images (Chen and Guan, 2019; Gorodissky et al., 2018; 
Miyata et al., 2020). In CV-based classification workflows, it is standard practice to resize input images to 
fixed values, ensuring uniform input dimensions for model training (Chollet and Chollet, 2021; Talebi and 
Milanfar, 2021). However, this approach was not applied in the present study due to the significant variation 
in scan dimensions across specimens, which presents a concrete risk of losing diagnostically relevant 
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anatomical detail through downscaling. The largest cross-sectional scan in the dataset measured 
approximately 287.6 mm × 215.1 mm, while the smallest had a vertical dimension of 11 mm × 11 mm, 
highlighting the variability in specimen dimensions. General resizing across such a range would result in 
uneven loss of image fidelity and potentially compromise anatomical interpretability. To preserve image 
detail and maintain a consistent input structure for the CNN, all scans were instead cut into non-
overlapping patches of equal size. Specifically, images were divided into 512 × 512-pixel patches, 
corresponding to a physical area of approximately 5.42 × 5.42 mm. This patch size was selected to align 
with the scale typically used in anatomical assessments of cross-sectional thin sections, ensuring 
sufficient context for recognizing wood anatomical features while enabling systematic analysis of 
anomalies, as discussed in Chapter 4. Importantly, overlap between patches was avoided to prevent data 
leakage between the training and validation sets (Ravindran and Wiedenhoeft, 2022). Chapters 4 and 5 
demonstrate that this patch-based approach supports effective CNN training, with the chosen field-of-
view proving adequate to capture diagnostically relevant patterns for wood identification. Nevertheless, 
previous studies have shown that smaller patches can also yield competitive results. For instance, 
Ravindran et al. (2021) used patch sizes of 512 × 192 pixel, corresponding to 1.59 mm × 0.60 mm, and 
achieved 97% accuracy for a 24-class model to distinguish Peruvian timbers (Ravindran et al., 2021). This 
was achieved by cutting Xylotron images of 2048x2048 pixels (6.35x6.35mm) into those smaller patches. 
This suggests that field-deployed system like the Xylotron , which uses the full image for direct input into 
the neural network for wood identification, might not require that field-of-view. Furthermore, different 
resolutions can also yield high accuracy as the resolution of 2400 dpi in this study proved effective, while 
the study by Ravindran et al. 2021 used a resolution of 8192 dpi and other studies such as Ravindran et al. 
(2018) used a resolution of 4096 dpi and achieved 87.4% accuracy for classifying ten Neotropical 
Meliaceae timbers species (Ravindran et al., 2021, 2018).  

Findings from Chapter 6 further underscore the importance of field-of-view in wood identification. While 
the overall benefit of re-ranking CV-based predictions was limited, certain genera were better identified 
when expert-defined features were incorporated. This could be attributed to the difference in scale at 
which features were extracted. Expert-defined features were assessed across the entire scan, with 
continuous zooming in and out to evaluate anatomical characteristics, whereas CNN-based features are 
derived from fixed patches of restricted size. Some diagnostic traits, such as banded or confluent 
parenchyma, may only become visible at larger spatial scales. Others may be rare, either due to natural 
variability along the pith-to-bark gradient or stem height, or because they are excluded during the patch-
cutting process. Patch-based CNNs are effective in capturing local diagnostic signals and make 
computational processing tractable, but they inherently lack the broader spatial context that experts 
routinely exploit when scanning whole cross-sections. This highlights the need for multi-scale strategies in 
CV-based wood identification. Models capable of dynamically “zooming in and out” across resolutions 
would be better able to capture both localized and large-scale features, thereby narrowing the gap between 
automated approaches and expert practice. These complementary findings suggest that the optimal patch 
size and minimum effective resolution remains undetermined. Future research should therefore explore 
the relationship between field-of-view, anatomical feature representation, and model performance. Such 
investigations could help determine the smallest viable patch size that balances diagnostic fidelity with 
computational efficiency. Additionally, alternative strategies such as multi-scale or zoom-adaptive 
approaches may further enhance model generalization and robustness (Talebi and Milanfar, 2021). These 
approaches would enable CNNs to capitalize on larger available surface areas when present, while still 
functioning reliably under conditions where only limited tissue is accessible (e.g., small specimens or 
partial samples). 

Beyond field-of-view and resolution, field-based image acquisition can be influenced in the field by lighting 
conditions, device-specific colour profiles, magnification differences, and sensor artifacts—that can 
cause “distribution shifts” (Owens et al., 2024). This phenomenon, widely documented in the CV literature, 
arises when the statistical properties of test-time data diverge from those observed during training, leading 
to degraded model performance (Alomar et al., 2023; Liu and Mirzasoleiman, 2022; Liu et al., 2020; Nanni 
et al., 2021). Such shifts are particularly relevant in mobile deployments, where variability in camera 
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hardware and user behaviour is difficult to control (Liu et al., 2020). Two primary strategies exist to address 
this challenge. First, hardware-based standardization, as implemented in systems like the XyloTron 
(Ravindran et al., 2020) or XyloPhone (Wiedenhoeft, 2020), can minimize acquisition variability by using 
fixed optics, controlled lighting, and predefined imaging protocols. The disadvantage of this is the need for 
developing robust and affordable tools to standardize image acquisition the field. Second, model 
robustness can be improved through data augmentation—a widely used technique in CV applications 
(Shorten and Khoshgoftaar, 2019). By simulating realistic perturbations during training (e.g., rotation, 
brightness shifts, random erasing), data augmentation exposes the model to a broader distribution of 
inputs, improving its ability to generalize (Alomar et al., 2023; Shorten and Khoshgoftaar, 2019). 
Regularization techniques such as dropout and weight decay further reduce the risk of overfitting to 
idealized training conditions (Srivastava et al., 2014; Xie et al., 2022). These techniques are important for 
mobile applications that depend on integrated cameras which each have different resolution, field-of-view 
due to magnification, distance to the surfaces etc. (e.g. Xylorix (Tang and Tay, 2019)) (Liu et al., 2020). 
Evidence supporting these strategies comes from Owens et al. (2024), who evaluated model performance 
under controlled image perturbations that mimic field-based acquisition artifacts (Owens et al., 2024). 
Their study found that CV-based wood identification models were relatively robust to superficial scratches 
and mild colour distortions, but more sensitive to significant blur and magnification changes (Owens et al., 
2024). These results emphasize the importance of tailoring augmentation protocols to expected 
deployment conditions—particularly when developing smartphone-based applications where user-
induced variability is pronounced (Liu et al., 2020). Furthermore, generalization for smart-phone models 
can be improved by training on images captured with different devices, as it incorporates variability in 
device-specific colour profiles and resolution (Biney and Sellahewa, 2013; Liu et al., 2020). Further 
research is needed to systematically evaluate how cross-device training impacts model performance and 
to identify strategies that best simulate field conditions, ultimately supporting the development of more 
resilient and deployable identification tools.  

The applicability of CV-based identification to traded wood products extends beyond roundwood, and 
raises important questions about how diagnostic features are preserved across different levels of 
processing, and how reference databases should be designed to reflect these realities. Alternative, non-
anatomical techniques face own challenges regarding identification of engineered wood products: for 
instance, glue can interfere with chemical analyses, and drying processes may reduce the amount of 
extractable DNA (Jiao et al., 2020; Michael Höltken et al., 2012). While anatomical features generally 
remain accessible, their visibility is also affected by processing. As wood is converted into veneers or 
engineered products (e.g., plywood, MDF, particleboard, fibreboard), the field-of-view available for 
assessing anatomical surfaces becomes progressively smaller. Features that require larger continuous 
surfaces for assessment—such as vessel distribution patterns or banded parenchyma—are especially 
affected. Reference databases therefore need to account for the limitations of macroscopic anatomy to 
remain broadly applicable. Addressing this challenge calls for two complementary strategies. First, 
expanding analysis beyond the cross-sectional plane to include tangential and radial orientations may 
improve performance, since these surfaces are often present in blocks, veneers, or particles, and can also 
be obtained from splinters. Splinters are particularly valuable, as they can be collected from virtually any 
wood product and are widely used in forensic research. Importantly, splinters typically expose slightly 
larger tangential and radial surfaces compared to cross-sections, providing a richer anatomical basis for 
identification. Second, refining CV models to operate reliably on smaller fields of view is a promising 
avenue for applications to veneers and thin plywood layers. Composite materials such as fibreboard, 
however, requires other approaches (Helmling et al., 2018; Nieradzik et al., 2024). In these products, 
anatomical integrity is reduced to dispersed fragments of cells, cell walls, or isolated vessel elements. 
Here, CV approaches may need to be paired with segmentation or other vision-based preprocessing 
techniques in order to recover meaningful diagnostic signals (Helmling et al., 2018). Taken together, these 
prospects highlight a broader trajectory for future work: adapting CV to the practical realities of traded 
wood forms and engineered products, thereby enhancing its utility for enforcement and customs 
inspection in complex product streams. 

Another critical dimension of database construction is ensuring the taxonomic reliability of reference 
collections (Deklerck, 2019). Misidentified specimens are present in xylaria, and careless inclusion into 
reference databases can influence downstream identification applications and forensic casework. CV, 
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when trained on highly curated collections that have been cross validated by experts and supported by 
ancillary methods such as herbarium vouchers or other identification techniques, offers a promising 
avenue for verifying the integrity of other collections. A concrete example comes from the evaluation of the 
INERA–Yangambi xylarium, where a CNN trained on the SmartWoodID dataset was applied to 193 
specimens (presented at the 26th IUFRO Congress in Stockholm, Sweden) (De Blaere et al., 2024). By 
aggregating patch-level predictions at the specimen level through majority voting, the model classified 
70.5% of specimens correctly to the genus level, while 57 were flagged as potentially misidentified. Such 
CV-based models could serve as a first-pass screening step for digitisation projects, flagging specimens 
whose metadata is incongruent with visual predictions and therefore warranting re-examination with 
complementary methods (e.g., microscopic anatomy, chemical profiling, or genetic testing). In this way, 
CV models trained on verified collection material may not only accelerate the detection of misidentified 
samples but also support the long-term goal of improving reference dataset integrity, which is fundamental 
to advancing automated wood identification. 

These findings underscore the importance of diligent database construction for the development of robust 
CV-based wood identification models.  While certain best practices can already be recommended (e.g., 
use of multiple specimens, larger scan areas, and high-quality preparation), many aspects—such as 
optimal resolution, acceptable surface quality, and augmentation strategies and adding information from 
other anatomical planes (tangential, radial)—require further empirical study. Furthermore, it underscores 
the importance of collaboration across wood collections due to the highly diverse pool of timber species 
in commerce (Chudnoff, 1984; Council and Organization, 2012; Mark et al., 2014; Richter and Dallwitz, 
2000; tropicaux, 1979) and the tailored nature of wood collections focussing predominantly on delineated 
regions rather than covering all species world-wide (Ravindran et al., 2018; Silva et al., 2022). Leveraging 
this individual expertise is essential for building robust datasets to cover timbers across the world with 
enough specimens per species and sufficient variation in wood anatomy within trees. Collaboration also 
streamlines progress by reducing duplicated efforts across institutions and maximizing the utility of 
existing resources. In addition, different institutes are likely to have digitized their own collections through 
different imaging techniques, by using available resources based on expertise. Training models on such 
data can enhances model robustness by including device-specific variability, eliminating the need for 
individual institutes to invest in multiple imaging setups or repeatedly digitize their collections. For 
example, digitizing the 3,742 specimens of the Tervuren collection took over two years of dedicated work—
using multiple imaging techniques would have significantly extended this timeline. Coordinated efforts 
save time and labour while broadening research opportunities across institutions. However, it is important 
to note that such collaboration must be carefully managed; if different institutes employ inconsistent 
imaging protocols or focus on distinct timber groups, it could introduce biases and compromise model 
generalizability. 

7.4.2 Model development 
Beyond the construction of robust reference databases, the design of the model itself plays a critical role 
in the performance, scalability, and interpretability of CV-based wood identification systems. In the 
broader CV domain, model architecture—including factors such as layer depth, filter size, residual 
connections, and hyperparameters—significantly influences a network’s capacity to generalize to unseen 
data (Alzubaidi et al., 2021; Bentéjac et al., 2021; Chollet and Chollet, 2021). In this study, we adopted a 
single architecture (Xception) with consistent hyperparameters across all models to isolate and evaluate 
the effects of classification strategy (Chollet, 2017). However, as CV technologies continue to evolve, future 
research should explore more resource-efficient architectures that can maximize predictive power while 
minimizing computational demands—especially for mobile deployment where processing capabilities are 
limited. 

CNN architectures remain well suited for wood identification, as their hierarchical receptive fields allow 
features to be aggregated from local structures (e.g., vessels, parenchyma, rays) to global anatomical 
patterns across the entire image area (Taye, 2023), aligning closely with the multi-scale nature of wood 
anatomy. At the same time, transformer-based architectures, which leverage global self-attention, have 
demonstrated strong classification performance on large datasets in other domains (Gufran et al., 2023) 
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and may offer complementary advantages once sufficient training data are available. Hybrid approaches 
that combine CNNs and transformers are also promising, as they can balance local feature extraction with 
global context integration. Future work should therefore benchmark multiple architectural designs of 
neural networks systematically to determine the most effective balance between predictive performance, 
efficiency, and robustness for wood identification tasks. 

7.4.2.1 Classification strategy  
The findings presented in Chapter 5 highlight that the classification strategy is a key consideration in the 
development of wood identification models for forensic and regulatory applications. While multiclass 
classification has been the predominant classification strategy in studies on CV-based wood identification 
(Silva et al., 2022) and serves as the classification strategy in current deployed tools (e.g. Xylophone 
(Wiedenhoeft, 2020), Xylotron (Ravindran et al., 2020), Xylorix (Tang and Tay, 2019)), its underlying 
functioning makes it inherently ill-suited for the biological complexity and real-world variability that 
characterize the wood identification in timber trade (McCarthy and Hayes, 1981; Yoshihashi et al., 2019). 
Multiclass models operate under a closed-set assumption: they are trained to assign inputs to one of a 
fixed set of predefined classes and assume that all possible categories are represented in the training data 
(Sünderhauf et al., 2018; Wilber et al., 2013). This poses a limitation for wood identification, which must 
contend with vast diversity of timber species and fragmented coverage in existing collections, which often 
include only a few specimens per species (Chudnoff, 1984; Council and Organization, 2012; Mark et al., 
2014; Richter and Dallwitz, 2000; tropicaux, 1979). Expanding taxonomic coverage is a slow and resource-
intensive process, requiring either fieldwork by experienced botanists or collaboration across wood 
collections, both of which are constrained by logistics, funding, and expertise  (Ravindran et al., 2018; Silva 
et al., 2022). Even where digitization efforts are underway, institutions face limitations in terms of imaging 
capacity, metadata quality, and specimen availability (Gasson et al., 2021). As a result, reference datasets 
grow incrementally, and models must be regularly updated to reflect the expanding taxonomic scope. Here, 
multiclass models exhibit a critical rigidity with architectures fixed to the classes included during training. 
Introducing new taxa necessitates retraining of the model—a process that is not only time-consuming but 
also costly in terms of computational and environmental resources. While using transfer learning can 
minimize these costs, they remain necessary to expand the pool of timbers. This poses a scalability 
bottleneck for global deployment. Moreover, multiclass models perform poorly in open-set conditions, 
where inputs may include species thar are absent in training data. Opt-out mechanisms, such as 
probability thresholds or “unknown” classes, offer partial mitigation, but these strategies are imperfect 
solutions (Entezari and Saukh, 2020; Geifman and El-Yaniv, 2019). A workaround is to train region-specific 
models tailored to the local timber trade. While pragmatic, this leads to the proliferation of models trained 
on different taxa, using varying architectures, data sources, and augmentation strategies. This undermines 
consistency and comparability across institutions, complicates interpretation, and limits the potential for 
global standardization. In the absence of shared benchmarks, protocols, or certification frameworks for 
field-ready identification models, such fragmentation reduces transparency and poses challenges for 
regulatory harmonization (Ravindran and Wiedenhoeft, 2022). 

Object re-identification offers a more flexible classification strategy for wood identification by decoupling 
recognition from a fixed set of categories (Geng et al., 2020; Scheirer et al., 2012; Yoshihashi et al., 2019). 
In contrast to multiclass models that produce discrete class labels, object re-identification networks are 
trained to compute image similarities, enabling the identification of the most corresponding reference 
image(s) (Ye et al., 2021). In this study, we demonstrated that object re-identification is a promising 
classification strategy for wood identification in the field. We tested two approaches, verified in literature 
in different fields (facial (Chen et al., 2017; Hermans et al., 2017; Schroff et al., 2015; Shi et al., 2016; Ye et 
al., 2021) and vehicle recognition (Bai et al., 2018; He et al., 2020; Kumar et al., 2020; Shen et al., n.d.; Tang 
et al., 2019)): binary verification (Chen et al., 2017; Ye et al., 2021) and triplet learning (Bai et al., 2018; Chen 
et al., 2023; Ghosh et al., 2023; Guo and Lovell, 2024). This provided the following insights for performance 
on the same Congolese timbers compared to the traditional closed-world multiclass technique 
(hypothesis 4.2); and for performance of binary verification for identifying non-Congolese timbers 
(hypothesis 4.3). 
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Our results demonstrated that the technique of binary verification represents a viable classification  
strategy for wood identification in open-world contexts hypothesis. Rather than assigning an input to a 
predefined class, binary verification compares an unknown specimen to reference images and computes 
a similarity score per image (Chen et al., 2017; Ye et al., 2021). This pairwise structure allows models to 
operate independently of the number or identity of classes seen during training, enabling generalization to 
taxa not present in the training data. Our results show that binary verification achieves performance 
metrics comparable to those of traditional multiclass CNNs, particularly when evaluated on the same set 
of Congolese commercial timbers. The binary verification model exhibited only slightly lower performance 
(accuracy: 0.75; F1-score: 0.69) than the multiclass model (accuracy: 0.86; F1-score: 0.84). Notably, when 
applied to unseen (non-Congolese) timbers excluded from the training data, the binary model correctly 
identified the genus in 95% of cases when the top 30% of candidate genera were considered. This ability to 
maintain reliable performance on previously unseen taxa is particularly important for real-world 
deployment, where inspected samples may originate from diverse geographic and taxonomic sources. 
Binary verification offers additional advantages in transparency and interpretability. Unlike multiclass 
models, which provide only class probabilities with no direct linkage to specific specimens, binary 
verification identifies similarity to individual reference images. This enables traceable predictions, where 
the basis of classification can be examined through direct visual comparison or review of specimen 
metadata. In forensic and regulatory settings, such transparency is crucial for ensuring accountability, 
enabling expert corroboration, and supporting documentation standards such as chain-of-custody 
records. Finally, the design of binary verification models facilitates international collaboration and dataset 
integration. Because the model evaluates similarity at the image level, it can operate across digitized 
reference databases compiled from multiple institutions, without requiring retraining for each new dataset 
or region. This enables a more harmonized approach to timber identification, supporting broader 
taxonomic coverage while avoiding the fragmentation that results from maintaining multiple region-
specific multiclass models. 

Beyond technical performance, classification strategy also carries important semantic implications for 
how model outputs are interpreted and used in practice. In the context of timber trade monitoring and law 
enforcement, field-based wood identification serves as an initial screening step rather than a definitive 
taxonomic determination (Ravindran et al., 2021). At this stage, the primary objective is not to determine 
the botanical taxon of traded timber, but to assess whether the declared taxon on accompanying 
documentation plausibly matches. This process supports the early detection of potential non-compliance, 
including the misdeclaration of protected species, and informs decisions about whether further 
identification is warranted (Ravindran et al., 2021). In such workflows, models need not provide full species 
resolution but must instead support reliable verification—determining whether a specimen is consistent 
with or significantly deviates from known reference examples. Binary verification is well suited to this task. 
Its design aligns with the operational logic of preliminary screening by producing a similarity score that 
quantifies the degree of match between a query image and a reference set of specimens (Chen et al., 2017). 
This structure enables rapid flagging of potentially suspicious cases, such as when a specimen shows high 
similarity to a CITES-listed genus but is declared as a different, non-protected timber.  

Practical implementations of verification-like strategies have been applied in field-deployable systems, 
such as the Xylorix platform (Tang and Tay, 2019), which can output similarity scores for individual timbers 
via its API. While the underlying methodology has not been fully detailed in the literature and remains 
subject of speculation, it is plausible that such systems rely on conventional approaches. One 
conventional possibility is the use of dedicated binary classifiers trained for individual timbers (e.g., 
“Afzelia” vs. “not Afzelia”). Although this produces intuitive outputs between 0–1, the interpretability of the 
resulting scores depends heavily on how the “other” class is constructed, which may vary widely in 
taxonomic coverage. Moreover, this strategy requires developing and maintaining a large library of binary 
models—potentially one per commercial timber species. Such an approach incurs substantial 
computational and logistical costs, as each model must be trained, validated, and periodically retrained 
when new reference data become available. This creates scalability challenges for practical deployment 
in forensic and regulatory contexts. An alternative is to derive verification-like outputs from multiclass 
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models, by evaluating whether the declared species is assigned the highest posterior probability among 
the included classes. While this avoids the need for hundreds of dedicated binary models, it remains 
constrained by the closed-set assumption of multiclass classification. Probabilities are conditioned only 
on the taxa represented in training, which limits their reliability when encountering species outside the 
reference set and makes it difficult to capture genuine uncertainty. Together, these strategies illustrate 
different ways in which verification can be operationalized, but they also highlight the advantages of the 
binary verification framework developed in this dissertation. Unlike multiclass probabilities or species-
specific binary classifiers, verification networks directly quantify the similarity between query and 
reference images and can be extended to individual reference specimens. This design is both scalable and 
interpretable, making it particularly well-suited to forensic and regulatory applications where robustness 
to open-set conditions and transparent decision-making are critical. 

However, binary verification also has inherent limitations. Its reliance on exhaustive pairwise comparisons 
result in significantly increased computational load—particularly when working with large reference sets 
or performing high-resolution patch-based analysis (Chen et al., 2017; Hermans et al., 2017). Although 
strategies such as hierarchical narrowing or limiting comparisons to genus-level representatives can 
reduce this, they add complexity to the model pipeline (Chen et al., 2017; Hermans et al., 2017; Schroff et 
al., 2015). Furthermore, binary verification models are optimized to distinguish between matches and non-
matches based on a threshold, rather than to distribute probability across a class hierarchy (Chen et al., 
2017; Ye et al., 2021). Identification therefore implies transforming the model output of similarity scores to 
an output that enables ranking predicted genera to establish the most likely taxon (Chen et al., 2017). The 
manner in which predictions are aggregated across image patches to obtain a specimen-level decision is 
therefore critical. Naïve averaging of patch-level probabilities (applied in Chapter 5) offers a straightforward 
means of aggregation, as it preserves the full distribution of confidence scores across classes and enables 
ranking beyond the top prediction. However, it inherently sensitive to variation, as a single patch can 
disproportionately distort the aggregate. This may explain why top-k analysis (section 5.4.4) revealed that 
more top-ranked genera needed to be considered to include the correct genus in 95% of the specimens 
compared to multiclass CNN. Still, we note that for Congolese commercial timbers this was limited with 
the accuracy matching multiclass classification by considering the top two predicted genera, representing 
still a strong and accurate result for field identification across 56 commercial genera and underscoring it 
as a valid technique. Majority voting, as applied in Chapter 4, provides a robust alternative to occasional 
misclassified patches, since the dominant signal across patches determines the final decision. Its stability 
is exemplified in the results presented in Table 4.1 (Section 4.4.2.1) showing that specimen-aggregated 
recall across all training scenarios exceeded recall values calculated at the patch level, indicating that 
majority voting can secure high overall performance. Nonetheless, this approach can also become 
unstable when the number of patches per specimen is small or when class votes are closely divided. 
Weighted aggregation techniques represent a pragmatic middle ground. By amplifying the influence of 
diagnostically strong patches while reducing the effect of uncertain ones, such methods increase 
resilience to local noise without sacrificing the richness of probability distributions. Future research should 
systematically investigate how different aggregation strategies affect both class-level performance and 
specimen-specific outcomes, as methodological choices at this stage may have a decisive impact on the 
reliability of wood identification results. 

We also investigated a second re-identification strategy: embedding-based object re-identification using 
triplet learning. This method learns a discriminative feature space where similar images are close together 
and dissimilar ones are far apart (Hermans et al., 2017), effectively transforming an image into a digital 
fingerprint (embedding vector) that enables rapid classification using machine-learning algorithms such 
as nearest-neighbour classification with cosine similarity, RF (Salman et al., 2024), or gradient-weighted 
boosting algorithms such as XGBoost (Bentéjac et al., 2021). Despite its conceptual advantages and strong 
performance in other CV domains metrics (Bai et al., 2018; Chen et al., 2023; Ghosh et al., 2023; Hermans 
et al., 2017; Kumar et al., 2020; Schroff et al., 2015; Shen et al., n.d.; Ye et al., 2024), our implementation 
of triplet learning consistently underperformed (see sections 5.4.3 and 5.4.4). This may be attributed to the 
hard mining methodology implemented in this study, which worked well for binary verification but may not 
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suffice for triplet learning. These findings align with prior research showing that embedding-based methods 
are highly sensitive to the quality of the mining strategy and loss function design (Bai et al., 2018; Chen et 
al., 2017; Hermans et al., 2017; Schroff et al., 2015). More advanced approaches—such as online hard 
example mining (Hermans et al., 2017; Schroff et al., 2015), histogram loss (Ustinova and Lempitsky, 2016), 
or hybrid models like CROSR (Yoshihashi et al., 2019)—may better structure the embedding space and 
improve generalization.  

7.4.2.2 Integrating different wood identification techniques   
Integrating wood identification techniques is key in forensic research on wood identification, as combining 
multiple sources of diagnostic information strengthens the reliability of taxonomic assignments in the 
timber trade (Schmitz et al., 2020). Each method contributes unique perspectives on wood identity—
whether anatomical, chemical, genetic, or isotopic—and together they provide a stronger evidentiary basis 
than any single technique alone. However, effective integration requires careful consideration, as each 
method relies on different measurement principles, produces different data structures, and is subject to 
different limitations.  

An effective strategy for improving accuracy would be refining predictions through a serial integration of 
techniques. In such a workflow, CV-based models could serve as an initial screening stage: narrowing 
candidates to a top-k set and then directing which auxiliary method is most suitable for definitive 
resolution. This could be applied with any CV-based models, including the output of other tools such as 
Xylophone (Wiedenhoeft, 2020), Xylotron (Ravindran et al., 2020), Xylorix (Tang and Tay, 2019). Unlocking 
such potential requires close collaboration with taxonomic experts to establish which techniques are most 
effective for specific species or species groups—an endeavour that is central to advancing wood 
identification practices. A particularly promising pathway is to leverage anatomical information as a bridge 
between macroscopic and microscopic analysis. Databases such as InsideWood provide an invaluable 
foundation for this integration by codifying the expert tradition of anatomical wood identification (Wheeler, 
2011). By linking macroscopic CV predictions with feature importance scores derived from microscopic 
descriptors, systems could flag the traits most diagnostic for distinguishing among taxa in the top-k set. 
For instance, if predictions converge on closely related Pterocarpus species, the model could highlight 
which microscopic features merit closer inspection, or suggest when complementary analyses—
chemical, genetic, or otherwise—are required. In this way, CV classifiers could evolve from stand-alone 
predictive engines into interactive diagnostic tools, guiding forensic workflows by prioritizing critical 
features, pointing to confirmatory tests, and ultimately enabling more reliable taxonomic resolution. 

However, prediction refinement need not be restricted to serial approaches. Combining different 
techniques into a joint prediction framework can also be highly powerful. The wood identification 
techniques (as discussed in section 1.2) (Schmitz et al., 2020) follow a common structure: feature 
extraction followed by classification based on modality-specific reference data. Across techniques, the 
extracted features typically take the form of sequential or vector-based data. For instance, anatomical 
assessments rely on expert interpretation, codified into binary or categorical descriptors indicating the 
presence of microscopic anatomical features (Committee, 2004; Koch et al., 2018; NS, 1989; Wheeler, 
2011). DART-TOFMS produces chemical fingerprints by ionizing low-molecular-weight compounds through 
thermal desorption and measuring their mass-to-charge ratios via TOFMS, generating numerical spectral 
profiles (Cody et al., 2005; Deklerck, 2022, 2019; Deklerck et al., 2020; Price et al., 2022). Similarly, NIRS 
captures the absorbance of light in the 800–2500 nm range by high-molecular-weight compounds such as 
cellulose, lignin, and extractives, yielding vectors of wavelength-specific intensity values (Deklerck, 2019; 
Lowe et al., 2016; Tsuchikawa et al., 2003; Tsuchikawa and Kobori, 2015). DNA-based approaches—
including barcoding (Jiao et al., 2020, 2019) and fingerprinting (Lowe et al., 2010; Thünen Institute of Forest 
Genetics, 2015)—encode taxonomic or individual identity as nucleotide sequences, while stable isotope 
analysis provides geographic origin data through continuous variables reflecting local environmental 
isotope ratios (Camin et al., 2017; Dormontt et al., 2015; Horacek et al., 2009; Kagawa and Leavitt, 2010; 
Lin et al., 2024). Traditional CV-based methods (multiclass) differ from these approaches by merging 
feature extraction and classification into a single, end-to-end process (Alzubaidi et al., 2021; Chollet and 
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Chollet, 2021; Taye, 2023; Wu, 2017). While effective for image-based predictions, this architecture 
complicates integration with other sequential data streams. 

Integration of anatomical information with other sequential data can be approached at two main stages of 
the identification chain: a priori (before feature extraction) or a posteriori (after classification). A priori 
integration involves transforming input data from different modalities into a common representational 
format, such as converting sequential data into images suitable for CNN training. For instance, 
Jahanbanifard et al. (2023) demonstrated this by converting DART-TOFMS spectra into image-like visual 
plots for CNN classification (Jahanbanifard et al., 2023). While this method allows multiple modalities to 
be represented in a unified way, the transformation is indirect, potentially lossy, and methodologically 
complex. 

A posteriori integration, in contrast, combines the outputs of independent models after prediction. This 
approach typically aggregates posterior probabilities from different techniques to reach a consensus 
decision. Its main strength lies in flexibility: each method can operate within its native domain without 
modification, while integration occurs only at the decision-making stage. A posteriori integration would 
also enable leveraging the prediction of different multiclass CV-based models embedded in deployed tools 
such as Xylophone (Wiedenhoeft, 2020), Xylotron (Ravindran et al., 2020), Xylorix (Tang and Tay, 2019). 
Provided that full class probabilities are accessible through their APIs, such integration could facilitate 
cross-referencing of predictions against multiple deployed tools, thereby enhancing the robustness of 
automated wood identification. Yet, the probabilistic outputs of multiclass models must be interpreted 
with care, since those tools are conditioned on closed sets of classes (timbers): probabilities reflect the 
relative likelihood of a taxon given the training set, rather than an absolute measure of similarity. However, 
a posteriori integration treats the features of each technique as separate and therefore cannot leverage 
new patterns in features across modalities, limiting their potential to exploit the full diagnostic value of 
combined data. 

Recent advances in classification strategies have opened the way for a third approach that blends 
advantages of both. Rather than transforming input data prior to modelling or combining only posterior 
probabilities, images can be transformed into structured, sequential data via embedding-based object re-
identification (Schroff et al., 2015). By extracting fixed-length vectors from raw anatomical images, 
embeddings map samples into a multidimensional space where anatomical similarity corresponds to 
spatial proximity (Ghosh et al., 2023). Unlike conventional CNN outputs, these embeddings are structured 
numerical representations that can be directly compared or integrated with other vectorized data from 
chemical, genetic, or isotopic sources. This alignment facilitates deeper integration across diagnostic 
methods, enhancing species- and potentially population-level identification. This underscores that 
embedding-based object re-identification represents a promising pathway toward fully interoperable, 
multimodal wood identification systems. As reference databases grow and techniques for embedding 
alignment advance, this strategy offers scalable, field-adaptable, and forensically reliable tools for timber 
identification and trade enforcement. 

7.4.2.3 Context-sensitive predictions in wood identification 
Another crucial consideration for wood identification is a posteriori processing in general. This can serve 
not only to integrate different techniques but also to refine model outputs after prediction, bringing them 
closer to the ground truth. Such refinement is particularly important because wood, as a biological 
material, exhibits substantial variability and complexity, while classification is embedded within a 
hierarchical taxonomic system. Even when robust modelling techniques are applied, raw outputs may not 
fully align with practical identification needs—especially in forensic and conservation contexts where the 
consequences of error are uneven across timbers. 

A promising avenue lies in incorporating information on anomalies. As shown in Section 4.4.2.1 (Table 4.1), 
recall was consistently lower for anomalous test patches compared to anomaly-free ones, confirming that 
predictions are more reliable when clear anatomical structures are present. Aggregation at the specimen 
level using majority voting reduced this disparity, as reflected in higher recall scores, though specimens 
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with limited usable area may remain vulnerable. A posteriori weighting of patch contributions could further 
mitigate such effects by prioritizing anomaly-free regions. This could be achieved through fixed scoring 
rules or probabilistic weighting based on the outputs of a binary anomaly verification model. More 
advanced approaches would involve segmenting anomalies (e.g., cracks, insect damage, fungal staining, 
pith, bark) and quantifying their extent to generate continuous quality indicators. Grad-CAM visualizations 
may also be leveraged to estimate anomaly distributions directly, which could inform aggregation 
strategies or even be integrated into model architectures via transfer learning. Collectively, these strategies 
underscore the need for further research into output standardization methods that explicitly incorporate 
patch quality in order to generate more reliable specimen-level predictions. 

Beyond basic a posteriori processing—such as weighting predictions according to the quality of individual 
images or surfaces to reduce the impact of anomalies—more advanced approaches can account for 
relationships both between classes, and between classes and their broader context. Bayesian cost 
modelling offers a principled framework for such adjustments, enabling the integration of uncertainty 
estimates and contextual information into the decision-making process (Lampinen and Vehtari, 2001). 
Unlike likelihood-based methods, which treat all classes equally during training and prediction, posterior 
approaches enable rebalancing outcomes according to their real-world significance (Jackson et al., 2010; 
Mediavilla-Relaño et al., 2023). These frameworks are relevant for handling look-alike taxa—cases where 
visually similar woods carry different regulatory or economic significance. Here, posterior adjustments 
could be applied, ensuring that closely resembling species are either flagged for additional scrutiny or 
classified conservatively at a higher taxonomic rank when certainty is insufficient. Furthermore, a posteriori 
processing is also critical in law enforcement, where errors are not equally consequential: confusing two 
common species may be acceptable, but failing to detect a CITES-listed taxon carries ecological and legal 
repercussions. Posterior adjustments can address this asymmetry by, for example, recalibrating 
predictions with priors reflecting species frequencies in trade, geographic origin, or shipment 
documentation. Cost-sensitive decision frameworks can also assign higher penalties to false negatives on 
protected species, aligning decisions with enforcement priorities rather than purely statistical likelihoods. 
Adaptive thresholds may further increase recall for high-risk taxa by lowering the probability required for 
positive identification, thereby reducing the likelihood of missing endangered species. Importantly, such 
methods must be validated carefully using both precision and recall, to avoid unfair identifications that 
could, for instance, wrongly implicate businesses based on overly cautious thresholds. Automated 
approaches such as CV therefore should not be applied in isolation for legal determinations but rather in 
tandem with expert assessment, with their primary utility lying in high-throughput screening rather than 
courtroom evidence. 

Although not implemented in the present study, these strategies point to a clear direction for future 
development. By integrating anomaly weighting, contextual priors, and cost-sensitive adjustments, wood 
identification systems can evolve from tools of visual similarity to robust decision-support frameworks that 
explicitly account for biological variability, taxonomic complexity, and regulatory stakes—better aligning 
automated outputs with the priorities of forensic enforcement and conservation biology.  

In light of these considerations, it is also critical to address a further limitation of current approaches. 
Wood, as a biological material, is embedded within a nested taxonomic hierarchy, yet most models 
produce predictions at only a single level of classification. Ideally, outputs should distribute probabilities 
across taxonomic levels—for example, estimating confidence that a specimen belongs to Meliaceae 
(family), Khaya (genus), or Khaya anthotheca (species). To date, this has not been systematically explored 
in the wood identification literature, where models typically target a single taxonomic rank or rely on trade 
groupings that do not align strictly with taxonomy (e.g., Meranti wood encompassing multiple Shorea spp., 
or genera such as Lophira and Milicia that are represented in trade by a single species). In other domains, 
hierarchical classification has been advanced through strategies such as hierarchical loss functions (La 
Grassa et al., 2021; Yan et al., 2015) and contrastive learning (Kokilepersaud et al., 2024). Applying such 
approaches to wood identification would not only improve predictive reliability but also generate 
biologically faithful representations of uncertainty, allowing practitioners to determine the taxonomic level 
at which conclusions can be drawn with confidence. Future work should therefore move beyond single-
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rank predictions to explore hierarchical architectures that provide multi-level outputs, integrate taxonomic 
priors, and calibrate uncertainty across ranks, enabling decisions that are both more robust and more 
aligned with biological reality.  

Circling back to the a posteriori approaches, applying cost-sensitive decision frameworks to look-alike 
timbers requires clear definition of what constitutes a look-alike. In essence, a timber is a look-alike when 
distinguishing features are so subtle that consistent separation is difficult. In rapid, field-based 
identification using macroscopic cross-sections, this depends directly on the scope of information 
available. As shown in section 3.4.4, expert-defined anatomical descriptors can cluster taxa with broadly 
similar features, but these descriptors are reduced abstractions of wood anatomy and thus provide only 
coarse groupings. CNN-extracted features (Chapter 5), by contrast, capture finer-grained patterns that 
allow separation of taxa that experts could not distinguish with reduced descriptors. This is reinforced in 
Chapter 6, where the limited added value of re-ranking with expert features shows that CNNs already 
encode much of the same diagnostic information. Binary verification models trained with hard example 
mining (Section 5.3.7) further built on this, as they were explicitly challenged to distinguish between 
anatomically similar specimens (according to the coded expert-defined anatomical features. Together, 
these results suggest that CNN-derived representations form a stronger foundation for defining look-alikes 
than expert-defined features alone. 

At the same time, the results in Chapter 6 show that CNNs do not capture all relevant information. Some 
genera benefited from re-ranking with expert-defined traits, indicating that diagnostic signals visible only 
at larger field-of-view scales remain underutilized. Whereas CNNs work with fixed-size cropped patches, 
experts evaluate features across entire cross-sections, often scanning between magnifications to detect 
rare or large-scale patterns (e.g., banded parenchyma or vessel groupings). This gap highlights the need for 
multi-scale approaches that allow CNNs to integrate information across resolutions and spatial contexts, 
aligning them more closely with expert assessment and enabling a clearer operational definition of look-
alikes. Geographic variation is crucial to consider species that appear distinct in one region may be virtually 
indistinguishable in another due to convergent traits or local adaptations. Future frameworks for defining 
look-alikes in CV-based wood identification should therefore combine CNN feature hierarchies with expert 
descriptors, multi-scale anatomical representations, while covering a broad taxonomic scope beyond the 
boundaries of a single country (as was the case for this study on the DRC). Such integration would provide 
a more reliable definition of look-alikes, which is essential for cost-sensitive decision-making in forensic 
and regulatory applications. 
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Chapter 8: Supplementary materials  

8.1  CNNs for image classification 

AI refers to the ability of computer systems to perform tasks that typically require human intelligence, such 
as pattern recognition, decision-making, problem-solving, and data analysis (Hunt, 2014; Winston, 1984). 
Over the past decades, AI has evolved to self-learning models that autonomously adapt (Chollet and 
Chollet, 2021). Deep learning, a subset of machine learning, has revolutionized AI applications by 
employing artificial neural networks. These models are computational models inspired by the structure 
and function of the human brain, consisting of interconnected layers of artificial neurons that process input 
data and learn patterns through iterative adjustments. Each neuron receives an input, applies a 
mathematical transformation, and passes the result to the next layer. Artificial neural networks can process 
diverse data types, including time-series data, text, images, and video material, allowing them to perform 
increasingly complex tasks such as image recognition, speech processing, and natural language 
understanding (Jiang et al., 2022). AI has been widely adopted across various fields, including 
environmental science, where it is used for biodiversity monitoring, deforestation detection, and climate 

pattern prediction (Knauer et al., 2019). 

CV, a subfield of AI, enables computers to interpret and analyse image data, extracting meaningful patterns 
that mimic human perception (Bay et al., 2006; Hwang and Sugiyama, 2021; Lowe, 2004). When combined 
with deep learning, CV has given rise to powerful approaches capable of automatically extracting complex 
visual features, enabling robust pattern recognition and classification across diverse image datasets 
(Chollet and Chollet, 2021). Among deep learning models, CNNs are particularly effective for learning from 
image data (Li et al., 2021; Tang et al., 2020; Wu, 2017; X. Zhao et al., 2024). Unlike traditional image 
analysis approaches that require manual feature selection, CNNs automate feature extraction by 
recognizing spatial hierarchies within an image. CNNs detect patterns at multiple levels of abstraction, 
beginning with basic structures such as edges and progressing to more complex textures, shapes, and 
high-level representations. CNNs consist of multiple layer types, each serving a specific role in processing 
visual information (Alzubaidi et al., 2021; Chollet and Chollet, 2021; Wu, 2017). An overview of the inner 
workings of a CNN for wood identification is presented in Figure 8.1, illustrating the sequence of 
convolutional and pooling layers used to extract hierarchical features from cross-sectional images, 
followed by fully connected layers that perform classification by outputting class probabilities across all 
candidate genera. Convolutional layers apply small, learnable filters (kernels) to an image, detecting 
relevant features such as edges, textures, and structural patterns. Digital images consist of a grid of pixels, 
each representing intensity values for specific wavelengths of electromagnetic (EM) radiation. Grayscale 
images contain a single intensity value per pixel, while multichannel images capture multiple wavelength 
ranges. Standard colour images (RGB) use three channels—red (620–780 nm), green (490–570 nm), and 
blue (440–490 nm)—encoding visible light to align digital data with human visual perception. Hyperspectral 

Figure 8.1: Schematic overview of a multiclass CNN for wood identification, showing feature extraction through 
convolutional and pooling layers, followed by classification into timber genera via fully connected layers with SoftMax 
activation for probabilistic outputs. 
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images capture reflectance across numerous narrow spectral bands (beyond the visible spectrum), 
stacking channels to provide detailed spectral signatures for material identification. The kernels of the 
convolutional layer slide across the input while preserving spatial relationships between pixels, enabling 
CNNs to learn localized patterns. A single convolutional layer applies multiple filters to the input image, 
increasing the number of feature representations (channels), while maintaining the original spatial 
dimensions. The number of filters determines the number of output channels; For example, a standard 
colour image (three channels) passed through a convolutional layer with 64 filters, will output a feature 
map with 64 feature representations. As the network deepens, later convolutional layers typically apply 
more filters, progressively extracting more abstract representations. Pooling layers down-sample the 
spatial dimensions of a feature map, to improve computational efficiency and reduce sensitivity to small 
transformations. Max pooling, the most common approach, selects the highest pixel value in a kernel, 
ensuring that small variations in an image—such as changes in lighting, orientation, or slight distortions—
do not drastically affect the model’s ability to recognize objects (Chollet and Chollet, 2021). Global Average 
Pooling computes the average value of each feature map across its entire spatial dimensions, unlike max 
pooling, which selects the highest value (Chollet and Chollet, 2021). This results in a single value per 
feature map, significantly reducing the number of parameters while preserving essential information. It is 
frequently used in literature to produce a compact representation, providing a clear link between feature 
extraction and subsequent classification. By stacking multiple convolutional and pooling layers in 
succession, CNNs enable hierarchical feature learning, where shallow layers detect low-level structures, 
and deeper layers extract increasingly abstract and complex representations of the image (Wu, 2017). 

After convolution and pooling operations, the extracted features are passed to fully connected layers, 
which integrate and refine the learned representations before transforming them into the desired output 
format (Chollet and Chollet, 2021; Taye, 2023). The classification task is facilitated by assigning labels to 
images according to a predetermined class distribution. CNNs facilitate classification by converting the 
image into a vector of class probabilities, where each value corresponds to the likelihood of the input 
belonging to a specific class. The model allocates higher probability values to the classes that are more 
likely to represent the image, based on its learned features. Training models to classify based on labelled 
examples is known as supervised learning (Cunningham et al., 2008; Sarker, 2021; Wani et al., 2020). In 
contrast, models aiming to clusters within the data, without relying on labelling, is called unsupervised 
learning (James et al., 2023; Sarker, 2021; Shen et al., n.d.). Both can also be combined into semi-
supervised learning using a small amount of labelled data with a larger set of unlabelled data to improve 
model performance. Semi-supervised learning is a good approach if labelling data is expensive and/or 
time-consuming (Zhu, 2005). Reinforcement learning involves an agent learning through interactions with 
its environment, receiving feedback in the form of rewards or penalties to maximize long-term goals, suiting 
well to interactive applications such as robotics or game play (Arulkumaran et al., 2017; Kaelbling et al., 
1996; Sutton and Barto, 1999). 

To achieve optimal performance, CNNs rely on an iterative optimization process that adjusts the kernel 
weights of the convolutional and fully connected layers based on the discrepancy between the model’s 
predictions and the actual labels (Alzubaidi et al., 2021). This is achieved by repeatedly passing the data 
through the network and updating the kernel weights at intermediate steps. A complete pass through the 
entire dataset is called an epoch (Chollet and Chollet, 2021). During each epoch, the dataset is typically 
divided into smaller batches, with weight updates occurring after processing each batch. This mini-batch 
approach allows the model to refine its parameters gradually, preventing large, unstable updates (Jian-Wei 
et al., 2020). The entire process is referred to as training a model, where images pass through the network 
to learn meaningful feature representations by minimizing the discrepancy between the model’s 
predictions and the actual labels (Chollet and Chollet, 2021). This discrepancy is quantified by a loss 
function, with cross-entropy loss commonly used for classification tasks (Cao et al., 2018). Performance 
is optimized by minimizing loss through gradient descent (Haji and Abdulazeez, 2021). The gradient of the 
loss function measures how the loss changes with respect to each kernel weight. By computing the 
gradient, the model determines the direction in which each weight should be adjusted to decrease the loss. 
To determine the influence of each weight on the loss, the error signal from the fully-connected layer is 
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propagated backwards through the network (Amari, 1993). The weights are updated accordingly by an 
optimization algorithm (e.g., Stochastic Gradient Descent (SGD), Adam) by taking a step in the descending 
direction of the gradient, scaled by a learning rate—a hyperparameter that controls the step size (Alzubaidi 
et al., 2021; Haji and Abdulazeez, 2021). If the learning rate is too large, the model may overshoot the 
optimal solution; if it is too small, convergence may be slow (Alzubaidi et al., 2021; Chollet and Chollet, 
2021). Optimization is performed iteratively over multiple batches and epochs, gradually refining the 
model’s weights to minimize loss and improve classification. To enhance the learning process, CNNs 
incorporate activation functions, which introduce non-linearity and allow the network to learn complex 
relationships beyond simple linear transformations (Dubey et al., 2022; Hao et al., 2020). One of the most 
widely used activation functions is the ReLU, which replaces negative values with zero (Banerjee et al., 
2019). This is an effective countermeasure for phenomena where the gradient vanishes or explodes (Liu et 
al., 2021). When gradients approach values close to zero (and ‘vanish’), weight updates become negligible, 
slowing down or even stopping learning. Alternatively, they can become excessively large (or 'explode'), 
causing unstable weight updates that lead to drastic fluctuations in model parameters (Chollet and 
Chollet, 2021; Hanin, 2018; Hochreiter, 1998). This instability can prevent convergence, making training 
ineffective. 

While optimization sounds straightforward, ensuring that a model generalizes well to real-world data 
requires careful consideration. One of the main challenges in deep learning is overfitting, where a model 
becomes overly specialized in recognizing patterns from the training data but fails to perform well on new, 
unseen examples (Bejani and Ghatee, 2021; Ying, 2019). A crucial strategy to mitigate overfitting is 
validation, where a separate validation dataset, distinct from the training set, is passed through the network 
during, without altering the weights (Chollet and Chollet, 2021). Loss is calculated on those images to 
evaluate the model’s performance throughout training. This helps detect overfitting by monitoring how well 
the model generalizes to unseen data rather than just memorizing training patterns. If the model performs 
significantly better on the training data than on the validation data, it indicates that it has learned to fit the 
training data too closely rather than capturing generalizable features. To counteract this, training can be 
stopped early by monitoring the validation performance and halting training if iterations no longer minimize 
loss, calculated on the validation data (Prechelt, 2002). Regularization techniques can be embedded in the 
model to further prevent overfitting (Santos and Papa, 2022). Dropout is a widely used regularization 
method that randomly deactivates a subset of neurons during training, forcing the network to rely on 
multiple feature representations rather than depending too heavily on specific patterns (Srivastava et al., 
2014). Another regularization method, L2 regularization (also known as weight decay), discourages 
excessively large weight values by adding a penalty term to the loss function (Xie et al., 2022). Weight decay 
constraint helps prevent the model from assigning too much importance to individual features, promoting 
smoother and more stable learning (Santos and Papa, 2022). To improve model generalization further, the 
images can be transformed (e.g. rotation, flipping, cropping, brightness adjustments, noise addition) to 
artificially expand the variation in the training data (Shorten and Khoshgoftaar, 2019). These augmentations 
introduce variations in lighting, orientation, and scale, helping the model learn to recognize objects despite 
these changes. As a result, data augmentation enhances the model’s ability to generalize to real-world 
images, where such variations naturally occur (Shorten and Khoshgoftaar, 2019). A crucial factor in 
achieving generalization is maintaining a balanced dataset. An imbalanced dataset can lead to biased 
predictions, where the model disproportionately favours classes with more training samples (Chollet and 
Chollet, 2021; Johnson and Khoshgoftaar, 2019). This issue is particularly relevant in wood identification, 
as certain species may be underrepresented in wood collections. To mitigate this, techniques such as class 
weighting and sampling can be employed. Class weighting increases the importance of underrepresented 
classes during training, ensuring they contribute proportionally to optimization (Johnson and Khoshgoftaar, 
2019). Alternatively, oversampling augments the number of samples in minority classes, while 
undersampling reduces the prevalence of dominant classes, thereby improving model balance. 

After training, models are typically evaluated on a separate dataset containing distinct images (Alzubaidi 
et al., 2021). While the validation dataset can be repurposed for this evaluation, it is recommended to use 
an entirely separate test dataset. This prevents potential data leakage, which can occur if overfitting 
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mitigation strategies, such as early stopping, were applied. If training is halted based on the progression of 
validation loss, the model is effectively optimized for that specific dataset, potentially leading to an 
overestimation of its performance on truly unseen data (Prechelt, 2002).  
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Table 8.1: Full overview of all SmartWoodID specimens (split across training and test sets) for training and evaluating wood classification models, with a mention of the commercial 
status. 

Family Number of 
Training Specimen 
par Family 

Number of Testing 
Specimen par 
Family 

Genus Number of 
Training Specimen 
par Genus 

Number of Testing 
Specimen par 
Genus 

Species Training Specimen 
ID Tervuren 
xylarium 

Testing Specimen 
ID Tervuren 
xylarium 

Commercial 
Status 

Achariaceae 12 6 Caloncoba Gilg 5 2 Caloncoba glauca 
(P.Beauv.) Gilg 

Tw984, Tw2022, 
Tw7180 

Tw928 Not Commercial 

Caloncoba 
welwitschii (Oliv.) 
Gilg 

Tw63887, Tw61053 Tw59461 Not Commercial 

Lepisanthes Blume 2 1 Lepisanthes 
senegalensis (Poir.) 
Leenh. 

Tw60200, Tw60172 Tw32771 Not Commercial 

Lindackeria C.Presl 2 2 Lindackeria 
bukobensis Gilg 

Tw59391 Tw21926 Not Commercial 

Lindackeria 
dentata (Oliv.) Gilg 

Tw61173 Tw146 Not Commercial 

Scottellia Oliv. 3 1 Scottellia 
klaineana Pierre 

Tw8313, Tw1907, 
Tw1311 

Tw1919 Not Commercial 

Anacardiaceae 37 21 Antrocaryon Pierre 4 3 Antrocaryon 
micraster A.Chev. 
& Guillaumin 

Tw53856 Tw29940 Not Commercial 

Antrocaryon 
nannanii De Wild. 

Tw7682, Tw7534, 
Tw7567 

Tw7119, Tw1406 Commercial 

Clausena Burm.f. 1 1 Clausena anisata 
(Willd.) Hook.fil. 

Tw28798 Tw23531 Not Commercial 

Ganophyllum 
Blume 

3 2 Ganophyllum 
giganteum 
(A.Chev.) Hauman 

Tw9885, Tw5325, 
Tw3644 

Tw1696, Tw1536 Not Commercial 

Lannea A.Rich. 3 1 Lannea welwitschii 
(Hiern) Engl. 

Tw1265, Tw1464, 
Tw33 

Tw1574 Not Commercial 

Mangifera L. 1 1 Mangifera indica L. Tw457 Tw19558 Not Commercial 

Myrsine L. 2 1 Myrsine 
melanophloeos (L.) 
R.Br. 

Tw21937, Tw18728 Tw13215 Not Commercial 

Panda Pierre 3 1 Panda oleosa 
Pierre 

Tw1865, Tw5241, 
Tw947 

Tw7143 Not Commercial 

Pseudospondias 
Engl. 

3 2 Pseudospondias 
longifolia Engl. 

Tw61416 Tw60636 Not Commercial 

Pseudospondias 
microcarpa 
(A.Rich.) Engl. 

Tw1278, Tw43692 Tw125 Not Commercial 

Santiria Blume 1 1 Santiria trimera 
(Oliv.) Aubrév. 

Tw10196 Tw10152 Not Commercial 

Sorindeia Thouars 5 3 Sorindeia africana 
(Engl.) Van der 
Veken 

Tw9012, Tw8716 Tw192 Not Commercial 

Sorindeia 
juglandifolia 

Tw61418, 
Tw61456, Tw41112 

Tw32374, Tw32768 Not Commercial 
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(A.Rich.) Planch. ex 
Oliv. 

Spondias L. 3 1 Spondias dulcis 
Parkinson 

Tw31049, 
Tw72037, Tw71044 

Tw71775 Not Commercial 

Trichoscypha 
Hook.f. 

5 3 Trichoscypha 
acuminata Engl. 

Tw7333, Tw182, 
Tw1906 

Tw7326 Not Commercial 

Trichoscypha 
lucens Oliv. 

Tw8481 Tw21117 Not Commercial 

Trichoscypha 
oddonii De Wild. 

Tw43719 Tw112 Not Commercial 

Xymalos Baill. 3 1 Xymalos 
monospora (Harv.) 
Baill. 

Tw8483, Tw13214, 
Tw17193 

Tw4333 Not Commercial 

Anisophylleaceae 2 1 Anisophyllea R.Br. 
ex Sabine 

2 1 Anisophyllea 
boehmii Engl. 

Tw24226, Tw28526 Tw20594 Not Commercial 

Annonaceae 52 29 Annickia Setten & 
Maas 

3 2 Annickia affinis 
(Exell) Versteegh & 
Sosef 

Tw4820, Tw10808 Tw10268 Not Commercial 

Annickia lebrunii 
(Robyns & Ghesq.) 
Setten & Maas 

Tw2479 Tw2009 Not Commercial 

Anonidium Engl. & 
Diels 

4 2 Anonidium mannii 
(Oliv.) Engl. & Diels 

Tw619, Tw1892, 
Tw362, Tw2510 

Tw1191, Tw1858 Not Commercial 

Brieya De Wild. 1 1 Brieya fasciculata 
De Wild. 

Tw7624 Tw1261 Not Commercial 

Cleistopholis Pierre 
ex Engl. 

4 3 Cleistopholis 
glauca Pierre ex 
Engl. & Diels 

Tw8030 Tw7408 Not Commercial 

Cleistopholis 
patens (Benth.) 
Engl. & Diels 

Tw357, Tw1820, 
Tw1888 

Tw1795, Tw1407 Not Commercial 

Duguetia A.St.-Hil. 2 1 Duguetia staudtii 
(Engl. & Diels) 
Chatrou 

Tw1244, Tw970 Tw10344 Not Commercial 

Greenwayodendro
n Verdc. 

4 2 Greenwayodendro
n suaveolens (Engl. 
& Diels) Verdc. 

Tw205, Tw404, 
Tw880, Tw552 

Tw199, Tw150 Not Commercial 

Hexalobus A.DC. 4 3 Hexalobus 
crispiflorus A.Rich. 

Tw10812, Tw1469, 
Tw14809 

Tw10144, Tw10811 Not Commercial 

Hexalobus 
monopetalus 
(A.Rich.) Engl. & 
Diels 

Tw41433 Tw30055 Not Commercial 

Isolona Engl. 3 2 Isolona congolana 
(De Wild. & 
T.Durand) Engl. & 
Diels 

Tw8290, Tw8243 Tw3603 Not Commercial 

Isolona hexaloba 
Pierre ex Engl. & 
Diels 

Tw8312 Tw63477 Not Commercial 
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Monodora Dunal 1 1 Monodora 
angolensis Welw. 

Tw7238 Tw2219 Not Commercial 

Platymitra Boerl. 2 1 Platymitra arborea 
(Blanco) Kessler 

Tw87, Tw8267 Tw1279 Not Commercial 

Xylopia L. 24 11 Xylopia aethiopica 
(Dunal) A.Rich. 

Tw356, Tw3683 Tw170 Not Commercial 

Xylopia 
aurantiiodora De 
Wild. & T.Durand 

Tw611 Tw599 Not Commercial 

Xylopia cupularis 
Mildbr. 

Tw4822, Tw6958 Tw33463 Not Commercial 

Xylopia flamignii 
Boutique 

Tw7749, Tw2481, 
Tw2480 

Tw2482 Not Commercial 

Xylopia gilbertii 
Boutique 

Tw7581, Tw1915 Tw1894 Not Commercial 

Xylopia 
hypolampra Mildbr. 
& Diels 

Tw57, Tw1451 Tw1421 Not Commercial 

Xylopia 
katangensis De 
Wild. 

Tw21176, Tw3604 Tw1973 Not Commercial 

Xylopia phloiodora 
Mildbr. 

Tw1944, Tw3687, 
Tw1955 

Tw32755 Not Commercial 

Xylopia rubescens 
Oliv. 

Tw2484, Tw791 Tw10831 Not Commercial 

Xylopia staudtii 
Engl. & Diels 

Tw50, Tw10359, 
Tw10832 

Tw4867 Not Commercial 

Xylopia wilwerthii 
De Wild. 

Tw58862, Tw58861 Tw32601 Not Commercial 

Apocynaceae 31 16 Alstonia R.Br. 6 3 Alstonia boonei 
De Wild. 

Tw225, Tw1640, 
Tw575 

Tw1168, Tw1470 Commercial 

Alstonia congensis 
Engl. 

Tw294, Tw475, 
Tw145 

Tw317 Not Commercial 

Diplorhynchus 
Welw. ex Ficalho & 
Hiern 

3 1 Diplorhynchus 
condylocarpon 
(Müll.Arg.) Pichon 

Tw20543, 
Tw28193, Tw24217 

Tw24382 Not Commercial 

Funtumia Stapf 2 1 Funtumia elastica 
(Preuss) Stapf 

Tw616, Tw487 Tw17972 Not Commercial 

Holarrhena R.Br. 2 1 Holarrhena 
floribunda (G.Don) 
T.Durand & Schinz 

Tw5160, Tw439 Tw272 Not Commercial 

Hunteria Roxb. 2 1 Hunteria umbellata 
(K.Schum.) Hallier 
fil. 

Tw14478, Tw23851 Tw114 Not Commercial 

Picralima Pierre 1 1 Picralima nitida 
(Stapf) T.Durand & 
H.Durand 

Tw32461 Tw10214 Not Commercial 

Pleiocarpa Benth. 1 1 Pleiocarpa 
pycnantha 
(K.Schum.) Stapf 

Tw33076 Tw29762 Not Commercial 
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Rauvolfia L. 5 2 Rauvolfia caffra 
Sond. 

Tw24035, Tw25770 Tw18706 Not Commercial 

Rauvolfia vomitoria 
Afzel. 

Tw1248, Tw21824, 
Tw20976 

Tw21822 Not Commercial 

Tabernaemontana 
Plum. ex L. 

6 3 Tabernaemontana 
crassa Benth. 

Tw52, Tw26564, 
Tw21945, Tw26563 

Tw143, Tw10351 Not Commercial 

Tabernaemontana 
pachysiphon Stapf 

Tw39181, Tw28855 Tw28178 Not Commercial 

Voacanga Thouars 3 2 Voacanga africana 
Stapf ex Scott Elliot 

Tw753, Tw28921 Tw21823 Not Commercial 

Voacanga thouarsii 
Roem. & Schult. 

Tw8544 Tw8539 Not Commercial 

Araliaceae 4 3 Cussonia Thunb. 2 2 Cussonia arborea 
Hochst. ex A.Rich. 

Tw57545 Tw31821 Not Commercial 

Cussonia spicata 
Thunb. 

Tw25917 Tw17154 Not Commercial 

Polyscias J.R.Forst. 
& G.Forst. 

2 1 Polyscias fulva 
(Hiern) Harms 

Tw875, Tw749 Tw7291 Not Commercial 

Asteraceae 4 2 Brenandendron 
H.Rob. 

3 1 Brenandendron 
donianum (DC.) 
H.Rob. 

Tw181, Tw17507, 
Tw28136 

Tw26577 Not Commercial 

Gymnanthemum 
Cass. 

1 1 Gymnanthemum 
amygdalinum 
(Delile) Sch.Bip. ex 
Walp. 

Tw51060 Tw50919 Not Commercial 

Bignoniaceae 16 10 Fernandoa Welw. 
ex Seem. 

1 1 Fernandoa adolfi-
friderici (Gilg & 
Mildbr.) Heine 

Tw7107 Tw1217 Not Commercial 

Kigelia DC. 3 1 Kigelia africana 
(Lam.) Benth. 

Tw23847, 
Tw17478, Tw27684 

Tw24304 Not Commercial 

Markhamia Seem. 8 5 Markhamia lutea 
(Benth.) K.Schum. 

Tw22717, Tw8182, 
Tw25680 

Tw1868, Tw1866 Not Commercial 

Markhamia 
obtusifolia (Baker) 
Sprague 

Tw334 Tw1972 Not Commercial 

Markhamia 
tomentosa (Benth.) 
K.Schum. ex Engl. 

Tw41, Tw8565, 
Tw28509 

Tw8392 Not Commercial 

Markhamia 
zanzibarica (Bojer 
ex DC.) K.Schum. 

Tw23618 Tw18709 Not Commercial 

Spathodea 
Beauverd 

2 1 Spathodea 
campanulata 
Beauverd 

Tw57691, Tw59627 Tw33038 Not Commercial 

Stereospermum 
Cham. 

2 2 Stereospermum 
harmsianum 
K.Schum. 

Tw327 Tw24354 Not Commercial 

Stereospermum 
kunthianum Cham. 

Tw11296 Tw11295 Not Commercial 

Boraginaceae 11 5 Cordia L. 11 5 Cordia africana 
Lam. 

Tw7345, Tw2010, 
Tw2106 

Tw6982 Not Commercial 
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Cordia millenii 
Baker 

Tw11445, 
Tw33112, Tw14028 

Tw17784 Not Commercial 

Cordia monoica 
Roxb. 

Tw28614, Tw28677 Tw28481 Not Commercial 

Cordia myxa L. Tw60259 Tw30079 Not Commercial 

Cordia platythyrsa 
Baker 

Tw1259, Tw22655 Tw1242 Not Commercial 

Burseraceae 20 12 Aucoumea Pierre 3 2 Aucoumea 
klaineana Pierre 

Tw25782, 
Tw18752, Tw57884 

Tw14988, Tw12938 Not Commercial 

Canarium L. 3 2 Canarium 
schweinfurthii 
Engl. 

Tw255, Tw128, 
Tw364 

Tw1164, Tw1195 Commercial 

Commiphora Jacq. 1 1 Commiphora 
mollis (Oliv.) Engl. 

Tw28183 Tw23062 Not Commercial 

Pachylobus G.Don 13 7 Pachylobus 
buettneri (Engl.) 
Guillaumin 

Tw10770, 
Tw22559, Tw13196 

Tw18754 Commercial 

Pachylobus edulis 
G.Don 

Tw2358, Tw2064 Tw1547 Not Commercial 

Pachylobus 
igaganga (Aubrév. & 
Pellegr.) Byng & 
Christenh. 

Tw57881, 
Tw18755, Tw43722 

Tw51795 Not Commercial 

Pachylobus 
normandii (Aubrév. 
& Pellegr.) Byng & 
Christenh. 

Tw57880 Tw18756 Not Commercial 

Pachylobus osika 
Guillaumin 

Tw9760 Tw8021 Not Commercial 

Pachylobus 
pubescens 
Vermoesen 

Tw982, Tw1516, 
Tw267 

Tw130, Tw1433 Not Commercial 

Calophyllaceae 4 3 Endodesmia Benth. 1 1 Endodesmia 
calophylloides 
Benth. 

Tw30676 Tw29814 Not Commercial 

Mammea L. 3 2 Mammea africana 
G.Don 

Tw452, Tw472, 
Tw467 

Tw382, Tw421 Not Commercial 

Cannabaceae 21 11 Celtis L. 15 7 Celtis 
gomphophylla 
Baker 

Tw64995, 
Tw64993, Tw7603, 
Tw6969, Tw64991, 
Tw3605 

Tw26920, Tw64992 Commercial 

Celtis latifolia 
(Blume) Planch. 

Tw71106 Tw71087 Not Commercial 

Celtis mildbraedii 
Engl. 

Tw1560, Tw3437, 
Tw1561 

Tw2135 Not Commercial 

Celtis philippensis 
Blanco 

Tw573 Tw31998 Not Commercial 

Celtis tessmannii 
Rendle 

Tw62768 Tw62746 Commercial 
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Celtis zenkeri Engl. Tw1515, Tw2008, 
Tw1509 

Tw1553 Not Commercial 

Morus L. 3 2 Morus mesozygia 
Stapf 

Tw1471, Tw17738, 
Tw1472 

Tw1238, Tw1249 Commercial 

Trema Lour. 3 2 Trema orientale (L.) 
Blume 

Tw57698, 
Tw59409, Tw59650 

Tw28460, Tw23439 Not Commercial 

Celastraceae 4 2 Apodytes E.Mey. ex 
Bernh. 

1 1 Apodytes dimidiata 
E.Mey. ex Arn. 

Tw21931 Tw19979 Not Commercial 

Cassine L. 3 1 Cassine peragua L. Tw21954, 
Tw29739, Tw39086 

Tw29740 Not Commercial 

Chrysobalanacea
e 

15 10 Magnistipula Engl. 1 1 Magnistipula 
butayei De Wild. 

Tw31487 Tw14119 Not Commercial 

Maranthes Blume 7 4 Maranthes 
chrysophylla (Oliv.) 
Prance ex F.White 

Tw26573 Tw25712 Not Commercial 

Maranthes 
gabunensis (Engl.) 
Prance 

Tw7177 Tw25733 Not Commercial 

Maranthes glabra 
(Oliv.) Prance 

Tw8219, Tw47797, 
Tw2395 

Tw597 Not Commercial 

Maranthes 
kerstingii (Engl.) 
Prance ex F.White 

Tw22962, Tw44434 Tw10383 Not Commercial 

Parinari Aubl. 7 5 Parinari congensis 
Didr. 

Tw6999 Tw3488 Not Commercial 

Parinari 
curatellifolia 
Planch. ex Benth. 

Tw23504, Tw3889, 
Tw23510 

Tw19261, Tw21126 Not Commercial 

Parinari excelsa 
Sabine 

Tw8098, Tw33991, 
Tw736 

Tw1270, Tw1136 Not Commercial 

Clusiaceae 30 14 Allanblackia Oliv. 8 3 Allanblackia 
floribunda Oliv. 

Tw358, Tw53, 
Tw1835 

Tw395 Not Commercial 

Allanblackia 
kisonghi 
Vermoesen 

Tw273, Tw8574, 
Tw2402 

Tw8314 Not Commercial 

Allanblackia 
parviflora A.Chev. 

Tw23010, Tw22983 Tw10380 Not Commercial 

Garcinia L. 14 6 Garcinia 
chromocarpa Engl. 

Tw63602, Tw63601 Tw63598 Not Commercial 

Garcinia epunctata 
Stapf 

Tw167, Tw155, 
Tw2003 

Tw178 Not Commercial 

Garcinia huillensis 
Welw. 

Tw20553, 
Tw28476, Tw10219 

Tw21754 Not Commercial 

Garcinia ovalifolia 
Oliv. 

Tw33362 Tw10181 Not Commercial 

Garcinia punctata 
Oliv. 

Tw7469, Tw1139, 
Tw32224 

Tw3643 Not Commercial 

Garcinia 
smeathmannii 
(Planch. & Triana) 
Oliv. 

Tw2210, Tw21821 Tw10210 Not Commercial 
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Lebrunia Staner 2 1 Lebrunia busbaie 
Staner 

Tw1645, Tw2193 Tw1067 Not Commercial 

Pentadesma 
Sabine 

5 3 Pentadesma 
butyracea Sabine 

Tw7627, Tw142, 
Tw171 

Tw10339, Tw11616 Not Commercial 

Pentadesma 
grandifolia Baker 
fil. 

Tw7134, Tw7234 Tw553 Not Commercial 

Symphonia L.f. 1 1 Symphonia 
globulifera L.fil. 

Tw54142 Tw25413 Not Commercial 

Combretaceae 40 23 Combretum Loefl. 10 6 Combretum 
adenogonium 
Steud. ex A.Rich. 

Tw60236 Tw29011 Not Commercial 

Combretum 
collinum Fresen. 

Tw28266, Tw28709 Tw28207 Not Commercial 

Combretum 
collinum subsp. 
elgonense (Exell) 
Okafor 

Tw23672, Tw23674 Tw20545 Not Commercial 

Combretum lokele 
Liben 

Tw33108 Tw32744 Not Commercial 

Combretum molle 
R.Br. ex G.Don 

Tw28503 Tw26054 Not Commercial 

Combretum 
zeyheri Sond. 

Tw24029, 
Tw24349, Tw28225 

Tw28209 Not Commercial 

Terminalia L. 30 17 Terminalia 
anisoptera (Welw. 
ex M.A.Lawson) 
Gere & Boatwr. 

Tw28181, Tw28172 Tw24370 Not Commercial 

Terminalia 
brachystemma 
Welw. ex Hiern 

Tw28537 Tw24340 Not Commercial 

Terminalia catappa 
L. 

Tw25689, 
Tw57696, Tw59834 

Tw59490 Not Commercial 

Terminalia 
hylodendron 
(Mildbr.) Gere & 
Boatwr. 

Tw8530, Tw5156, 
Tw6957 

Tw1104, Tw30030 Not Commercial 

Terminalia 
ivorensis A.Chev. 

Tw47938, 
Tw20807, 
Tw40978, 
Tw26420, Tw17974 

Tw14029, Tw11064 Not Commercial 

Terminalia 
leiocarpa (DC.) 
Baill. 

Tw31659, 
Tw30912, Tw41424 

Tw30077, Tw30693 Not Commercial 

Terminalia 
macroptera Guill. & 
Perr. 

Tw49440 Tw41423 Not Commercial 

Terminalia mollis 
M.A.Lawson 

Tw11366, 
Tw11372, Tw340 

Tw11300, Tw11264 Not Commercial 

Terminalia sericea 
Burch. ex DC. 

Tw28590, Tw24039 Tw17177 Not Commercial 
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Terminalia 
superba Engl. & 
Diels 

Tw1430, Tw57060, 
Tw1354, Tw57207, 
Tw55833, Tw88 

Tw1353, Tw1318, 
Tw1409 

Commercial 

Terminalia 
welwitschii Gere & 
Boatwr. 

Tw7741 Tw28134 Not Commercial 

Daphniphyllaceae 2 1 Plagiostyles Pierre 2 1 Plagiostyles 
africana (Müll.Arg.) 
Prain 

Tw2491, Tw2490 Tw2403 Not Commercial 

Dipterocarpaceae 5 4 Marquesia Gilg 3 2 Marquesia 
macroura Gilg 

Tw341, Tw9816, 
Tw24249 

Tw20548, Tw22727 Not Commercial 

Monotes A.DC. 2 2 Monotes 
hypoleucus var. 
angolensis (De 
Wild.) Meerts 

Tw28221 Tw28139 Not Commercial 

Monotes 
katangensis (De 
Wild.) De Wild. 

Tw307 Tw23912 Not Commercial 

Ebenaceae 13 7 Diospyros L. 13 7 Diospyros 
batocana Hiern 

Tw20550, 
Tw56593, Tw28273 

Tw29615 Not Commercial 

Diospyros 
crassiflora Hiern 

Tw523, Tw788, 
Tw57052, Tw7651 

Tw14483, Tw33268 Commercial 

Diospyros dendo 
Welw. ex Hiern 

Tw8077 Tw22664 Not Commercial 

Diospyros ferrea 
(Willd.) Bakh. 

Tw22862, Tw1802 Tw1263 Not Commercial 

Diospyros iturensis 
(Gürke) Letouzey & 
F.White 

Tw33548 Tw32832 Not Commercial 

Diospyros 
mespiliformis 
Hochst. ex A.DC. 

Tw14485, Tw17165 Tw10293 Not Commercial 

Erythroxylaceae 3 2 Erythroxylum 
Browne 

3 2 Erythroxylum 
mannii Oliv. 

Tw29886, Tw816, 
Tw30886 

Tw22563, Tw22564 Not Commercial 

Euphorbiaceae 48 27 Cavacoa J.Léonard 1 1 Cavacoa quintasii 
(Pax & K.Hoffm.) 
J.Léonard 

Tw33564 Tw10142 Not Commercial 

Croton L. 8 6 Croton 
haumanianus 
J.Léonard 

Tw9759 Tw33372 Not Commercial 

Croton 
macrostachyus 
Hochst. ex Delile 

Tw39143 Tw28714 Not Commercial 

Croton 
mayumbensis 
J.Léonard 

Tw4318, Tw1929 Tw168 Not Commercial 

Croton 
megalocarpus 
Hutch. 

Tw26071 Tw18849 Not Commercial 

Croton mubango 
Müll.Arg. 

Tw8084 Tw7128 Not Commercial 
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Croton sylvaticus 
Hochst. 

Tw7714, Tw7921 Tw27710 Not Commercial 

Dichostemma 
Pierre 

2 1 Dichostemma 
glaucescens Pierre 

Tw2391, Tw1286 Tw1155 Not Commercial 

Discoglypremna 
Prain 

2 1 Discoglypremna 
caloneura (Pax) 
Prain 

Tw624, Tw6967 Tw1224 Not Commercial 

Grossera Pax 3 2 Grossera 
macrantha Pax 

Tw7329, Tw8216, 
Tw7227 

Tw10143, Tw30664 Not Commercial 

Hevea Aubl. 3 2 Hevea brasiliensis 
(Willd. ex A.Juss.) 
Müll.Arg. 

Tw61294, 
Tw61295, Tw50322 

Tw26141, Tw19370 Not Commercial 

Klaineanthus Pierre 
ex Prain 

3 1 Klaineanthus 
gaboniae Pierre ex 
Prain 

Tw8543, Tw11439, 
Tw8434 

Tw8446 Not Commercial 

Macaranga 
Thouars 

8 3 Macaranga 
kilimandscharica 
Pax 

Tw19426, Tw4916, 
Tw24166 

Tw2563 Not Commercial 

Macaranga 
monandra 
Müll.Arg. 

Tw10224, Tw1223, 
Tw2651 

Tw2649 Not Commercial 

Macaranga spinosa 
Müll.Arg. 

Tw7122, Tw8163 Tw1149 Not Commercial 

Maprounea Aubl. 2 1 Maprounea 
africana Müll.Arg. 

Tw32701, Tw28261 Tw24351 Not Commercial 

Neoboutonia 
Müll.Arg. 

3 1 Neoboutonia 
macrocalyx Pax 

Tw21942, 
Tw31481, Tw17221 

Tw24189 Not Commercial 

Ricinodendron 
Müll.Arg. 

4 2 Ricinodendron 
heudelotii (Baill.) 
Heckel 

Tw43839, Tw41100 Tw12959 Commercial 

Ricinodendron 
heudelotii subsp. 
africanum 
(Müll.Arg.) 
J.Léonard 

Tw2471, Tw122 Tw1119 Not Commercial 

Schinziophyton 
Hutch. ex 
Radcl.Sm. 

3 2 Schinziophyton 
rautanenii (Schinz) 
Radcl.-Sm. 

Tw11329, Tw335, 
Tw11333 

Tw11292, Tw11273 Not Commercial 

Sclerocroton 
Hochst. 

2 1 Sclerocroton 
cornutus (Pax) 
Kruijt & Roebers 

Tw8228, Tw2249 Tw10218 Not Commercial 

Shirakiopsis Esser 1 1 Shirakiopsis 
elliptica (Hochst.) 
Esser 

Tw907 Tw2060 Not Commercial 

Tetrorchidium 
Poepp. 

3 2 Tetrorchidium 
didymostemon 
(Baill.) Pax & 
K.Hoffm. 

Tw2189, Tw2049, 
Tw967 

Tw1909, Tw164 Not Commercial 

Fabaceae 425 221 Afzelia Sm. 28 11 Afzelia africana 
Sm. ex Pers. 

Tw14035, Tw5024, 
Tw53917, 

Tw5023, Tw11081 Not Commercial 
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Tw53506, 
Tw47200, Tw53948 

Afzelia bella Harms Tw375, Tw10452, 
Tw42694 

Tw3899 Not Commercial 

Afzelia 
bipindensis 
Harms 

Tw26431, Tw1567, 
Tw3898, Tw53508, 
Tw14072, Tw886, 
Tw30643, Tw11236 

Tw13492, Tw2417, 
Tw29571 

Commercial 

Afzelia pachyloba 
Harms 

Tw14458, 
Tw23635, Tw2100, 
Tw57088, Tw62, 
Tw65751, Tw57069 

Tw62357, 
Tw20811, Tw51747 

Commercial 

Afzelia quanzensis 
Welw. 

Tw322, Tw28248, 
Tw308, Tw342 

Tw28143, Tw1022 Not Commercial 

Albizia Durazz. 38 21 Albizia adianthifolia 
(Schumach.) 
W.Wight 

Tw2034, Tw3678, 
Tw4962, Tw24343 

Tw1927, Tw11235 Not Commercial 

Albizia adianthifolia 
var. intermedia (De 
Wild. & T.Durand) 
Villiers 

Tw5343 Tw518 Not Commercial 

Albizia altissima 
Hook.f. 

Tw985, Tw8552, 
Tw3948 

Tw30094, Tw3582 Not Commercial 

Albizia antunesiana 
Harms 

Tw29622, 
Tw29058, Tw28848 

Tw28191, Tw24213 Not Commercial 

Albizia chinensis 
(Osbeck) Merr. 

Tw25206, 
Tw10957, Tw50580 

Tw41850 Not Commercial 

Albizia coriaria 
Welw. ex Oliv. 

Tw1214, Tw20703, 
Tw7131 

Tw6962 Not Commercial 

Albizia ferruginea 
(Guill. & Perr.) 
Benth. 

Tw724, Tw1544, 
Tw609, Tw842 

Tw1450, Tw1172 Commercial 

Albizia glaberrima 
(Schumach. & 
Thonn.) Benth. 

Tw29572, Tw29594 Tw25101 Not Commercial 

Albizia glaberrima 
var. glabrescens 
(Oliv.) Brenan 

Tw8122 Tw4764 Not Commercial 

Albizia gummifera 
(J.F.Gmel.) C.A.Sm. 

Tw690, Tw528 Tw1141 Not Commercial 

Albizia gummifera 
var. ealaensis (De 
Wild.) Brenan 

Tw2164, Tw926, 
Tw1111 

Tw262 Not Commercial 

Albizia laurentii De 
Wild. 

Tw20615, Tw3607 Tw1670 Not Commercial 

Albizia lebbeck (L.) 
Benth. 

Tw30609 Tw10908 Not Commercial 

Albizia 
schimperiana Oliv. 

Tw43691 Tw43690 Not Commercial 

Albizia versicolor 
Welw. ex Oliv. 

Tw6998, Tw7584, 
Tw3586 

Tw2014, Tw2389 Not Commercial 
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Albizia zygia (DC.) 
J.F.Macbr. 

Tw3625, Tw657 Tw20707 Not Commercial 

Amphimas Pierre 
ex Harms 

5 2 Amphimas 
ferrugineus Pierre 
ex Pellegr. 

Tw32663, Tw2036, 
Tw1289 

Tw32495 Commercial 

Amphimas 
pterocarpoides 
Harms 

Tw394, Tw3694 Tw1404 Commercial 

Annea Mackinder & 
Wieringa 

2 1 Annea laxiflora 
(Benth.) Mackinder 
& Wieringa 

Tw28601, Tw32418 Tw28470 Not Commercial 

Anthonotha 
P.Beauv. 

4 3 Anthonotha brieyi 
(De Wild.) 
J.Léonard 

Tw19374, Tw95 Tw1206 Not Commercial 

Anthonotha 
fragrans (Baker f.) 
Exell & Hillc. 

Tw3600 Tw1056 Not Commercial 

Anthonotha 
pynaertii (De Wild.) 
Exell & Hillc. 

Tw7539 Tw33471 Not Commercial 

Aphanocalyx Oliv. 4 2 Aphanocalyx 
cynometroides 
Oliv. 

Tw62474, Tw7639 Tw62443 Not Commercial 

Aphanocalyx 
microphyllus 
(Harms) Wieringa 

Tw7145, Tw4949 Tw2050 Not Commercial 

Baikiaea Benth. 5 3 Baikiaea insignis 
Benth. 

Tw24394, 
Tw24393, Tw25687 

Tw21538, Tw10287 Not Commercial 

Baikiaea robynsii 
Ghesq. ex Laing 

Tw40341, Tw39908 Tw33344 Not Commercial 

Baphia Afzel. ex 
G.Lodd. 

10 6 Baphia bequaertii 
De Wild. 

Tw28161, 
Tw24225, Tw24350 

Tw23671, Tw23670 Not Commercial 

Baphia dewevrei 
De Wild. 

Tw49182 Tw39910 Not Commercial 

Baphia 
massaiensis Taub. 

Tw28666 Tw28567 Not Commercial 

Baphia nitida 
G.Lodd. 

Tw29890, 
Tw14446, Tw14497 

Tw28779 Not Commercial 

Baphia pubescens 
Hook.f. 

Tw32737, Tw30012 Tw29855 Not Commercial 

Berlinia Sol. ex 
Hook.f. & Benth. 

10 5 Berlinia bracteosa 
Benth. 

Tw10786, Tw789, 
Tw113 

Tw57428 Commercial 

Berlinia confusa 
Hoyle 

Tw24418, 
Tw12967, Tw32021 

Tw30016 Not Commercial 

Berlinia 
congolensis (Baker 
f.) Keay 

Tw32626 Tw1438 Not Commercial 

Berlinia 
grandiflora (Vahl) 
Hutch. & Dalziel 

Tw8439, Tw3492, 
Tw49435 

Tw22674, Tw32753 Commercial 
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Bobgunnia 
J.H.Kirkbr. & 
Wiersema 

6 3 Bobgunnia 
fistuloides 
(Harms) 
J.H.Kirkbr. & 
Wiersema 

Tw22594, 
Tw18782, 
Tw51757, Tw25708 

Tw13500, Tw11245 Commercial 

Bobgunnia 
madagascariensis 
(Desv.) J.H.Kirkbr. & 
Wiersema 

Tw304, Tw28165 Tw20586 Not Commercial 

Brachystegia 
Benth. 

27 14 Brachystegia 
boehmii Taub. 

Tw61780, 
Tw44583, Tw19267 

Tw57541 Not Commercial 

Brachystegia 
bussei Harms 

Tw61765, Tw61764 Tw19268 Not Commercial 

Brachystegia 
laurentii (De Wild.) 
Louis ex J.Léonard 

Tw30675, Tw2540, 
Tw1562, Tw2414 

Tw1363, Tw1030 Commercial 

Brachystegia 
longifolia Benth. 

Tw28190, 
Tw11379, Tw329 

Tw11278, Tw11288 Not Commercial 

Brachystegia 
manga De Wild. 

Tw56370, 
Tw19270, Tw61812 

Tw61785 Not Commercial 

Brachystegia 
spiciformis Benth. 

Tw3887, Tw320, 
Tw2002, Tw345 

Tw11303, Tw11326 Not Commercial 

Brachystegia 
tamarindoides 
subsp. microphylla 
(Harms) Chikuni 

Tw19274, Tw28416 Tw19271 Not Commercial 

Brachystegia 
tamarindoides 
subsp. 
tamarindoides 

Tw28607 Tw1577 Not Commercial 

Brachystegia 
taxifolia Harms 

Tw3592, Tw24234, 
Tw330 

Tw11269, Tw11302 Not Commercial 

Brachystegia utilis 
Hutch. & Burtt Davy 

Tw2370, Tw20562 Tw1373 Not Commercial 

Burkea Benth. 3 1 Burkea africana 
Hook. 

Tw19275, 
Tw29610, Tw17181 

Tw20563 Not Commercial 

Cassia L. 5 3 Cassia mannii Oliv. Tw3598, Tw40369 Tw264 Not Commercial 

Cassia sieberiana 
DC. 

Tw53923, 
Tw51672, Tw49425 

Tw10885, Tw41426 Not Commercial 

Copaifera L. 4 3 Copaifera 
mildbraedii 
Harms 

Tw8430, Tw7472, 
Tw8299 

Tw7109, Tw5228 Commercial 

Copaifera religiosa 
J.Léonard 

Tw48331 Tw26874 Not Commercial 

Craibia Harms & 
Dunn 

5 3 Craibia affinis (De 
Wild.) De Wild. 

Tw973 Tw4198 Not Commercial 

Craibia grandiflora 
(Micheli) Baker f. 

Tw5068, Tw7353 Tw2360 Not Commercial 

Craibia lujae De 
Wild. 

Tw7750, Tw8298 Tw7125 Not Commercial 
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Crudia Schreb. 3 2 Crudia harmsiana 
De Wild. 

Tw8410, Tw39900 Tw39899 Not Commercial 

Crudia laurentii De 
Wild. 

Tw39884 Tw3954 Not Commercial 

Cryptosepalum 
Benth. 

1 1 Cryptosepalum 
exfoliatum De Wild. 

Tw28259 Tw28160 Not Commercial 

Cylicodiscus 
Harms 

3 2 Cylicodiscus 
gabunensis Harms 

Tw29781, 
Tw25735, Tw18881 

Tw18765, Tw14033 Not Commercial 

Cynometra L. 13 7 Cynometra 
alexandri 
C.H.Wright 

Tw3489, Tw1992, 
Tw1747 

Tw2394 Commercial 

Cynometra hankei 
Harms 

Tw1668, Tw2152, 
Tw589 

Tw1662, Tw1158 Commercial 

Cynometra lujae 
De Wild. 

Tw7161, Tw4765 Tw1440 Not Commercial 

Cynometra mannii 
Oliv. 

Tw25692, Tw24420 Tw24419 Not Commercial 

Cynometra 
sessiliflora Harms 

Tw8063, Tw3490, 
Tw7136 

Tw27064, Tw1529 Not Commercial 

Dalbergia L.f. 1 1 Dalbergia boehmii 
Taub. 

Tw24384 Tw21191 Not Commercial 

Daniellia Benn. 13 6 Daniellia 
alsteeniana 
P.A.Duvign. 

Tw20565, 
Tw21750, Tw778 

Tw7182 Not Commercial 

Daniellia klainei 
Pierre ex A.Chev. 

Tw51768, Tw4838, 
Tw48454 

Tw41218, Tw10752 Not Commercial 

Daniellia oliveri 
(Rolfe) Hutch. & 
Dalziel 

Tw14038, Tw877, 
Tw20501 

Tw3676 Not Commercial 

Daniellia pynaertii 
De Wild. 

Tw51745, Tw901 Tw23020 Commercial 

Daniellia soyauxii 
(Harms) Rolfe 

Tw5352, Tw8395 Tw18766 Not Commercial 

Dialium L. 22 9 Dialium 
englerianum 
Henriq. 

Tw26915, Tw8414, 
Tw10201 

Tw44562 Not Commercial 

Dialium excelsum 
Louis ex Steyaert 

Tw7638, Tw3612, 
Tw7342 

Tw1107, Tw2429 Not Commercial 

Dialium 
pachyphyllum 
Harms 

Tw61981, 
Tw51772, Tw852, 
Tw6745, Tw57704 

Tw100, Tw4826 Not Commercial 

Dialium 
pentandrum Louis 
ex Steyaert 

Tw21873, 
Tw13337, Tw7580 

Tw3685 Not Commercial 

Dialium 
polyanthum Harms 

Tw696, Tw2474, 
Tw2473 

Tw2478 Not Commercial 

Dialium tessmannii 
Harms 

Tw61162, Tw32636 Tw32248 Not Commercial 

Dialium zenkeri 
Harms 

Tw10163, Tw7743, 
Tw5018 

Tw7708 Not Commercial 
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Dichrostachys 
(A.DC.) Wight & 
Arn. 

4 2 Dichrostachys 
cinerea (L.) Wight & 
Arn. 

Tw28572, 
Tw29050, 
Tw26730, Tw3957 

Tw23518, Tw22650 Not Commercial 

Entada Adans. 1 1 Entada abyssinica 
Steud. ex A.Rich. 

Tw3593 Tw21194 Not Commercial 

Erythrina L. 6 4 Erythrina 
abyssinica Lam. 

Tw755 Tw20580 Not Commercial 

Erythrina 
droogmansiana De 
Wild. & T.Durand 

Tw8441, Tw5022, 
Tw26829 

Tw5161 Not Commercial 

Erythrina excelsa 
Baker 

Tw5255 Tw24380 Not Commercial 

Erythrina orophila 
Ghesq. 

Tw5078 Tw1068 Not Commercial 

Erythrophleum 
Afzel. ex G.Don 

9 5 Erythrophleum 
africanum (Benth.) 
Harms 

Tw312, Tw29619, 
Tw3588 

Tw11356, Tw18720 Not Commercial 

Erythrophleum 
suaveolens (Guill. 
& Perr.) Brenan 

Tw321, Tw853, 
Tw931, Tw96, 
Tw34933, Tw864 

Tw131, Tw1187, 
Tw32962 

Commercial 

Faidherbia A.Chev. 3 1 Faidherbia albida 
(Delile) A.Chev. 

Tw44661, 
Tw28184, Tw29593 

Tw30347 Not Commercial 

Fillaeopsis Harms 3 2 Fillaeopsis 
discophora Harms 

Tw531, Tw981, 
Tw7685 

Tw44, Tw2134 Not Commercial 

Gilbertiodendron 
J.Léonard 

13 8 Gilbertiodendron 
dewevrei (De 
Wild.) J.Léonard 

Tw568, Tw549, 
Tw5215 

Tw2018, Tw332 Commercial 

Gilbertiodendron 
grandiflorum (De 
Wild.) J.Léonard 

Tw5175, Tw5094 Tw105 Not Commercial 

Gilbertiodendron 
grandistipulatum 
(De Wild.) 
J.Léonard 

Tw5097, Tw5093, 
Tw5092, Tw5095 

Tw1252, Tw42 Not Commercial 

Gilbertiodendron 
mayombense 
(Pellegr.) J.Léonard 

Tw26259 Tw19376 Not Commercial 

Gilbertiodendron 
ogoouense 
(Pellegr.) J.Léonard 

Tw5138, Tw398, 
Tw3441 

Tw3439, Tw3440 Not Commercial 

Gilletiodendron 
Vermoesen 

5 3 Gilletiodendron 
kisantuense 
(Vermoesen ex De 
Wild.) J.Léonard 

Tw60050, Tw60051 Tw29479 Not Commercial 

Gilletiodendron 
mildbraedii 
(Harms) 
Vermoesen 

Tw3693, Tw1975, 
Tw2390 

Tw1169, Tw1106 Not Commercial 

Guibourtia Benn. 10 5 Guibourtia 
arnoldiana (De 

Tw1622, Tw1414, 
Tw1507 

Tw1508 Commercial 
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Wild. & T.Durand) 
J.Léonard 
Guibourtia 
coleosperma 
(Benth.) J.Léonard 

Tw13508, Tw4203, 
Tw22751 

Tw29612 Not Commercial 

Guibourtia 
demeusei (Harms) 
J.Léonard 

Tw32757 Tw31 Commercial 

Guibourtia ehie 
(A.Chev.) 
J.Léonard 

Tw22580, 
Tw18884, Tw25777 

Tw13426, Tw12955 Commercial 

Hylodendron Taub. 3 1 Hylodendron 
gabunense Taub. 

Tw1275, Tw1422, 
Tw3636 

Tw25757 Not Commercial 

Hymenostegia 
Harms 

3 2 Hymenostegia 
mundungu 
(Pellegr.) J.Léonard 

Tw7256, Tw8062, 
Tw7737 

Tw7162, Tw10141 Not Commercial 

Intsia Thouars 3 2 Intsia bijuga var. 
bijuga 

Tw27153, 
Tw22581, Tw26099 

Tw11652, Tw22514 Not Commercial 

Isoberlinia Craib & 
Stapf 

6 3 Isoberlinia 
angolensis (Welw. 
ex Benth.) Hoyle & 
Brenan 

Tw5257, Tw28173 Tw20568 Not Commercial 

Isoberlinia doka 
Craib & Stapf 

Tw48547, 
Tw49428, Tw18192 

Tw48548 Not Commercial 

Isoberlinia 
tomentosa (Harms) 
Craib & Stapf 

Tw49427 Tw3879 Not Commercial 

Julbernardia 
Pellegr. 

12 7 Julbernardia brieyi 
(De Wild.) Troupin 

Tw30657 Tw1441 Not Commercial 

Julbernardia 
globiflora (Benth.) 
Troupin 

Tw19280, 
Tw19279, Tw763 

Tw19281 Not Commercial 

Julbernardia 
paniculata (Benth.) 
Troupin 

Tw24348, Tw3891, 
Tw27515 

Tw24347, Tw20570 Not Commercial 

Julbernardia 
pellegriniana 
Troupin 

Tw29484 Tw18779 Commercial 

Julbernardia seretii 
(De Wild.) Troupin 

Tw5326, Tw2285, 
Tw3958, Tw2281 

Tw1539, Tw1611 Not Commercial 

Lonchocarpus 
Kunth 

1 1 Lonchocarpus 
sericeus (Poir.) 
Kunth ex DC. 

Tw28204 Tw11240 Not Commercial 

Millettia Wight & 
Arn. 

15 7 Millettia drastica 
Welw. ex Baker 

Tw891, Tw21965 Tw1198 Not Commercial 

Millettia dura Dunn Tw4320, Tw905 Tw1213 Not Commercial 

Millettia 
eetveldeana 
(Micheli) Hauman 

Tw4328, Tw8255 Tw2043 Not Commercial 
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Millettia laurentii 
De Wild. 

Tw532, Tw59847, 
Tw3894, Tw5227, 
Tw425 

Tw1988, Tw281 Commercial 

Millettia 
stuhlmannii Taub. 

Tw25676 Tw20822 Not Commercial 

Millettia versicolor 
Welw. ex Baker 

Tw20679, Tw18, 
Tw5 

Tw28 Not Commercial 

Newtonia Baill. 12 5 Newtonia 
aubrevillei 
(Pellegr.) Keay 

Tw10414, Tw808, 
Tw10403 

Tw3602 Not Commercial 

Newtonia 
buchananii (Baker) 
G.C.C.Gilbert & 
Boutique 

Tw8095, Tw20708, 
Tw18879 

Tw2202 Not Commercial 

Newtonia 
glandulifera 
(Pellegr.) 
G.C.C.Gilbert & 
Boutique 

Tw8393, Tw7587, 
Tw1448 

Tw7753 Not Commercial 

Newtonia 
leucocarpa 
(Harms) 
G.C.C.Gilbert & 
Boutique 

Tw7340, Tw64766, 
Tw4821 

Tw25765, Tw2133 Not Commercial 

Pachyelasma 
Harms 

3 1 Pachyelasma 
tessmannii 
(Harms) Harms 

Tw3959, Tw1246, 
Tw1163 

Tw29478 Not Commercial 

Paramacrolobium 
J.Léonard 

3 1 Paramacrolobium 
coeruleum (Taub.) 
J.Léonard 

Tw697, Tw7699, 
Tw1129 

Tw729 Not Commercial 

Parkia R.Br. 3 1 Parkia bicolor 
A.Chev. 

Tw43409, 
Tw38609, Tw64617 

Tw57203 Not Commercial 

Peltophorum 
(Vogel) Benth. 

1 1 Peltophorum 
africanum Sond. 

Tw26830 Tw20571 Not Commercial 

Pentaclethra 
Benth. 

9 4 Pentaclethra 
eetveldeana De 
Wild. & T.Durand 

Tw43406, Tw2524, 
Tw2527, Tw2525, 
Tw2522, Tw2528 

Tw152, Tw1369, 
Tw2523 

Not Commercial 

Pentaclethra 
macrophylla Benth. 

Tw1458, Tw5205, 
Tw1720 

Tw3946 Not Commercial 

Pericopsis 
Thwaites 

9 4 Pericopsis 
angolensis (Baker) 
Meeuwen 

Tw21116, Tw3888, 
Tw28843 

Tw20572, Tw18888 Not Commercial 

Pericopsis elata 
(Harms) Meeuwen 

Tw7648, Tw248, 
Tw1861, Tw1237, 
Tw3613, Tw1520 

Tw1100, Tw17985 Commercial 

Piliostigma Hochst. 1 1 Piliostigma 
thonningii 
(Schumach.) Milne-
Redh. 

Tw28157 Tw20556 Not Commercial 
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Piptadeniastrum 
Brenan 

3 2 Piptadeniastrum 
africanum 
(Hook.f.) Brenan 

Tw25103, Tw957, 
Tw960 

Tw1533, Tw1985 Commercial 

Platysepalum 
Welw. ex Baker 

2 2 Platysepalum 
chevalieri Harms 

Tw9174 Tw5069 Not Commercial 

Platysepalum 
violaceum Welw. 
ex Baker 

Tw4330 Tw33039 Not Commercial 

Prioria Griseb. 9 6 Prioria 
balsamifera 
(Vermoesen) 
Breteler 

Tw51767, 
Tw33490, Tw3616 

Tw1334, Tw1417 Commercial 

Prioria buchholzii 
(Harms) Breteler 

Tw435, Tw29630 Tw1269 Not Commercial 

Prioria mannii 
(Baill.) Breteler 

Tw7680 Tw11241 Not Commercial 

Prioria oxyphylla 
(Harms) Breteler 

Tw60038, 
Tw60049, Tw60033 

Tw60031, Tw1109 Commercial 

Pterocarpus Jacq. 38 14 Pterocarpus 
angolensis DC. 

Tw344, Tw18724, 
Tw11369, 
Tw17187, 
Tw10286, 
Tw11636, 
Tw19284, Tw8261, 
Tw768, Tw1013, 
Tw11266, Tw11390 

Tw8325, Tw11635, 
Tw11338, 
Tw19369, Tw20583 

Not Commercial 

Pterocarpus 
rotundifolius 
(Sond.) Druce 

Tw28199, Tw28123 Tw23063 Not Commercial 

Pterocarpus 
soyauxii Taub. 

Tw29805, Tw1826, 
Tw955, Tw7654, 
Tw29088, 
Tw51777, Tw3760, 
Tw236, Tw392, 
Tw7671, Tw10773, 
Tw1131 

Tw463, Tw836, 
Tw718, Tw346 

Commercial 

Pterocarpus 
tinctorius Welw. 

Tw1010, Tw1322, 
Tw13506, Tw26, 
Tw762, Tw1021, 
Tw20585, 
Tw11420, 
Tw11327, Tw30, 
Tw19386, Tw313 

Tw41191, Tw1426, 
Tw29542, Tw24162 

Commercial 

Senegalia Raf. 1 1 Senegalia senegal 
(L.) Britton 

Tw41460 Tw23499 Not Commercial 

Senna Mill. 3 1 Senna siamea 
(Lam.) H.S.Irwin & 
Barneby 

Tw951, Tw11106, 
Tw1032 

Tw710 Not Commercial 

Tamarindus Tourn. 
ex L. 

3 2 Tamarindus indica 
L. 

Tw19625, 
Tw18301, Tw5163 

Tw17418, Tw11018 Not Commercial 
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Tessmannia Harms 8 6 Tessmannia 
africana Harms 

Tw56967 Tw1272 Commercial 

Tessmannia 
anomala (Micheli) 
Harms 

Tw2362, Tw3953 Tw14835 Commercial 

Tessmannia 
anomala var. 
flamignii J.Léonard 

Tw2279 Tw2276 Not Commercial 

Tessmannia 
lescrauwaetii (De 
Wild.) Harms 

Tw7173, Tw5295, 
Tw7228 

Tw5211, Tw5231 Commercial 

Tessmannia 
yangambiensis 
Louis ex J.Léonard 

Tw7199 Tw1189 Not Commercial 

Tetraberlinia 
(Harms) Hauman 

3 2 Tetraberlinia 
bifoliolata (Harms) 
Hauman 

Tw43754, 
Tw42963, Tw44694 

Tw24415, Tw25691 Not Commercial 

Tetrapleura Benth. 3 2 Tetrapleura 
tetraptera 
(Schumach. & 
Thonn.) Taub. 

Tw56, Tw61105, 
Tw53891 

Tw120, Tw2197 Not Commercial 

Vachellia Wight & 
Arn. 

2 2 Vachellia 
abyssinica 
(Hochst. ex Benth.) 
Kyal. & Boatwr. 

Tw39177 Tw28151 Not Commercial 

Vachellia seyal 
(Delile) 
P.J.H.Hurter 

Tw30353 Tw30352 Not Commercial 

Gentianaceae 7 4 Anthocleista Afzel. 
ex R.Br. 

7 4 Anthocleista 
grandiflora Gilg 

Tw17189 Tw1185 Not Commercial 

Anthocleista 
nobilis G.Don 

Tw3071, Tw3069, 
Tw3070 

Tw25768, Tw3066 Not Commercial 

Anthocleista 
schweinfurthii Gilg 

Tw1183, Tw29297, 
Tw1229 

Tw23926 Not Commercial 

Huaceae 1 1 Hua Pierre ex De 
Wild. 

1 1 Hua gaboni Pierre 
ex De Wild. 

Tw7995 Tw32243 Not Commercial 

Hypericaceae 3 1 Harungana Lam. 3 1 Harungana 
madagascariensis 
Poir. 

Tw871, Tw2500, 
Tw2564 

Tw819 Not Commercial 

Irvingiaceae 18 11 Desbordesia Pierre 
ex Tiegh. 

3 2 Desbordesia 
glaucescens (Engl.) 
Tiegh. 

Tw22741, 
Tw25705, Tw18758 

Tw10793, Tw1208 Not Commercial 

Irvingia Hook.f. 12 7 Irvingia 
gabonensis 
(Aubry-Lecomte 
ex O'Rorke) Baill. 

Tw8166, Tw5238, 
Tw9749 

Tw1647, Tw260 Commercial 

Irvingia grandifolia 
(Engl.) Engl. 

Tw2485, Tw137, 
Tw1117 

Tw1415 Commercial 

Irvingia robur 
Mildbr. 

Tw7980, Tw8235, 
Tw2487 

Tw10145, Tw2486 Not Commercial 
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Irvingia smithii 
Hook.fil. 

Tw9783 Tw13339 Not Commercial 

Irvingia 
tenuinucleata 
Tiegh. 

Tw7142, Tw9781 Tw3049 Not Commercial 

Klainedoxa Pierre 
ex Engl. 

3 2 Klainedoxa 
gabonensis Pierre 

Tw8279, Tw5332, 
Tw6954 

Tw1435, Tw2398 Commercial 

Ixonanthaceae 2 1 Phyllocosmus 
Klotzsch 

2 1 Phyllocosmus 
africanus 
(Hook.fil.) Klotzsch 

Tw2216, Tw9770 Tw1120 Not Commercial 

Kirkiaceae 2 1 Kirkia Oliv. 2 1 Kirkia acuminata 
Oliv. 

Tw28189, Tw24054 Tw18997 Not Commercial 

Lamiaceae 31 14 Gmelina L. 9 3 Gmelina arborea 
Roxb. ex Sm. 

Tw25291, 
Tw57692, 
Tw18090, 
Tw14064, 
Tw31785, 
Tw14451, 
Tw29514, 
Tw44885, Tw60284 

Tw29515, 
Tw14280, Tw53935 

Not Commercial 

Premna L. 3 1 Premna angolensis 
Gürke 

Tw39150, 
Tw28127, Tw20731 

Tw28477 Not Commercial 

Tectona L.f. 3 1 Tectona grandis L.f. Tw767, Tw11055, 
Tw13935 

Tw3805 Not Commercial 

Vitex L. 16 9 Vitex congolensis 
De Wild. & 
T.Durand 

Tw20613, Tw7237 Tw10222 Not Commercial 

Vitex congolensis 
var. congolensis 

Tw2039, Tw1791, 
Tw7575 

Tw1563, Tw1114 Not Commercial 

Vitex doniana 
Sweet 

Tw18592, Tw1245, 
Tw302 

Tw1000, Tw10800 Not Commercial 

Vitex ferruginea 
Schumach. & 
Thonn. 

Tw28639, 
Tw61051, Tw61425 

Tw61373 Not Commercial 

Vitex madiensis 
Oliv. 

Tw2033, Tw780 Tw56974 Not Commercial 

Vitex madiensis 
subsp. milanjiensis 
(Britten) F.White 

Tw1825, Tw754 Tw28453 Not Commercial 

Vitex mombassae 
Vatke 

Tw8527 Tw1146 Not Commercial 

Lauraceae 16 8 Beilschmiedia 
Nees 

13 7 Beilschmiedia 
congolana Robyns 
& R.Wilczek 

Tw5210, Tw33511 Tw32863 Commercial 

Beilschmiedia 
corbisieri (Robyns) 
Robyns & R.Wilczek 

Tw839, Tw543, 
Tw719 

Tw1255, Tw513 Not Commercial 

Beilschmiedia 
louisii Robyns & 
R.Wilczek 

Tw4334 Tw1099 Not Commercial 



110 
 

Beilschmiedia 
mannii (Meisn.) 
Robyns & R.Wilczek 

Tw44011, 
Tw10372, Tw12941 

Tw30093 Not Commercial 

Beilschmiedia 
oblongifolia 
Robyns & R.Wilczek 

Tw7457, Tw1607, 
Tw5082 

Tw5083 Not Commercial 

Beilschmiedia 
ugandensis Rendle 

Tw45063 Tw4201 Not Commercial 

Persea Mill. 3 1 Persea americana 
Mill. 

Tw24643, 
Tw19159, Tw19160 

Tw22468 Not Commercial 

Lecythidaceae 3 2 Petersianthus 
Merr. 

3 2 Petersianthus 
macrocarpus 
(P.Beauv.) Liben 

Tw989, Tw815, 
Tw889 

Tw282, Tw693 Commercial 

Loganiaceae 7 4 Brenania Keay 2 1 Brenania brieyi (De 
Wild.) E.M.A.Petit 

Tw66, Tw30902 Tw30897 Not Commercial 

Strychnos L. 5 3 Strychnos 
cocculoides Baker 

Tw28270 Tw24361 Not Commercial 

Strychnos innocua 
Delile 

Tw24360 Tw2399 Not Commercial 

Strychnos spinosa 
Lam. 

Tw56901, 
Tw24357, Tw56904 

Tw56902 Not Commercial 

Malvaceae 46 29 Adansonia L. 1 1 Adansonia digitata 
L. 

Tw53835 Tw25915 Not Commercial 

Ceiba Mill. 3 2 Ceiba pentandra 
(L.) Gaertn. 

Tw622, Tw8159, 
Tw8138 

Tw50225, Tw251 Not Commercial 

Cola Schott & Endl. 9 6 Cola ballayi Cornu 
ex Tschirch & 
O.Oesterle 

Tw8486, Tw2217, 
Tw62026 

Tw6953 Not Commercial 

Cola cordifolia 
(Cav.) R.Br. 

Tw41336 Tw30698 Not Commercial 

Cola gigantea 
A.Chev. 

Tw56987 Tw22813 Not Commercial 

Cola lateritia 
K.Schum. 

Tw9175, Tw8224 Tw10338 Not Commercial 

Cola nitida (Vent.) 
Schott & Endl. 

Tw57419 Tw57182 Not Commercial 

Cola welwitschii 
Exell & Mendonça 

Tw29586 Tw28133 Not Commercial 

Desplatsia Bocq. 3 1 Desplatsia 
subericarpa Bocq. 

Tw7313, Tw185, 
Tw1860 

Tw6975 Not Commercial 

Dombeya Cav. 4 2 Dombeya 
rotundifolia 
(Hochst.) Planch. 

Tw26043, 
Tw24381, Tw44530 

Tw26110 Not Commercial 

Dombeya torrida 
(J.F.Gmel.) Bamps 

Tw24195 Tw19993 Not Commercial 

Duboscia Bocq. 3 1 Duboscia viridiflora 
(K.Schum.) Mildbr. 

Tw29808, 
Tw30889, Tw62418 

Tw43837 Not Commercial 

Grewia L. 1 1 Grewia louisii 
R.Wilczek 

Tw8225 Tw7544 Not Commercial 

Heritiera Aiton 1 1 Heritiera littoralis 
Dryand. ex Aiton 

Tw13932 Tw11632 Not Commercial 



111 
 

Microcos L. 4 3 Microcos coriacea 
(Mast.) Burret 

Tw2645 Tw2644 Not Commercial 

Microcos 
pinnatifida (Mast.) 
Burret 

Tw2647, Tw2643, 
Tw7253 

Tw1897, Tw187 Not Commercial 

Nesogordonia Baill. 6 4 Nesogordonia 
kabingaensis 
(K.Schum.) 
Capuron 

Tw64765, Tw3634, 
Tw266 

Tw129, Tw1512 Commercial 

Nesogordonia 
papaverifera 
(A.Chev.) Capuron 

Tw14117, 
Tw14118, Tw14060 

Tw11446, Tw13942 Commercial 

Pterygota Schott & 
Endl. 

5 3 Pterygota 
bequaertii De 
Wild. 

Tw25719, Tw2434 Tw1138 Commercial 

Pterygota 
macrocarpa 
K.Schum. 

Tw2721, Tw14057, 
Tw21879 

Tw11082, Tw11443 Commercial 

Sterculia L. 4 3 Sterculia 
quinqueloba 
(Garcke) K.Schum. 

Tw732 Tw2247 Not Commercial 

Sterculia 
tragacantha Lindl. 

Tw7693, Tw5088, 
Tw6961 

Tw28250, Tw1475 Not Commercial 

Triplochiton 
K.Schum. 

2 1 Triplochiton 
scleroxylon 
K.Schum. 

Tw879, Tw68416 Tw65071 Commercial 

Melastomataceae 1 1 Dichaetanthera 
Endl. 

1 1 Dichaetanthera 
corymbosa (Cogn.) 
Jacq.-Fél. 

Tw33391 Tw24202 Not Commercial 

Meliaceae 152 62 Carapa Aubl. 6 2 Carapa procera 
DC. 

Tw7506, Tw22440, 
Tw257, Tw8101, 
Tw909, Tw7104 

Tw67, Tw1603 Not Commercial 

Ekebergia Sparrm. 5 3 Ekebergia 
benguelensis 
Welw. ex C.DC. 

Tw28179, Tw9815 Tw24219 Not Commercial 

Ekebergia capensis 
Sparrm. 

Tw9785, Tw738, 
Tw9800 

Tw20915, Tw23849 Not Commercial 

Entandrophragma 
C.DC. 

56 22 Entandrophragma 
angolense (Welw.) 
C.DC. 

Tw243, Tw554, 
Tw530, Tw133, 
Tw713, Tw1550, 
Tw5354, Tw2536, 
Tw1212, Tw1543, 
Tw384, Tw378, 
Tw8484, Tw1982 

Tw1432, Tw3630, 
Tw1118, Tw7468, 
Tw43 

Commercial 

Entandrophragma 
candollei Harms 

Tw5036, Tw5035, 
Tw1653, Tw9805, 
Tw32292, Tw566, 
Tw5032, Tw1535, 
Tw350, Tw5031, 
Tw20824 

Tw9755, Tw14044, 
Tw11747, Tw51782 

Commercial 
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Entandrophragma 
cylindricum 
(Sprague) Sprague 

Tw866, Tw14076, 
Tw941, Tw1324, 
Tw1043, Tw912, 
Tw11069, Tw527, 
Tw11465 

Tw10476, Tw233, 
Tw867 

Commercial 

Entandrophragma 
delevoyi De Wild. 

Tw11394, Tw310, 
Tw20588 

Tw26881 Not Commercial 

Entandrophragma 
excelsum (Dawe & 
Sprague) Sprague 

Tw1232, Tw14125, 
Tw750, Tw8096 

Tw1057, Tw1059 Not Commercial 

Entandrophragma 
palustre Staner 

Tw733, Tw862, 
Tw904 

Tw605, Tw1160 Not Commercial 

Entandrophragma 
utile (Dawe & 
Sprague) Sprague 

Tw8192, Tw1534, 
Tw134, Tw2161, 
Tw20826, Tw914, 
Tw18783, Tw1315, 
Tw3632, Tw14046, 
Tw1102, Tw1329 

Tw1410, Tw245, 
Tw9801, Tw13391, 
Tw32368 

Commercial 

Khaya A.Juss. 14 6 Khaya anthotheca 
(Welw.) C.DC. 

Tw8381, Tw26913, 
Tw9787, Tw209, 
Tw44570, Tw9814, 
Tw8382, Tw558 

Tw215, Tw45, 
Tw838 

Commercial 

Khaya 
grandifoliola 
C.DC. 

Tw39363, Tw7355, 
Tw7351, Tw18904, 
Tw43840, Tw50773 

Tw18193, 
Tw22771, Tw14507 

Commercial 

Leplaea 
Vermoesen 

30 10 Leplaea cedrata 
(A.Chev.) 
E.J.M.Koenen & 
J.J.de Wilde 

Tw20827, 
Tw32811, 
Tw18784, 
Tw43852, 
Tw50299, 
Tw26497, 
Tw17991, Tw1305, 
Tw85, Tw660, 
Tw7455, Tw1655, 
Tw14047, Tw8322, 
Tw29916 

Tw406, Tw12958, 
Tw14077, Tw295, 
Tw7484 

Commercial 

Leplaea laurentii 
(De Wild.) 
E.J.M.Koenen & 
J.J.de Wilde 

Tw373, Tw338, 
Tw621 

Tw603 Not Commercial 

Leplaea 
thompsonii 
(Sprague & Hutch.) 
E.J.M.Koenen & 
J.J.de Wilde 

Tw1190, Tw7262, 
Tw26919, 
Tw32715, Tw5338, 
Tw7157, Tw46414, 
Tw9799, Tw26905, 
Tw2030, Tw1110, 
Tw1388 

Tw9752, Tw3233, 
Tw5339, Tw5145 

Commercial 

Lovoa Harms 17 6 Lovoa trichilioides 
Harms 

Tw18786, 
Tw32236, 
Tw29794, Tw449, 
Tw7622, Tw20604, 
Tw11065, Tw593, 

Tw14049, 
Tw51784, 
Tw26496, 
Tw10779, 
Tw39119, Tw9798 

Commercial 
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Tw17993, 
Tw12932, Tw7358, 
Tw533, Tw20829, 
Tw25775, 
Tw29906, Tw1465, 
Tw613 

Trichilia P.Browne 17 10 Trichilia dregeana 
Sond. 

Tw39121 Tw22775 Not Commercial 

Trichilia emetica 
subsp. emetica 

Tw39147 Tw13289 Not Commercial 

Trichilia gilgiana 
Harms 

Tw29632 Tw1911 Not Commercial 

Trichilia gilletii De 
Wild. 

Tw33536, Tw7540, 
Tw33154 

Tw34956 Not Commercial 

Trichilia 
monadelpha 
(Thonn.) J.De Wild. 

Tw22969, 
Tw33357, Tw2428 

Tw29964 Not Commercial 

Trichilia prieuriana 
A.Juss. 

Tw1896, Tw104, 
Tw29868 

Tw2055 Not Commercial 

Trichilia rubescens 
Oliv. 

Tw2876, Tw3284, 
Tw86 

Tw21947, Tw2874 Not Commercial 

Trichilia tessmannii 
Harms 

Tw29883 Tw2044 Not Commercial 

Trichilia welwitschii 
C.DC. 

Tw7322 Tw7178 Not Commercial 

Turraeanthus Baill. 7 3 Turraeanthus 
africanus (Welw. 
ex C.DC.) Pellegr. 

Tw20830, 
Tw54557, Tw1635, 
Tw2410, Tw858, 
Tw29968, Tw26490 

Tw17994, Tw2413, 
Tw64413 

Commercial 

Moraceae 44 22 Antiaris Lesch. 7 4 Antiaris toxicaria 
(Pers.) Lesch. 

Tw31032, Tw7338, 
Tw7568 

Tw25, Tw11457 Commercial 

Antiaris toxicaria 
subsp. welwitschii 
(Engl.) C.C.Berg 

Tw2266 Tw2112 Not Commercial 

Antiaris toxicaria 
var. africana Scott 
Elliot ex A.Chev. 

Tw14512, 
Tw17995, Tw53862 

Tw18911 Not Commercial 

Artocarpus 
J.R.Forst. & 
G.Forst. 

1 1 Artocarpus altilis 
(Parkinson) 
Fosberg 

Tw18579 Tw11626 Not Commercial 

Bosqueiopsis De 
Wild. & T.Durand 

2 1 Bosqueiopsis 
gilletii De Wild. & 
T.Durand 

Tw8244, Tw7218 Tw7130 Not Commercial 

Ficus L. 18 10 Ficus bubu Warb. Tw4824, Tw990, 
Tw7602 

Tw2020, Tw173 Not Commercial 

Ficus demeusei 
Warb. 

Tw7740 Tw28805 Not Commercial 

Ficus elastica 
Roxb. 

Tw48761 Tw44660 Not Commercial 

Ficus lutea Vahl Tw11628, 
Tw47922, Tw53945 

Tw53828 Not Commercial 
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Ficus mucuso 
Welw. ex Ficalho 

Tw1807, Tw1923 Tw1411 Not Commercial 

Ficus sur Forssk. Tw28210 Tw2111 Not Commercial 

Ficus sycomorus L. Tw26530 Tw13325 Not Commercial 

Ficus thonningii 
Blume 

Tw24368, Tw7529, 
Tw24026 

Tw33888 Not Commercial 

Ficus vogeliana 
(Miq.) Miq. 

Tw30668, Tw7942, 
Tw3609 

Tw6956 Not Commercial 

Milicia Sim 9 3 Milicia excelsa 
(Welw.) C.C.Berg 

Tw54822, Tw58, 
Tw51741, Tw1462, 
Tw256, Tw785, 
Tw235, Tw1463, 
Tw1121 

Tw54832, Tw1416, 
Tw391 

Commercial 

Treculia Decne. 2 1 Treculia africana 
Decne. ex Trécul 

Tw53901, Tw57422 Tw3608 Not Commercial 

Trilepisium Thouars 5 2 Trilepisium 
madagascariense 
DC. 

Tw40, Tw32949, 
Tw992, Tw59682, 
Tw291 

Tw25108, Tw20715 Not Commercial 

Myristicaceae 15 6 Coelocaryon Warb. 6 2 Coelocaryon 
botryoides 
Vermoesen 

Tw1707, Tw948, 
Tw615 

Tw8405 Not Commercial 

Coelocaryon 
preussii Warb. 

Tw1644, Tw94, 
Tw135 

Tw1849 Not Commercial 

Pycnanthus Warb. 3 1 Pycnanthus 
angolensis 
(Welw.) Exell 

Tw17999, 
Tw14052, Tw10336 

Tw1437 Commercial 

Staudtia Warb. 6 3 Staudtia 
kamerunensis 
Warb. 

Tw64739, 
Tw61419, Tw61366 

Tw61457 Not Commercial 

Staudtia 
kamerunensis var. 
gabonensis 
(Warb.) Fouilloy 

Tw51752, 
Tw57429, Tw59844 

Tw473, Tw328 Commercial 

Myrtaceae 12 7 Syzygium Gaertn. 12 7 Syzygium 
aromaticum (L.) 
Merr. & L.M.Perry 

Tw8185 Tw1034 Not Commercial 

Syzygium 
cordatum Hochst. 

Tw27770, 
Tw28873, Tw766 

Tw17196, Tw23906 Not Commercial 

Syzygium 
guineense (Willd.) 
DC. 

Tw59423, Tw57682 Tw21948 Not Commercial 

Syzygium 
owariense 
(P.Beauv.) Benth. 

Tw39115, Tw30941 Tw24353 Not Commercial 

Syzygium 
parvifolium (Engl.) 
Mildbr. 

Tw31491 Tw26066 Not Commercial 

Syzygium staudtii 
(Engl.) Mildbr. 

Tw176, Tw33557, 
Tw33058 

Tw33517 Not Commercial 
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Ochnaceae 6 3 Lophira Banks ex 
C.F.Gaertn. 

6 3 Lophira alata 
Banks ex 
C.F.Gaertn. 

Tw11463, Tw374, 
Tw11060, Tw731 

Tw10767, Tw10345 Commercial 

Lophira lanceolata 
Tiegh. ex Keay 

Tw30064, Tw887 Tw27540 Not Commercial 

Olacaceae 29 13 Coula Baill. 3 2 Coula edulis Baill. Tw7536, Tw1940, 
Tw25713 

Tw10758, Tw10346 Not Commercial 

Diogoa Exell ex 
Mendonça 

1 1 Diogoa zenkeri 
(Engl.) Exell & 
Mendonça 

Tw726 Tw3686 Not Commercial 

Heisteria Jacq. 3 1 Heisteria parvifolia 
Sm. 

Tw1798, Tw29791, 
Tw10139 

Tw2407 Not Commercial 

Okoubaka Pellegr. 
& Normand 

3 1 Okoubaka 
aubrevillei Pellegr. 
& Normand 

Tw6577, Tw21883, 
Tw8498 

Tw7135 Not Commercial 

Ongokea Pierre 6 2 Ongokea gore 
(Hua) Pierre 

Tw247, Tw824, 
Tw407, Tw56966, 
Tw470, Tw206 

Tw197, Tw389 Commercial 

Strombosia Blume 9 3 Strombosia 
grandifolia Hook.fil. 
ex Benth. 

Tw1291, Tw1456, 
Tw97 

Tw2015 Not Commercial 

Strombosia 
pustulata var. 
pustulata 

Tw1258, Tw1899, 
Tw10335 

Tw18794 Not Commercial 

Strombosia 
scheffleri Engl. 

Tw7504, Tw19983, 
Tw20718 

Tw7270 Not Commercial 

Strombosiopsis 
Engl. 

3 2 Strombosiopsis 
tetrandra Engl. 

Tw1902, Tw1987, 
Tw1713 

Tw10162, Tw1122 Not Commercial 

Ximenia L. 1 1 Ximenia americana 
L. 

Tw28424 Tw28372 Not Commercial 

Oleaceae 6 3 Olea L. 6 3 Olea capensis 
subsp. macrocarpa 
(C.H.Wright) I.Verd. 

Tw19991, 
Tw23492, Tw18196 

Tw23490 Not Commercial 

Olea europaea 
subsp. cuspidata 
(Wall. & G.Don) Cif. 

Tw19995 Tw19984 Not Commercial 

Olea welwitschii 
(Knobl.) Gilg & 
G.Schellenb. 

Tw39082, Tw39094 Tw28211 Not Commercial 

Pandaceae 1 1 Microdesmis 
Planch. 

1 1 Microdesmis 
kasaiensis 
J.Léonard 

Tw8081 Tw7316 Not Commercial 

Passifloraceae 3 1 Barteria Hook.f. 3 1 Barteria nigritana 
Hook.fil. 

Tw7209, Tw7701, 
Tw8094 

Tw7746 Not Commercial 

Penaeaceae 2 1 Psydrax Gaertn. 2 1 Psydrax palma 
(K.Schum.) Bridson 

Tw722, Tw355 Tw10158 Not Commercial 

Peraceae 2 1 Chaetocarpus 
Thwaites 

2 1 Chaetocarpus 
africanus Pax 

Tw8074, Tw8043 Tw7924 Not Commercial 

Phyllanthaceae 57 32 Antidesma L. 5 3 Antidesma 
laciniatum 
Müll.Arg. 

Tw62507, Tw62516 Tw32891 Not Commercial 
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Antidesma 
membranaceum 
Müll.Arg. 

Tw7332, Tw23522, 
Tw13377 

Tw10464, Tw10205 Not Commercial 

Bridelia Willd. 10 5 Bridelia atroviridis 
Müll.Arg. 

Tw829, Tw1856, 
Tw2077 

Tw7719 Not Commercial 

Bridelia brideliifolia 
(Pax) Fedde 

Tw44655 Tw21953 Not Commercial 

Bridelia ferruginea 
Benth. 

Tw39022, 
Tw28437, Tw28463 

Tw10207, Tw22732 Not Commercial 

Bridelia micrantha 
(Hochst.) Baill. 

Tw24387, 
Tw17168, Tw8221 

Tw28138 Not Commercial 

Cleistanthus 
Hook.f. ex Planch. 

7 4 Cleistanthus 
caudatus Pax 

Tw8449, Tw62504, 
Tw62495, 
Tw62477, Tw9776 

Tw50653, Tw62435 Not Commercial 

Cleistanthus 
inundatus 
J.Léonard 

Tw40348 Tw33366 Not Commercial 

Cleistanthus 
polystachyus 
Hook.f. ex Planch. 

Tw8099 Tw1604 Not Commercial 

Hymenocardia 
Wall. ex Lindl. 

5 3 Hymenocardia 
acida Tul. 

Tw7203, Tw23624 Tw10217 Not Commercial 

Hymenocardia 
ulmoides Oliv. 

Tw7220, Tw28202, 
Tw8078 

Tw1006, Tw10184 Not Commercial 

Maesobotrya 
Benth. 

1 1 Maesobotrya 
staudtii (Pax) 
Hutch. 

Tw39892 Tw184 Not Commercial 

Margaritaria L.f. 1 1 Margaritaria 
discoidea (Baill.) 
G.L.Webster 

Tw59600 Tw1444 Not Commercial 

Phyllanthus L. 3 1 Phyllanthus 
physocarpus 
Müll.Arg. 

Tw9778, Tw1127, 
Tw10198 

Tw33620 Not Commercial 

Pseudolachnostyli
s Pax 

3 1 Pseudolachnostyli
s maprouneifolia 
Pax 

Tw24221, 
Tw28175, Tw28232 

Tw28180 Not Commercial 

Uapaca Baill. 22 13 Uapaca guineensis 
Müll.Arg. 

Tw59820, 
Tw61424, Tw61372 

Tw380, Tw59813 Not Commercial 

Uapaca heudelotii 
Baill. 

Tw8247, Tw53895, 
Tw9768 

Tw26721, Tw195 Not Commercial 

Uapaca kirkiana 
Müll.Arg. 

Tw1684, Tw24371 Tw1596 Not Commercial 

Uapaca mole Pax Tw368, Tw79, 
Tw30884, Tw8172 

Tw1423, Tw196 Not Commercial 

Uapaca nitida 
Müll.Arg. 

Tw772, Tw13501, 
Tw13514 

Tw306 Not Commercial 

Uapaca pilosa 
Hutch. 

Tw676, Tw23602 Tw23600 Not Commercial 

Uapaca robynsii De 
Wild. 

Tw23917 Tw23913 Not Commercial 
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Uapaca 
sansibarica Pax 

Tw24359, Tw44707 Tw24305 Not Commercial 

Uapaca togoensis 
Pax 

Tw49444 Tw30053 Not Commercial 

Uapaca vanhouttei 
De Wild. 

Tw954 Tw63 Not Commercial 

Proteaceae 3 2 Faurea Harv. 3 2 Faurea rochetiana 
(A.Rich.) Chiov. ex 
Pic.Serm. 

Tw751 Tw23977 Not Commercial 

Faurea saligna 
Harv. 

Tw324, Tw7497 Tw24169 Not Commercial 

Putranjivaceae 7 3 Drypetes Vahl 7 3 Drypetes 
angustifolia Pax & 
K.Hoffm. 

Tw62412, Tw62577 Tw62406 Not Commercial 

Drypetes gerrardii 
Hutch. 

Tw33866, Tw23517 Tw23503 Not Commercial 

Drypetes 
gossweileri 
S.Moore 

Tw1126, Tw1302, 
Tw1219 

Tw1284 Not Commercial 

Rhamnaceae 4 3 Maesopsis Engl. 3 2 Maesopsis eminii 
Engl. 

Tw1192, Tw28149, 
Tw1393 

Tw1103, Tw1170 Commercial 

Ziziphus Mill. 1 1 Ziziphus abyssinica 
Hochst. ex A.Rich. 

Tw60205 Tw20593 Not Commercial 

Rhizophoraceae 11 7 Anopyxis Pierre ex 
Engl. 

3 2 Anopyxis klaineana 
(Pierre) Engl. 

Tw3103, Tw711, 
Tw3109 

Tw2511, Tw2515 Not Commercial 

Cassipourea Aubl. 5 3 Cassipourea 
congoensis R.Br. ex 
DC. 

Tw24194, Tw39872 Tw24024 Not Commercial 

Cassipourea 
gummiflua Tul. 

Tw31482 Tw31022 Not Commercial 

Cassipourea 
malosana (Baker) 
Alston 

Tw26100, Tw30363 Tw19990 Not Commercial 

Rhizophora L. 3 2 Rhizophora 
racemosa G.Mey. 

Tw347, Tw25567, 
Tw7 

Tw14054, Tw22177 Not Commercial 

Rosaceae 4 2 Hagenia J.F.Gmel. 2 1 Hagenia abyssinica 
(Bruce) J.F.Gmel. 

Tw740, Tw21932 Tw21621 Not Commercial 

Prunus L. 2 1 Prunus africana 
(Hook.fil.) Kalkman 

Tw18972, Tw3583 Tw17207 Not Commercial 

Rubiaceae 62 33 Aidia Lour. 1 1 Aidia ochroleuca 
(K.Schum.) 
E.M.A.Petit 

Tw7441 Tw1304 Not Commercial 

Aulacocalyx 
Hook.f. 

2 1 Aulacocalyx 
jasminiflora 
Hook.f. 

Tw33037, Tw32945 Tw23009 Not Commercial 

Coffea L. 2 1 Coffea liberica 
W.Bull 

Tw25823, Tw28578 Tw25652 Not Commercial 

Corynanthe Welw. 6 4 Corynanthe 
macroceras 
K.Schum. 

Tw289, Tw7516, 
Tw35920 

Tw254, Tw10150 Not Commercial 
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Corynanthe 
paniculata Welw. 

Tw977, Tw983, 
Tw288 

Tw1442, Tw154 Not Commercial 

Craterispermum 
Benth. 

2 2 Craterispermum 
cerinanthum Hiern 

Tw62542 Tw41594 Not Commercial 

Craterispermum 
laurinum (Poir.) 
Benth. 

Tw38625 Tw30111 Not Commercial 

Crossopteryx Fenzl 3 1 Crossopteryx 
febrifuga (Afzel. ex 
G.Don) Benth. 

Tw8079, Tw1959, 
Tw28443 

Tw7293 Not Commercial 

Gardenia J.Ellis 4 2 Gardenia imperialis 
K.Schum. 

Tw24241, 
Tw36120, Tw40359 

Tw39101 Not Commercial 

Gardenia ternifolia 
subsp. jovis-
tonantis (Welw.) 
Verdc. 

Tw28429 Tw28237 Not Commercial 

Heinsia DC. 3 1 Heinsia crinita 
(Wennberg) 
G.Taylor 

Tw59364, 
Tw59360, Tw59359 

Tw59362 Not Commercial 

Massularia (K.Schu
m.) Hoyle 

2 1 Massularia 
acuminata (G.Don) 
Bullock ex Hoyle 

Tw40329, Tw8294 Tw33202 Not Commercial 

Mitragyna Korth. 12 5 Mitragyna 
ledermannii 
(K.Krause) Ridsdale 

Tw29825, Tw108, 
Tw14055 

Tw14082 Not Commercial 

Mitragyna 
rubrostipulata 
(K.Schum.) Havil. 

Tw26094, Tw31476 Tw25679 Not Commercial 

Mitragyna 
stipulosa (DC.) 
Kuntze 

Tw1161, Tw546, 
Tw276, Tw438, 
Tw241, Tw32, 
Tw349 

Tw293, Tw12, 
Tw520 

Commercial 

Morinda L. 5 4 Morinda 
chrysorhiza 
(Thonn.) DC. 

Tw1267 Tw102 Not Commercial 

Morinda citrifolia L. Tw691 Tw55585 Not Commercial 

Morinda lucida 
Benth. 

Tw846, Tw635, 
Tw728 

Tw491, Tw608 Not Commercial 

Nauclea L. 10 4 Nauclea 
diderrichii (De 
Wild.) Merr. 

Tw5209, Tw32869, 
Tw263, Tw17, 
Tw32256, Tw383 

Tw1144, Tw315 Commercial 

Nauclea latifolia 
Sm. 

Tw12947 Tw10363 Not Commercial 

Nauclea pobeguinii 
(Hua ex Pobég.) 
Merr. 

Tw1962, Tw30041, 
Tw712 

Tw34 Not Commercial 

Oxyanthus DC. 1 1 Oxyanthus 
tubiflorus 
(Andrews) DC. 

Tw894 Tw32546 Not Commercial 
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Psychotria L. 1 1 Psychotria 
dermatophylla 
(K.Schum.) 
E.M.A.Petit 

Tw966 Tw821 Not Commercial 

Rothmannia 
Thunb. 

4 2 Rothmannia 
longiflora Salisb. 

Tw59623 Tw33023 Not Commercial 

Rothmannia lujae 
(De Wild.) Keay 

Tw109, Tw8036, 
Tw1671 

Tw41588 Not Commercial 

Schumanniophyto
n Harms 

2 1 Schumanniophyto
n magnificum 
(K.Schum.) Harms 

Tw40372, Tw68428 Tw40364 Not Commercial 

Tricalysia A.Rich. 
ex DC. 

2 1 Tricalysia pallens 
Hiern 

Tw30246, Tw32306 Tw28555 Not Commercial 

Rutaceae 15 7 Citrus L. 4 2 Citrus x aurantium 
L. 

Tw25991, Tw3782 Tw23577 Not Commercial 

Citrus x limon (L.) 
Osbeck 

Tw60223, Tw42211 Tw1950 Not Commercial 

Vepris Comm. ex 
A.Juss. 

1 1 Vepris louisii 
G.C.C.Gilbert 

Tw7525 Tw2418 Not Commercial 

Zanthoxylum L. 10 4 Zanthoxylum 
chalybeum Engl. 

Tw760, Tw319 Tw21933 Not Commercial 

Zanthoxylum 
gilletii (De Wild.) 
P.G.Waterman 

Tw9820, Tw60730, 
Tw61094 

Tw61374 Commercial 

Zanthoxylum heitzii 
(Aubrév. & Pellegr.) 
P.G.Waterman 

Tw98, Tw18798, 
Tw25749 

Tw61993 Not Commercial 

Zanthoxylum 
lemairei (De Wild.) 
P.G.Waterman 

Tw43831, Tw29298 Tw13227 Not Commercial 

Salicaceae 12 5 Homalium Jacq. 12 5 Homalium 
abdessammadii 
Asch. & Schweinf. 

Tw2046, Tw757 Tw1874 Not Commercial 

Homalium 
africanum 
(Hook.fil.) Benth. 

Tw2052, Tw6960, 
Tw92 

Tw709 Not Commercial 

Homalium letestui 
Pellegr. 

Tw26607, Tw30383 Tw18858 Not Commercial 

Homalium 
longistylum Mast. 

Tw1171, Tw698, 
Tw4955 

Tw69 Not Commercial 

Homalium 
stipulaceum Welw. 
ex Mast. 

Tw7971, Tw32277 Tw10147 Not Commercial 

Sapindaceae 21 13 Allophylus L. 2 2 Allophylus 
africanus P.Beauv. 

Tw28154 Tw1461 Not Commercial 

Allophylus 
dummeri Baker fil. 

Tw34780 Tw33534 Not Commercial 

Blighia K.D.Koenig 3 1 Blighia welwitschii 
(Hiern) Radlk. 

Tw1424, Tw1116, 
Tw1669 

Tw1652 Not Commercial 

Chytranthus 
Hook.f. 

3 2 Chytranthus 
carneus Radlk. 

Tw8437 Tw34807 Not Commercial 
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Chytranthus 
setosus Radlk. 

Tw19379, Tw1859 Tw10421 Not Commercial 

Haplocoelum 
Radlk. 

1 1 Haplocoelum 
intermedium 
Hauman 

Tw8231 Tw174 Not Commercial 

Lecaniodiscus 
Planch. ex Benth. 

2 1 Lecaniodiscus 
cupanioides 
Planch. 

Tw8433, Tw8308 Tw10213 Not Commercial 

Majidea J.Kirk ex 
Oliv. 

1 1 Majidea fosteri 
(Sprague) Radlk. 

Tw8369 Tw8134 Not Commercial 

Pancovia Willd. 4 2 Pancovia 
floribunda Pellegr. 

Tw827 Tw7956 Not Commercial 

Pancovia laurentii 
(De Wild.) Gilg ex 
De Wild. 

Tw2931, Tw1220, 
Tw2934 

Tw2933 Not Commercial 

Sapindus L. 2 1 Sapindus rarak DC. Tw44659, Tw20973 Tw10229 Not Commercial 

Zanha Hiern 3 2 Zanha golungensis 
Hiern 

Tw32011, 
Tw39959, Tw29876 

Tw2080, Tw10454 Not Commercial 

Sapotaceae 76 42 Aningeria Aubrév. & 
Pellegr. 

7 3 Aningeria adolfi-
friederici (Engl.) 
Robyns & Gilbert 

Tw2555 Tw2554 Not Commercial 

Aningeria 
altissima 
(A.Chev.) Aubrév. 
& Pellegr. 

Tw13234, 
Tw22809, Tw51779 

Tw5147 Commercial 

Aningeria pierrei 
(A.Chev.) Aubrév. 
& Pellegr. 

Tw8049, Tw29934, 
Tw14523 

Tw64760 Commercial 

Autranella A.Chev. 6 3 Autranella 
congolensis (De 
Wild.) A.Chev. 

Tw57417, Tw633, 
Tw51736, Tw299, 
Tw515, Tw430 

Tw32272, Tw1175, 
Tw13496 

Commercial 

Baillonella Pierre 4 2 Baillonella 
toxisperma Pierre 

Tw1675, Tw51781, 
Tw46, Tw59843 

Tw1666, Tw1673 Commercial 

Breviea Aubrév. & 
Pellegr. 

1 1 Breviea sericea 
Aubrév. & Pellegr. 

Tw30679 Tw29904 Not Commercial 

Donella Pierre ex 
Baill. 

1 1 Donella 
pruniformis (Engl.) 
Pierre ex Engl. 

Tw7300 Tw1457 Not Commercial 

Englerophytum 
K.Krause 

3 2 Englerophytum 
laurentii (De Wild.) 
L.Gaut. 

Tw959, Tw614 Tw33333 Not Commercial 

Englerophytum 
magalismontanum 
(Sond.) T.D.Penn. 

Tw26912 Tw26104 Not Commercial 

Gambeya Pierre 19 10 Gambeya africana 
(A.DC.) Pierre 

Tw51786, 
Tw61383, 
Tw33010, 
Tw61335, Tw61110 

Tw1132, Tw1571 Commercial 
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Gambeya albida 
(G.Don) Aubrév. & 
Pellegr. 

Tw25112, Tw18990 Tw18989 Not Commercial 

Gambeya beguei 
(Aubrév. & Pellegr.) 
Aubrév. & Pellegr. 

Tw31499 Tw1705 Not Commercial 

Gambeya 
lacourtiana (De 
Wild.) Aubrév. & 
Pellegr. 

Tw13, Tw1674, 
Tw971 

Tw57424 Commercial 

Gambeya lungi (De 
Wild.) Aubrév. & 
Pellegr. 

Tw820, Tw996 Tw1303 Not Commercial 

Gambeya 
perpulchra (Mildbr. 
ex Hutch. & Dalziel) 
Aubrév. & Pellegr. 

Tw57667, 
Tw32713, Tw53867 

Tw29938, Tw20726 Not Commercial 

Gambeya subnuda 
(Baker) Pierre 

Tw1853, Tw2678, 
Tw2679 

Tw1130, Tw101 Not Commercial 

Letestua Lecomte 1 1 Letestua durissima 
(A.Chev.) Lecomte 

Tw13884 Tw13326 Not Commercial 

Malacantha Pierre 1 1 Malacantha 
alnifolia (Baker) 
Pierre 

Tw59528 Tw53936 Not Commercial 

Manilkara Adans. 4 3 Manilkara mochisia 
(Baker) Dubard 

Tw61732 Tw41091 Not Commercial 

Manilkara obovata 
(Sabine & G.Don) 
J.H.Hemsl. 

Tw30896, 
Tw21560, Tw28583 

Tw13231, Tw20727 Not Commercial 

Mimusops L. 2 1 Mimusops zeyheri 
Sond. 

Tw759, Tw26522 Tw1991 Not Commercial 

Neolemonniera 
Heine 

1 1 Neolemonniera 
clitandrifolia 
(A.Chev.) Heine 

Tw937 Tw8560 Not Commercial 

Omphalocarpum 
P.Beauv. 

3 2 Omphalocarpum 
brieyi De Wild. 

Tw93, Tw5538 Tw2206 Not Commercial 

Omphalocarpum 
lecomteanum 
Pierre ex Engl. 

Tw63032 Tw34779 Not Commercial 

Synsepalum 
(A.DC.) Daniell 

9 5 Synsepalum afzelii 
(Engl.) T.D.Penn. 

Tw29980, Tw7230 Tw10176 Not Commercial 

Synsepalum 
brevipes (Baker) 
T.D.Penn. 

Tw8533 Tw30074 Not Commercial 

Synsepalum 
revolutum (Baker) 
T.D.Penn. 

Tw7722 Tw13946 Not Commercial 

Synsepalum 
stipulatum (Radlk.) 
Engl. 

Tw8391, Tw8424 Tw7327 Not Commercial 
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Synsepalum 
subcordatum De 
Wild. 

Tw1150, Tw62740, 
Tw62838 

Tw62806 Not Commercial 

Tieghemella Pierre 9 4 Tieghemella 
africana Pierre 

Tw25779, 
Tw20837, Tw18800 

Tw10761, Tw15000 Commercial 

Tieghemella 
heckelii (A.Chev.) 
Pierre ex Dubard 

Tw26510, 
Tw18005, 
Tw31670, 
Tw55117, 
Tw14526, Tw21571 

Tw19951, Tw12949 Commercial 

Tridesmostemon 
Engl. 

3 1 Tridesmostemon 
omphalocarpoides 
Engl. 

Tw67108, 
Tw29894, Tw5237 

Tw57057 Not Commercial 

Vitellaria 
C.F.Gaertn. 

2 1 Vitellaria paradoxa 
C.F.Gaertn. 

Tw7620, Tw26914 Tw18988 Not Commercial 

Simaroubaceae 5 3 Odyendea Engl. 2 1 Odyendea 
gabunensis (Pierre) 
Engl. 

Tw62535, Tw8029 Tw62438 Not Commercial 

Pierreodendron 
Engl. 

3 2 Pierreodendron 
africanum 
(Hook.fil.) Little 

Tw7725, Tw7531, 
Tw8055 

Tw5288, Tw25760 Not Commercial 

Sladeniaceae 1 1 Ficalhoa Hiern 1 1 Ficalhoa laurifolia 
Hiern 

Tw24199 Tw22510 Not Commercial 

Stilbaceae 1 1 Nuxia Comm. ex 
Lam. 

1 1 Nuxia congesta 
R.Br. 

Tw26542 Tw13211 Not Commercial 

Ulmaceae 3 2 Holoptelea Planch. 3 2 Holoptelea 
grandis (Hutch.) 
Mildbr. 

Tw969, Tw1836, 
Tw1876 

Tw1419, Tw1698 Commercial 

Urticaceae 9 5 Musanga R.Br. 3 2 Musanga 
cecropioides R.Br. 
ex Tedlie 

Tw20, Tw1847, 
Tw1898 

Tw1180, Tw1468 Not Commercial 

Myrianthus 
P.Beauv. 

6 3 Myrianthus 
arboreus P.Beauv. 

Tw7566, Tw36, 
Tw8220 

Tw82 Not Commercial 

Myrianthus holstii 
Engl. 

Tw2261, Tw872 Tw17234 Not Commercial 

Myrianthus preussii 
Engl. 

Tw33243 Tw28794 Not Commercial 

Violaceae 1 1 Rinorea Aubl. 1 1 Rinorea welwitschii 
(Oliv.) Kuntze 

Tw34805 Tw32909 Not Commercial 

Vochysiaceae 3 1 Erismadelphus 
Mildbr. 

3 1 Erismadelphus 
exsul Mildbr. 

Tw725, Tw25756, 
Tw30910 

Tw33352 Not Commercial 

Zygophyllaceae 2 1 Balanites Delile 2 1 Balanites 
wilsoniana Dawe & 
Sprague 

Tw8404, Tw9779 Tw8287 Not Commercial 
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Table 8.2: Hyperparameters grid for finding the optimal parameter settings across all machine-learning classifiers in Chapter 3. 

Classifier Hyperparameter Full Description Functionality Values 

DT 

max_depth Maximum depth of the tree, controlling how deep the tree can grow before 
splitting stops. 

Unlimited depth (‘None’) raises complexity, risking 
overfitting, while limited depth can lead to improved 
generalization 

None, 10, 20, 30 

min_samples_split Minimum number of samples required to split an internal node. Larger values prevent the tree from growing too complex. 2, 5, 10 

min_samples_leaf Minimum number of samples required to be at a leaf node. 
Larger values simplify the model by preventing overly small 
and noisy splits, improving generalization 

1, 2, 4 

SVM 

C 
Regularization parameter that controls the trade-off between a smooth 
decision boundary and classifying training points correctly. 

Lower values increase regularization (smoother boundary), 
while higher values prioritize fitting the training data 0.1, 1, 10, 100 

kernel 
Specifies the kernel type used in the algorithm (linear, radial basis function 
(RBF), polynomial, or sigmoid). 

Specifies the function used to map data into higher-
dimensional space, allowing the model to capture either 
linear or non-linear relationships in the data. 

linear, radial basis 
function (RBF), 
polynomial, or sigmoid 

gamma Kernel coefficient for non-linear kernels (RBF, poly, sigmoid) 
This controls the influence of individual training examples on 
the decision boundary in non-linear kernel methods. 

scale', 'auto' 

RF 

n_estimators The number of trees in the RF. 
More trees can improve accuracy but may increase 
computational cost. 50, 100, 200 

max_depth Maximum depth of each tree in the forest, limiting how deep the tree can grow. 
Unlimited depth (‘None’) raises complexity, risking 
overfitting, while limited depth can lead to improved 
generalization 

None, 10, 20 

min_samples_split Minimum number of samples required to split an internal node. Larger values prevent the tree from growing too complex. 2, 5, 10 

min_samples_leaf Minimum number of samples required at a leaf node. 
Larger values simplify the model by preventing overly small 
and noisy splits, improving generalization 1, 2, 4 

Catboost 

learning_rate Step size used to update weights, controlling how quickly the model learns. 
This parameter governs the model’s learning rate. Lower 
values slow down learning but enhance accuracy, while 
higher values accelerate learning at the cost of accuracy. 

0.01, 0.05, 0.1 

depth Depth of each tree, determining the complexity of the model. 
Increasing tree depth enhances pattern recognition but risks 
overfitting, while shallow trees generalize well but may 
overlook complex relationships. 

3, 4, 6 

l2_leaf_reg Coefficient for L2 regularization 
Leaf weights are regularized to prevent overfitting by 
penalizing large leaf values, encouraging simpler models 
with better generalization. 

1, 3, 5 

border_count The number of splits for numerical features. 
Higher values increase the model's granularity in handling 
numerical data, potentially improving accuracy but at a 
higher computational cost. 

32, 64, 128 
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Figure 8.2: Horizontal grouped bar chart showing classification outcomes for 144 species with observed taxonomic mismatches. Each species 
is represented by three bars indicating the number of specimens that fall into one of the following categories: Blue (mismatched): Specimens 
with partial classification errors—at least one taxonomic level is correct, but others are incorrect (e.g., Family and Species correct, Genus wrong; 
or Genus correct, Family and Species wrong); Yellow (fully misclassified): Specimens that were misclassified at all three taxonomic levels—
Family, Genus, and Species; Green (correct): Specimens correctly classified in a hierarchical order—Family must be correct, with Genus and/or 
Species also correct (e.g., Family correct but Genus and Species wrong; Family and Genus correct, Species wrong; or all three levels correct). 
This visualization helps identify patterns of classification accuracy and inconsistency across taxonomic levels. 
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Table 8.3: Summary of accuracy par species across taxonomic levels, showing for each species what percentages of their specimens was correctly identified by the RF model on 
Species, Genus, or Family level and what percentage of each species was misidentified. 

Species Correct Species Genus Correct Genus Family Correct Family Completely Wrong 
Caloncoba glauca 25 Caloncoba 25 Achariaceae 25 75 
Caloncoba welwitschii 0 Caloncoba 0 Achariaceae 0 100 
Lepisanthes senegalensis 50 Lepisanthes 50 Achariaceae 50 50 
Lindackeria bukobensis 0 Lindackeria 0 Achariaceae 0 100 
Lindackeria dentata 0 Lindackeria 0 Achariaceae 0 100 
Scottellia klaineana 0 Scottellia 0 Achariaceae 0 100 
Antrocaryon micraster 0 Antrocaryon 0 Anacardiaceae 25 75 
Antrocaryon nannanii 12.5 Antrocaryon 25 Anacardiaceae 25 75 
Clausena anisata 0 Clausena 0 Anacardiaceae 0 100 
Ganophyllum giganteum 62.5 Ganophyllum 62.5 Anacardiaceae 62.5 37.5 
Lannea welwitschii 0 Lannea 0 Anacardiaceae 0 100 
Mangifera indica 0 Mangifera 0 Anacardiaceae 0 100 
Myrsine melanophloeos 100 Myrsine 100 Anacardiaceae 100 0 
Panda oleosa 0 Panda 0 Anacardiaceae 0 100 
Pseudospondias longifolia 0 Pseudospondias 0 Anacardiaceae 75 25 
Pseudospondias microcarpa 0 Pseudospondias 0 Anacardiaceae 0 100 
Santiria trimera 0 Santiria 0 Anacardiaceae 0 100 
Sorindeia africana 0 Sorindeia 75 Anacardiaceae 75 25 
Sorindeia juglandifolia 12.5 Sorindeia 25 Anacardiaceae 25 75 
Spondias dulcis 25 Spondias 25 Anacardiaceae 25 75 
Trichoscypha acuminata 50 Trichoscypha 50 Anacardiaceae 50 50 
Trichoscypha lucens 75 Trichoscypha 75 Anacardiaceae 75 25 
Trichoscypha oddonii 25 Trichoscypha 75 Anacardiaceae 75 25 
Xymalos monospora 0 Xymalos 0 Anacardiaceae 0 100 
Anisophyllea boehmii 0 Anisophyllea 0 Anisophylleaceae 0 100 
Annickia affinis 0 Annickia 0 Annonaceae 75 25 
Annickia lebrunii 0 Annickia 0 Annonaceae 75 25 
Anonidium mannii 12.5 Anonidium 12.5 Annonaceae 50 50 
Brieya fasciculata 0 Brieya 0 Annonaceae 75 25 
Cleistopholis glauca 0 Cleistopholis 25 Annonaceae 25 75 
Cleistopholis patens 87.5 Cleistopholis 87.5 Annonaceae 87.5 12.5 
Duguetia staudtii 25 Duguetia 25 Annonaceae 75 25 
Greenwayodendron suaveolens 100 Greenwayodendron 100 Annonaceae 100 0 
Hexalobus crispiflorus 62.5 Hexalobus 62.5 Annonaceae 100 0 
Hexalobus monopetalus 0 Hexalobus 0 Annonaceae 25 75 
Isolona congolana 50 Isolona 50 Annonaceae 100 0 
Isolona hexaloba 0 Isolona 75 Annonaceae 100 0 
Monodora angolensis 0 Monodora 0 Annonaceae 100 0 
Platymitra arborea 75 Platymitra 75 Annonaceae 100 0 



126 
 

Xylopia aethiopica 25 Xylopia 100 Annonaceae 100 0 
Xylopia aurantiiodora 100 Xylopia 100 Annonaceae 100 0 
Xylopia cupularis 0 Xylopia 50 Annonaceae 50 50 
Xylopia flamignii 75 Xylopia 75 Annonaceae 100 0 
Xylopia gilbertii 0 Xylopia 75 Annonaceae 75 25 
Xylopia hypolampra 25 Xylopia 100 Annonaceae 100 0 
Xylopia katangensis 0 Xylopia 100 Annonaceae 100 0 
Xylopia phloiodora 0 Xylopia 75 Annonaceae 75 25 
Xylopia rubescens 0 Xylopia 100 Annonaceae 100 0 
Xylopia staudtii 0 Xylopia 100 Annonaceae 100 0 
Xylopia wilwerthii 0 Xylopia 25 Annonaceae 25 75 
Alstonia boonei 12.5 Alstonia 100 Apocynaceae 100 0 
Alstonia congensis 100 Alstonia 100 Apocynaceae 100 0 
Diplorhynchus condylocarpon 0 Diplorhynchus 0 Apocynaceae 50 50 
Funtumia elastica 0 Funtumia 0 Apocynaceae 0 100 
Holarrhena floribunda 25 Holarrhena 25 Apocynaceae 25 75 
Hunteria umbellata 50 Hunteria 50 Apocynaceae 50 50 
Picralima nitida 0 Picralima 0 Apocynaceae 0 100 
Pleiocarpa pycnantha 100 Pleiocarpa 100 Apocynaceae 100 0 
Rauvolfia caffra 0 Rauvolfia 25 Apocynaceae 50 50 
Rauvolfia vomitoria 0 Rauvolfia 0 Apocynaceae 75 25 
Tabernaemontana crassa 25 Tabernaemontana 50 Apocynaceae 50 50 
Tabernaemontana pachysiphon 0 Tabernaemontana 25 Apocynaceae 25 75 
Voacanga africana 0 Voacanga 0 Apocynaceae 0 100 
Voacanga thouarsii 0 Voacanga 0 Apocynaceae 0 100 
Cussonia arborea 0 Cussonia 0 Araliaceae 0 100 
Cussonia spicata 0 Cussonia 0 Araliaceae 0 100 
Polyscias fulva 0 Polyscias 0 Araliaceae 0 100 
Brenandendron donianum 0 Brenandendron 0 Asteraceae 0 100 
Gymnanthemum amygdalinum 0 Gymnanthemum 0 Asteraceae 0 100 
Fernandoa adolfi-friderici 0 Fernandoa 0 Bignoniaceae 25 75 
Kigelia africana 0 Kigelia 0 Bignoniaceae 0 100 
Markhamia lutea 37.5 Markhamia 50 Bignoniaceae 50 50 
Markhamia obtusifolia 0 Markhamia 0 Bignoniaceae 0 100 
Markhamia tomentosa 0 Markhamia 75 Bignoniaceae 75 25 
Markhamia zanzibarica 0 Markhamia 25 Bignoniaceae 25 75 
Spathodea campanulata 0 Spathodea 0 Bignoniaceae 0 100 
Stereospermum harmsianum 0 Stereospermum 0 Bignoniaceae 0 100 
Stereospermum kunthianum 0 Stereospermum 0 Bignoniaceae 0 100 
Cordia africana 25 Cordia 50 Boraginaceae 50 50 
Cordia millenii 0 Cordia 0 Boraginaceae 0 100 
Cordia monoica 0 Cordia 0 Boraginaceae 0 100 
Cordia myxa 0 Cordia 0 Boraginaceae 0 100 
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Cordia platythyrsa 25 Cordia 25 Boraginaceae 25 75 
Aucoumea klaineana 0 Aucoumea 0 Burseraceae 37.5 62.5 
Canarium schweinfurthii 62.5 Canarium 75 Burseraceae 87.5 12.5 
Commiphora mollis 0 Commiphora 0 Burseraceae 75 25 
Pachylobus buettneri 75 Pachylobus 75 Burseraceae 75 25 
Pachylobus edulis 0 Pachylobus 0 Burseraceae 75 25 
Pachylobus igaganga 0 Pachylobus 25 Burseraceae 25 75 
Pachylobus normandii 0 Pachylobus 0 Burseraceae 0 100 
Pachylobus osika 0 Pachylobus 0 Burseraceae 0 100 
Pachylobus pubescens 0 Pachylobus 62.5 Burseraceae 62.5 37.5 
Endodesmia calophylloides 100 Endodesmia 100 Calophyllaceae 100 0 
Mammea africana 50 Mammea 50 Calophyllaceae 50 50 
Celtis gomphophylla 50 Celtis 50 Cannabaceae 50 50 
Celtis latifolia 0 Celtis 25 Cannabaceae 25 75 
Celtis mildbraedii 25 Celtis 50 Cannabaceae 50 50 
Celtis philippensis 0 Celtis 25 Cannabaceae 25 75 
Celtis tessmannii 25 Celtis 25 Cannabaceae 25 75 
Celtis zenkeri 100 Celtis 100 Cannabaceae 100 0 
Morus mesozygia 75 Morus 75 Cannabaceae 75 25 
Trema orientale 0 Trema 0 Cannabaceae 0 100 
Apodytes dimidiata 0 Apodytes 0 Celastraceae 0 100 
Cassine peragua 100 Cassine 100 Celastraceae 100 0 
Magnistipula butayei 0 Magnistipula 0 Chrysobalanaceae 75 25 
Maranthes chrysophylla 0 Maranthes 25 Chrysobalanaceae 50 50 
Maranthes gabunensis 0 Maranthes 0 Chrysobalanaceae 0 100 
Maranthes glabra 0 Maranthes 0 Chrysobalanaceae 0 100 
Maranthes kerstingii 75 Maranthes 100 Chrysobalanaceae 100 0 
Parinari congensis 0 Parinari 100 Chrysobalanaceae 100 0 
Parinari curatellifolia 37.5 Parinari 75 Chrysobalanaceae 75 25 
Parinari excelsa 0 Parinari 62.5 Chrysobalanaceae 87.5 12.5 
Allanblackia floribunda 0 Allanblackia 0 Clusiaceae 0 100 
Allanblackia kisonghi 0 Allanblackia 0 Clusiaceae 25 75 
Allanblackia parviflora 0 Allanblackia 25 Clusiaceae 25 75 
Garcinia chromocarpa 0 Garcinia 0 Clusiaceae 0 100 
Garcinia epunctata 75 Garcinia 75 Clusiaceae 75 25 
Garcinia huillensis 0 Garcinia 0 Clusiaceae 0 100 
Garcinia ovalifolia 0 Garcinia 0 Clusiaceae 0 100 
Garcinia punctata 0 Garcinia 0 Clusiaceae 0 100 
Garcinia smeathmanii 0 Garcinia 25 Clusiaceae 25 75 
Lebrunia busbaie 0 Lebrunia 0 Clusiaceae 0 100 
Pentadesma butyracea 0 Pentadesma 0 Clusiaceae 0 100 
Pentadesma grandifolia 0 Pentadesma 25 Clusiaceae 25 75 
Symphonia globulifera 0 Symphonia 0 Clusiaceae 0 100 
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Combretum adenogonium 0 Combretum 25 Combretaceae 25 75 
Combretum collinum 0 Combretum 0 Combretaceae 0 100 
Combretum collinum subsp. elgonense 0 Combretum 75 Combretaceae 75 25 
Combretum lokele 0 Combretum 100 Combretaceae 100 0 
Combretum molle 0 Combretum 75 Combretaceae 75 25 
Combretum zeyheri 100 Combretum 100 Combretaceae 100 0 
Terminalia anisoptera 0 Terminalia 25 Combretaceae 25 75 
Terminalia brachystemma 0 Terminalia 0 Combretaceae 0 100 
Terminalia catappa 0 Terminalia 25 Combretaceae 25 75 
Terminalia hylodendron 0 Terminalia 12.5 Combretaceae 12.5 87.5 
Terminalia ivorensis 25 Terminalia 50 Combretaceae 50 50 
Terminalia leiocarpa 0 Terminalia 0 Combretaceae 0 100 
Terminalia macroptera 0 Terminalia 0 Combretaceae 0 100 
Terminalia mollis 25 Terminalia 62.5 Combretaceae 62.5 37.5 
Terminalia sericea 0 Terminalia 0 Combretaceae 0 100 
Terminalia superba 33.33333333 Terminalia 33.33333333 Combretaceae 33.33333333 66.66666667 
Terminalia welwitschii 0 Terminalia 25 Combretaceae 25 75 
Plagiostyles africana 0 Plagiostyles 0 Daphniphyllaceae 0 100 
Marquesia macroura 100 Marquesia 100 Dipterocarpaceae 100 0 
Monotes hypoleucus var. angolensis 0 Monotes 0 Dipterocarpaceae 25 75 
Monotes katangensis 0 Monotes 0 Dipterocarpaceae 0 100 
Diospyros batocana 25 Diospyros 50 Ebenaceae 75 25 
Diospyros crassiflora 0 Diospyros 0 Ebenaceae 0 100 
Diospyros dendo 0 Diospyros 25 Ebenaceae 25 75 
Diospyros ferrea 0 Diospyros 0 Ebenaceae 0 100 
Diospyros iturensis 0 Diospyros 0 Ebenaceae 0 100 
Diospyros mespiliformis 0 Diospyros 0 Ebenaceae 0 100 
Erythroxylum mannii 62.5 Erythroxylum 62.5 Erythroxylaceae 62.5 37.5 
Cavacoa quintasii 0 Cavacoa 0 Euphorbiaceae 0 100 
Croton haumanianus 0 Croton 25 Euphorbiaceae 25 75 
Croton macrostachyus 0 Croton 0 Euphorbiaceae 0 100 
Croton mayumbensis 0 Croton 0 Euphorbiaceae 0 100 
Croton megalocarpus 0 Croton 0 Euphorbiaceae 0 100 
Croton mubango 0 Croton 50 Euphorbiaceae 50 50 
Croton sylvaticus 0 Croton 0 Euphorbiaceae 25 75 
Dichostemma glaucescens 0 Dichostemma 0 Euphorbiaceae 0 100 
Discoglypremna caloneura 0 Discoglypremna 0 Euphorbiaceae 75 25 
Grossera macrantha 0 Grossera 0 Euphorbiaceae 37.5 62.5 
Hevea brasiliensis 25 Hevea 25 Euphorbiaceae 25 75 
Klaineanthus gaboniae 0 Klaineanthus 25 Euphorbiaceae 25 75 
Macaranga kilimandscharica 0 Macaranga 0 Euphorbiaceae 0 100 
Macaranga monandra 0 Macaranga 25 Euphorbiaceae 75 25 
Macaranga spinosa 0 Macaranga 25 Euphorbiaceae 25 75 
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Maprounea africana 75 Maprounea 75 Euphorbiaceae 75 25 
Neoboutonia macrocalyx 75 Neoboutonia 75 Euphorbiaceae 100 0 
Ricinodendron heudelotii 100 Ricinodendron 100 Euphorbiaceae 100 0 
Ricinodendron heudelotii subsp. africanum 25 Ricinodendron 25 Euphorbiaceae 75 25 
Schinziophyton rautanenii 87.5 Schinziophyton 87.5 Euphorbiaceae 100 0 
Sclerocroton cornutus 0 Sclerocroton 0 Euphorbiaceae 50 50 
Shirakiopsis elliptica 0 Shirakiopsis 0 Euphorbiaceae 75 25 
Tetrorchidium didymostemon 50 Tetrorchidium 62.5 Euphorbiaceae 87.5 12.5 
Afzelia africana 100 Afzelia 100 Fabaceae 100 0 
Afzelia bella 50 Afzelia 100 Fabaceae 100 0 
Afzelia bipindensis 58.33333333 Afzelia 91.66666667 Fabaceae 100 0 
Afzelia pachyloba 25 Afzelia 66.66666667 Fabaceae 100 0 
Afzelia quanzensis 37.5 Afzelia 87.5 Fabaceae 100 0 
Albizia adianthifolia 12.5 Albizia 87.5 Fabaceae 100 0 
Albizia adianthifolia var. intermedia 0 Albizia 75 Fabaceae 100 0 
Albizia altissima 62.5 Albizia 75 Fabaceae 100 0 
Albizia antunesiana 0 Albizia 50 Fabaceae 87.5 12.5 
Albizia chinensis 0 Albizia 100 Fabaceae 100 0 
Albizia coriaria 0 Albizia 75 Fabaceae 100 0 
Albizia ferruginea 62.5 Albizia 100 Fabaceae 100 0 
Albizia glaberrima 75 Albizia 75 Fabaceae 100 0 
Albizia glaberrima var. glabrescens 0 Albizia 25 Fabaceae 100 0 
Albizia gummifera 25 Albizia 100 Fabaceae 100 0 
Albizia gummifera var. ealaensis 0 Albizia 0 Fabaceae 100 0 
Albizia laurentii 25 Albizia 75 Fabaceae 100 0 
Albizia lebbeck 0 Albizia 75 Fabaceae 100 0 
Albizia schimperiana 100 Albizia 100 Fabaceae 100 0 
Albizia versicolor 25 Albizia 37.5 Fabaceae 100 0 
Albizia zygia 0 Albizia 50 Fabaceae 100 0 
Amphimas ferrugineus 75 Amphimas 100 Fabaceae 100 0 
Amphimas pterocarpoides 100 Amphimas 100 Fabaceae 100 0 
Annea laxiflora 100 Annea 100 Fabaceae 100 0 
Anthonotha brieyi 0 Anthonotha 0 Fabaceae 100 0 
Anthonotha fragrans 0 Anthonotha 0 Fabaceae 100 0 
Anthonotha pynaertii 0 Anthonotha 0 Fabaceae 100 0 
Aphanocalyx cynometroides 0 Aphanocalyx 0 Fabaceae 100 0 
Aphanocalyx microphyllus 0 Aphanocalyx 0 Fabaceae 25 75 
Baikiaea insignis 12.5 Baikiaea 12.5 Fabaceae 75 25 
Baikiaea robynsii 0 Baikiaea 0 Fabaceae 50 50 
Baphia bequaertii 0 Baphia 0 Fabaceae 87.5 12.5 
Baphia dewevrei 0 Baphia 0 Fabaceae 0 100 
Baphia massaiensis 50 Baphia 75 Fabaceae 100 0 
Baphia nitida 0 Baphia 0 Fabaceae 100 0 
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Baphia pubescens 0 Baphia 0 Fabaceae 100 0 
Berlinia bracteosa 25 Berlinia 50 Fabaceae 100 0 
Berlinia confusa 50 Berlinia 50 Fabaceae 100 0 
Berlinia congolensis 0 Berlinia 25 Fabaceae 100 0 
Berlinia grandiflora 0 Berlinia 62.5 Fabaceae 100 0 
Bobgunnia fistuloides 50 Bobgunnia 62.5 Fabaceae 87.5 12.5 
Bobgunnia madagascariensis 0 Bobgunnia 25 Fabaceae 50 50 
Brachystegia boehmii 0 Brachystegia 25 Fabaceae 100 0 
Brachystegia bussei 0 Brachystegia 75 Fabaceae 100 0 
Brachystegia laurentii 62.5 Brachystegia 62.5 Fabaceae 100 0 
Brachystegia longifolia 12.5 Brachystegia 87.5 Fabaceae 100 0 
Brachystegia manga 0 Brachystegia 75 Fabaceae 100 0 
Brachystegia spiciformis 25 Brachystegia 75 Fabaceae 100 0 
Brachystegia tamarindoides subsp. microphylla 0 Brachystegia 100 Fabaceae 100 0 
Brachystegia tamarindoides subsp. tamarindoides 0 Brachystegia 100 Fabaceae 100 0 
Brachystegia taxifolia 25 Brachystegia 50 Fabaceae 100 0 
Brachystegia utilis 0 Brachystegia 25 Fabaceae 100 0 
Burkea africana 25 Burkea 25 Fabaceae 100 0 
Cassia mannii 0 Cassia 0 Fabaceae 100 0 
Cassia sieberiana 0 Cassia 0 Fabaceae 100 0 
Copaifera mildbraedii 50 Copaifera 50 Fabaceae 100 0 
Copaifera religiosa 75 Copaifera 75 Fabaceae 100 0 
Craibia affinis 0 Craibia 0 Fabaceae 100 0 
Craibia grandiflora 0 Craibia 0 Fabaceae 100 0 
Craibia lujae 0 Craibia 0 Fabaceae 25 75 
Crudia harmsiana 0 Crudia 0 Fabaceae 75 25 
Crudia laurentii 0 Crudia 25 Fabaceae 100 0 
Cryptosepalum exfoliatum subsp. pseudotaxus 100 Cryptosepalum 100 Fabaceae 100 0 
Cylicodiscus gabunensis 0 Cylicodiscus 12.5 Fabaceae 100 0 
Cynometra alexandri 50 Cynometra 50 Fabaceae 75 25 
Cynometra hankei 50 Cynometra 75 Fabaceae 100 0 
Cynometra lujae 100 Cynometra 100 Fabaceae 100 0 
Cynometra mannii 75 Cynometra 100 Fabaceae 100 0 
Cynometra sessiliflora 0 Cynometra 25 Fabaceae 62.5 37.5 
Dalbergia boehmii 0 Dalbergia 0 Fabaceae 75 25 
Daniellia alsteeniana 0 Daniellia 50 Fabaceae 100 0 
Daniellia klainei 0 Daniellia 25 Fabaceae 100 0 
Daniellia oliveri 0 Daniellia 0 Fabaceae 100 0 
Daniellia pynaertii 25 Daniellia 25 Fabaceae 75 25 
Daniellia soyauxii 75 Daniellia 100 Fabaceae 100 0 
Dialium englerianum 0 Dialium 0 Fabaceae 75 25 
Dialium excelsum 87.5 Dialium 87.5 Fabaceae 100 0 
Dialium pachyphyllum 25 Dialium 50 Fabaceae 87.5 12.5 
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Dialium pentandrum 0 Dialium 75 Fabaceae 75 25 
Dialium polyanthum 0 Dialium 0 Fabaceae 25 75 
Dialium tessmannii 0 Dialium 25 Fabaceae 50 50 
Dialium zenkeri 0 Dialium 0 Fabaceae 25 75 
Dichrostachys cinerea 50 Dichrostachys 50 Fabaceae 87.5 12.5 
Entada abyssinica 0 Entada 0 Fabaceae 25 75 
Erythrina abyssinica 75 Erythrina 75 Fabaceae 75 25 
Erythrina droogmansiana 50 Erythrina 75 Fabaceae 100 0 
Erythrina excelsa 100 Erythrina 100 Fabaceae 100 0 
Erythrina orophila 0 Erythrina 0 Fabaceae 25 75 
Erythrophleum africanum 37.5 Erythrophleum 37.5 Fabaceae 100 0 
Erythrophleum suaveolens 16.66666667 Erythrophleum 16.66666667 Fabaceae 83.33333333 16.66666667 
Faidherbia albida 100 Faidherbia 100 Fabaceae 100 0 
Fillaeopsis discophora 25 Fillaeopsis 37.5 Fabaceae 100 0 
Gilbertiodendron dewevrei 50 Gilbertiodendron 50 Fabaceae 100 0 
Gilbertiodendron grandiflorum 25 Gilbertiodendron 75 Fabaceae 100 0 
Gilbertiodendron grandistipulatum 25 Gilbertiodendron 75 Fabaceae 100 0 
Gilbertiodendron mayombense 0 Gilbertiodendron 0 Fabaceae 25 75 
Gilbertiodendron ogoouense 62.5 Gilbertiodendron 75 Fabaceae 100 0 
Gilletiodendron kisantuense 75 Gilletiodendron 75 Fabaceae 75 25 
Gilletiodendron mildbraedii 12.5 Gilletiodendron 12.5 Fabaceae 62.5 37.5 
Guibourtia arnoldiana 75 Guibourtia 75 Fabaceae 100 0 
Guibourtia coleosperma 75 Guibourtia 75 Fabaceae 100 0 
Guibourtia demeusei 75 Guibourtia 100 Fabaceae 100 0 
Guibourtia ehie 0 Guibourtia 0 Fabaceae 100 0 
Hylodendron gabunense 50 Hylodendron 50 Fabaceae 75 25 
Hymenostegia mundungu 25 Hymenostegia 50 Fabaceae 75 25 
Intsia bijuga var. bijuga 12.5 Intsia 12.5 Fabaceae 100 0 
Isoberlinia angolensis 50 Isoberlinia 50 Fabaceae 100 0 
Isoberlinia doka 0 Isoberlinia 50 Fabaceae 100 0 
Isoberlinia tomentosa 0 Isoberlinia 25 Fabaceae 100 0 
Julbernardia brieyi 0 Julbernardia 25 Fabaceae 100 0 
Julbernardia globiflora 0 Julbernardia 25 Fabaceae 100 0 
Julbernardia paniculata 0 Julbernardia 62.5 Fabaceae 100 0 
Julbernardia pellegriniana 100 Julbernardia 100 Fabaceae 100 0 
Julbernardia seretii 0 Julbernardia 25 Fabaceae 37.5 62.5 
Lonchocarpus sericeus 0 Lonchocarpus 0 Fabaceae 100 0 
Millettia drastica 0 Millettia 25 Fabaceae 50 50 
Millettia dura 25 Millettia 75 Fabaceae 75 25 
Millettia eetveldeana 100 Millettia 100 Fabaceae 100 0 
Millettia laurentii 87.5 Millettia 87.5 Fabaceae 87.5 12.5 
Millettia stuhlmannii 0 Millettia 50 Fabaceae 100 0 
Millettia versicolor 75 Millettia 100 Fabaceae 100 0 
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Newtonia aubrevillei 0 Newtonia 0 Fabaceae 100 0 
Newtonia buchananii 0 Newtonia 25 Fabaceae 75 25 
Newtonia glandulifera 0 Newtonia 0 Fabaceae 0 100 
Newtonia leucocarpa 0 Newtonia 0 Fabaceae 25 75 
Pachyelasma tessmannii 0 Pachyelasma 0 Fabaceae 50 50 
Paramacrolobium coeruleum 0 Paramacrolobium 0 Fabaceae 75 25 
Parkia bicolor 50 Parkia 75 Fabaceae 100 0 
Peltophorum africanum 0 Peltophorum 0 Fabaceae 100 0 
Pentaclethra eetveldeana 75 Pentaclethra 75 Fabaceae 91.66666667 8.333333333 
Pentaclethra macrophylla 0 Pentaclethra 0 Fabaceae 100 0 
Pericopsis angolensis 0 Pericopsis 25 Fabaceae 37.5 62.5 
Pericopsis elata 62.5 Pericopsis 75 Fabaceae 75 25 
Piliostigma thonningii 0 Piliostigma 0 Fabaceae 100 0 
Piptadeniastrum africanum 37.5 Piptadeniastrum 37.5 Fabaceae 100 0 
Platysepalum chevalieri 0 Platysepalum 50 Fabaceae 75 25 
Platysepalum violaceum 0 Platysepalum 0 Fabaceae 75 25 
Prioria balsamifera 12.5 Prioria 25 Fabaceae 100 0 
Prioria buchholzii 0 Prioria 0 Fabaceae 50 50 
Prioria mannii 0 Prioria 0 Fabaceae 100 0 
Prioria oxyphylla 37.5 Prioria 37.5 Fabaceae 100 0 
Pterocarpus angolensis 75 Pterocarpus 100 Fabaceae 100 0 
Pterocarpus rotundifolius 50 Pterocarpus 75 Fabaceae 100 0 
Pterocarpus soyauxii 93.75 Pterocarpus 93.75 Fabaceae 100 0 
Pterocarpus tinctorius 31.25 Pterocarpus 87.5 Fabaceae 100 0 
Senegalia senegal 0 Senegalia 25 Fabaceae 100 0 
Senna siamea 50 Senna 50 Fabaceae 50 50 
Tamarindus indica 12.5 Tamarindus 12.5 Fabaceae 100 0 
Tessmannia africana 25 Tessmannia 75 Fabaceae 100 0 
Tessmannia anomala 0 Tessmannia 0 Fabaceae 50 50 
Tessmannia anomala var. flamignii 0 Tessmannia 0 Fabaceae 25 75 
Tessmannia lescrauwaetii 62.5 Tessmannia 62.5 Fabaceae 75 25 
Tessmannia yangambiensis 0 Tessmannia 0 Fabaceae 100 0 
Tetraberlinia bifoliolata 37.5 Tetraberlinia 37.5 Fabaceae 100 0 
Tetrapleura tetraptera 0 Tetrapleura 0 Fabaceae 100 0 
Vachellia abyssinica 0 Vachellia 0 Fabaceae 100 0 
Vachellia seyal 100 Vachellia 100 Fabaceae 100 0 
Anthocleista grandiflora 0 Anthocleista 25 Gentianaceae 25 75 
Anthocleista nobilis 37.5 Anthocleista 50 Gentianaceae 50 50 
Anthocleista schweinfurthii 25 Anthocleista 25 Gentianaceae 25 75 
Hua gaboni 0 Hua 0 Huaceae 0 100 
Harungana madagascariensis 0 Harungana 0 Hypericaceae 0 100 
Desbordesia glaucescens 25 Desbordesia 25 Irvingiaceae 25 75 
Irvingia gabonensis 25 Irvingia 25 Irvingiaceae 25 75 
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Irvingia grandifolia 0 Irvingia 25 Irvingiaceae 25 75 
Irvingia robur 0 Irvingia 25 Irvingiaceae 25 75 
Irvingia smithii 0 Irvingia 50 Irvingiaceae 50 50 
Irvingia tenuinucleata 0 Irvingia 0 Irvingiaceae 50 50 
Klainedoxa gabonensis 75 Klainedoxa 75 Irvingiaceae 75 25 
Phyllocosmus africanus 0 Phyllocosmus 0 Ixonanthaceae 0 100 
Kirkia acuminata 0 Kirkia 0 Kirkiaceae 0 100 
Gmelina arborea 8.333333333 Gmelina 8.333333333 Lamiaceae 8.333333333 91.66666667 
Premna angolensis 0 Premna 0 Lamiaceae 50 50 
Tectona grandis 0 Tectona 0 Lamiaceae 50 50 
Vitex congolensis 0 Vitex 25 Lamiaceae 25 75 
Vitex congolensis var. congolensis 37.5 Vitex 50 Lamiaceae 75 25 
Vitex doniana 37.5 Vitex 62.5 Lamiaceae 62.5 37.5 
Vitex ferruginea 0 Vitex 25 Lamiaceae 25 75 
Vitex madiensis 0 Vitex 0 Lamiaceae 33.33333333 66.66666667 
Vitex madiensis subsp. milanjiensis 0 Vitex 60 Lamiaceae 60 40 
Vitex mombassae 0 Vitex 75 Lamiaceae 75 25 
Beilschmiedia congolana 0 Beilschmiedia 50 Lauraceae 50 50 
Beilschmiedia corbisieri 37.5 Beilschmiedia 37.5 Lauraceae 37.5 62.5 
Beilschmiedia louisii 0 Beilschmiedia 0 Lauraceae 0 100 
Beilschmiedia mannii 0 Beilschmiedia 50 Lauraceae 50 50 
Beilschmiedia oblongifolia 0 Beilschmiedia 0 Lauraceae 0 100 
Beilschmiedia ugandensis 0 Beilschmiedia 0 Lauraceae 0 100 
Persea americana 0 Persea 25 Lauraceae 25 75 
Petersianthus macrocarpus 0 Petersianthus 0 Lecythidaceae 0 100 
Brenania brieyi 50 Brenania 50 Loganiaceae 50 50 
Strychnos cocculoides 100 Strychnos 100 Loganiaceae 100 0 
Strychnos innocua 0 Strychnos 0 Loganiaceae 0 100 
Strychnos spinosa 75 Strychnos 75 Loganiaceae 100 0 
Adansonia digitata 0 Adansonia 0 Malvaceae 100 0 
Ceiba pentandra 25 Ceiba 37.5 Malvaceae 75 25 
Cola ballayi 75 Cola 100 Malvaceae 100 0 
Cola cordifolia 0 Cola 0 Malvaceae 0 100 
Cola gigantea 0 Cola 75 Malvaceae 75 25 
Cola lateritia 0 Cola 0 Malvaceae 0 100 
Cola nitida 100 Cola 100 Malvaceae 100 0 
Cola welwitschii 75 Cola 75 Malvaceae 100 0 
Desplatsia subericarpa 0 Desplatsia 25 Malvaceae 50 50 
Dombeya rotundifolia 25 Dombeya 25 Malvaceae 25 75 
Dombeya torrida 0 Dombeya 0 Malvaceae 25 75 
Duboscia viridiflora 75 Duboscia 75 Malvaceae 75 25 
Grewia louisii 0 Grewia 0 Malvaceae 75 25 
Heritiera littoralis 0 Heritiera 0 Malvaceae 25 75 
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Microcos coriacea 0 Microcos 0 Malvaceae 25 75 
Microcos pinnatifida 0 Microcos 0 Malvaceae 37.5 62.5 
Nesogordonia kabingaensis 25 Nesogordonia 25 Malvaceae 50 50 
Nesogordonia papaverifera 50 Nesogordonia 50 Malvaceae 50 50 
Pterygota bequaertii 100 Pterygota 100 Malvaceae 100 0 
Pterygota macrocarpa 37.5 Pterygota 37.5 Malvaceae 37.5 62.5 
Sterculia quinqueloba 0 Sterculia 0 Malvaceae 0 100 
Sterculia tragacantha 25 Sterculia 37.5 Malvaceae 62.5 37.5 
Triplochiton scleroxylon 50 Triplochiton 50 Malvaceae 100 0 
Dichaetanthera corymbosa 0 Dichaetanthera 0 Melastomataceae 0 100 
Carapa procera 12.5 Carapa 37.5 Meliaceae 87.5 12.5 
Ekebergia benguelensis 50 Ekebergia 50 Meliaceae 100 0 
Ekebergia capensis 0 Ekebergia 0 Meliaceae 37.5 62.5 
Entandrophragma angolense 40 Entandrophragma 80 Meliaceae 85 15 
Entandrophragma candollei 0 Entandrophragma 37.5 Meliaceae 56.25 43.75 
Entandrophragma cylindricum 16.66666667 Entandrophragma 50 Meliaceae 66.66666667 33.33333333 
Entandrophragma delevoyi 0 Entandrophragma 25 Meliaceae 25 75 
Entandrophragma excelsum 12.5 Entandrophragma 25 Meliaceae 50 50 
Entandrophragma palustre 25 Entandrophragma 75 Meliaceae 75 25 
Entandrophragma utile 30 Entandrophragma 70 Meliaceae 95 5 
Khaya anthotheca 8.333333333 Khaya 8.333333333 Meliaceae 50 50 
Khaya grandifoliola 0 Khaya 16.66666667 Meliaceae 41.66666667 58.33333333 
Leplaea cedrata 50 Leplaea 55 Meliaceae 70 30 
Leplaea laurentii 75 Leplaea 75 Meliaceae 75 25 
Leplaea thompsonii 12.5 Leplaea 50 Meliaceae 75 25 
Lovoa trichilioides 45.83333333 Lovoa 45.83333333 Meliaceae 66.66666667 33.33333333 
Trichilia dregeana 0 Trichilia 0 Meliaceae 75 25 
Trichilia emetica subsp. emetica 0 Trichilia 0 Meliaceae 0 100 
Trichilia gilgiana 0 Trichilia 50 Meliaceae 50 50 
Trichilia gilletii 0 Trichilia 25 Meliaceae 25 75 
Trichilia monadelpha 0 Trichilia 0 Meliaceae 0 100 
Trichilia prieuriana 0 Trichilia 0 Meliaceae 0 100 
Trichilia rubescens 0 Trichilia 0 Meliaceae 0 100 
Trichilia tessmannii 0 Trichilia 0 Meliaceae 0 100 
Trichilia welwitschii 0 Trichilia 25 Meliaceae 100 0 
Turraeanthus africanus 33.33333333 Turraeanthus 33.33333333 Meliaceae 66.66666667 33.33333333 
Antiaris toxicaria 37.5 Antiaris 37.5 Moraceae 37.5 62.5 
Antiaris toxicaria subsp. welwitschii 0 Antiaris 0 Moraceae 0 100 
Antiaris toxicaria var. africana 0 Antiaris 0 Moraceae 0 100 
Artocarpus altilis 0 Artocarpus 0 Moraceae 0 100 
Bosqueiopsis gilletii 0 Bosqueiopsis 0 Moraceae 0 100 
Ficus bubu 0 Ficus 25 Moraceae 25 75 
Ficus demeusei 0 Ficus 100 Moraceae 100 0 
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Ficus elastica 0 Ficus 100 Moraceae 100 0 
Ficus lutea 0 Ficus 50 Moraceae 50 50 
Ficus mucuso 0 Ficus 75 Moraceae 100 0 
Ficus sur 0 Ficus 100 Moraceae 100 0 
Ficus sycomorus 0 Ficus 100 Moraceae 100 0 
Ficus thonningii 75 Ficus 75 Moraceae 75 25 
Ficus vogeliana 0 Ficus 100 Moraceae 100 0 
Milicia excelsa 25 Milicia 25 Moraceae 25 75 
Treculia africana 0 Treculia 0 Moraceae 0 100 
Trilepisium madagascariense 0 Trilepisium 0 Moraceae 0 100 
Coelocaryon botryoides 25 Coelocaryon 25 Myristicaceae 25 75 
Coelocaryon preussii 0 Coelocaryon 25 Myristicaceae 50 50 
Pycnanthus angolensis 100 Pycnanthus 100 Myristicaceae 100 0 
Staudtia kamerunensis 0 Staudtia 0 Myristicaceae 0 100 
Staudtia kamerunensis var. gabonensis 0 Staudtia 25 Myristicaceae 25 75 
Syzygium aromaticum 0 Syzygium 25 Myrtaceae 25 75 
Syzygium cordatum 0 Syzygium 62.5 Myrtaceae 62.5 37.5 
Syzygium guineense 0 Syzygium 25 Myrtaceae 50 50 
Syzygium owariense 0 Syzygium 25 Myrtaceae 25 75 
Syzygium parvifolium 0 Syzygium 75 Myrtaceae 75 25 
Syzygium staudtii 25 Syzygium 25 Myrtaceae 25 75 
Lophira alata 87.5 Lophira 87.5 Ochnaceae 87.5 12.5 
Lophira lanceolata 0 Lophira 0 Ochnaceae 0 100 
Coula edulis 0 Coula 0 Olacaceae 12.5 87.5 
Diogoa zenkeri 0 Diogoa 0 Olacaceae 25 75 
Heisteria parvifolia 75 Heisteria 75 Olacaceae 100 0 
Okoubaka aubrevillei 75 Okoubaka 75 Olacaceae 100 0 
Ongokea gore 50 Ongokea 50 Olacaceae 87.5 12.5 
Strombosia grandifolia 25 Strombosia 25 Olacaceae 25 75 
Strombosia pustulata var. pustulata 0 Strombosia 50 Olacaceae 50 50 
Strombosia scheffleri 0 Strombosia 25 Olacaceae 100 0 
Strombosiopsis tetrandra 12.5 Strombosiopsis 12.5 Olacaceae 50 50 
Ximenia americana 0 Ximenia 0 Olacaceae 0 100 
Olea capensis subsp. macrocarpa 75 Olea 75 Oleaceae 75 25 
Olea europaea subsp. cuspidata 0 Olea 75 Oleaceae 75 25 
Olea welwitschii 0 Olea 25 Oleaceae 25 75 
Microdesmis kasaiensis 0 Microdesmis 0 Pandaceae 0 100 
Barteria nigritana 50 Barteria 50 Passifloraceae 50 50 
Psydrax palma 0 Psydrax 0 Penaeaceae 0 100 
Chaetocarpus africanus 50 Chaetocarpus 50 Peraceae 75 25 
Antidesma laciniatum 0 Antidesma 25 Phyllanthaceae 50 50 
Antidesma membranaceum 0 Antidesma 12.5 Phyllanthaceae 50 50 
Bridelia atroviridis 25 Bridelia 75 Phyllanthaceae 75 25 
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Bridelia brideliifolia 0 Bridelia 0 Phyllanthaceae 75 25 
Bridelia ferruginea 25 Bridelia 50 Phyllanthaceae 62.5 37.5 
Bridelia micrantha 0 Bridelia 50 Phyllanthaceae 75 25 
Cleistanthus caudatus 0 Cleistanthus 0 Phyllanthaceae 0 100 
Cleistanthus inundatus 0 Cleistanthus 0 Phyllanthaceae 0 100 
Cleistanthus polystachyus 0 Cleistanthus 0 Phyllanthaceae 0 100 
Hymenocardia acida 50 Hymenocardia 50 Phyllanthaceae 50 50 
Hymenocardia ulmoides 12.5 Hymenocardia 25 Phyllanthaceae 25 75 
Maesobotrya staudtii 0 Maesobotrya 0 Phyllanthaceae 100 0 
Margaritaria discoidea 0 Margaritaria 0 Phyllanthaceae 0 100 
Phyllanthus physocarpus 0 Phyllanthus 0 Phyllanthaceae 25 75 
Pseudolachnostylis maprouneifolia 50 Pseudolachnostylis 50 Phyllanthaceae 50 50 
Uapaca guineensis 0 Uapaca 37.5 Phyllanthaceae 37.5 62.5 
Uapaca heudelotii 12.5 Uapaca 50 Phyllanthaceae 50 50 
Uapaca kirkiana 0 Uapaca 50 Phyllanthaceae 50 50 
Uapaca mole 0 Uapaca 50 Phyllanthaceae 62.5 37.5 
Uapaca nitida 25 Uapaca 75 Phyllanthaceae 75 25 
Uapaca pilosa 0 Uapaca 75 Phyllanthaceae 100 0 
Uapaca robynsii 0 Uapaca 75 Phyllanthaceae 75 25 
Uapaca sansibarica 50 Uapaca 75 Phyllanthaceae 75 25 
Uapaca togoensis 0 Uapaca 100 Phyllanthaceae 100 0 
Uapaca vanhouttei 0 Uapaca 50 Phyllanthaceae 50 50 
Faurea rochetiana 0 Faurea 25 Proteaceae 25 75 
Faurea saligna 0 Faurea 0 Proteaceae 0 100 
Drypetes angustifolia 100 Drypetes 100 Putranjivaceae 100 0 
Drypetes gerrardii 0 Drypetes 0 Putranjivaceae 0 100 
Drypetes gossweileri 0 Drypetes 50 Putranjivaceae 50 50 
Maesopsis eminii 0 Maesopsis 0 Rhamnaceae 0 100 
Ziziphus abyssinica 0 Ziziphus 0 Rhamnaceae 0 100 
Anopyxis klaineana 25 Anopyxis 25 Rhizophoraceae 37.5 62.5 
Cassipourea congoensis 75 Cassipourea 75 Rhizophoraceae 75 25 
Cassipourea gummiflua 0 Cassipourea 0 Rhizophoraceae 0 100 
Cassipourea malosana 0 Cassipourea 0 Rhizophoraceae 0 100 
Rhizophora racemosa 12.5 Rhizophora 12.5 Rhizophoraceae 12.5 87.5 
Hagenia abyssinica 50 Hagenia 50 Rosaceae 50 50 
Prunus africana 0 Prunus 0 Rosaceae 0 100 
Aidia ochroleuca 0 Aidia 0 Rubiaceae 25 75 
Aulacocalyx jasminiflora 0 Aulacocalyx 0 Rubiaceae 25 75 
Coffea liberica 0 Coffea 0 Rubiaceae 75 25 
Corynanthe macroceras 50 Corynanthe 50 Rubiaceae 75 25 
Corynanthe paniculata 0 Corynanthe 12.5 Rubiaceae 50 50 
Craterispermum cerinanthum 0 Craterispermum 0 Rubiaceae 50 50 
Craterispermum laurinum 25 Craterispermum 25 Rubiaceae 75 25 
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Crossopteryx febrifuga 75 Crossopteryx 75 Rubiaceae 100 0 
Gardenia imperialis 50 Gardenia 50 Rubiaceae 100 0 
Gardenia ternifolia subsp. jovis-tonantis 0 Gardenia 0 Rubiaceae 75 25 
Heinsia crinita 100 Heinsia 100 Rubiaceae 100 0 
Massularia acuminata 50 Massularia 50 Rubiaceae 75 25 
Mitragyna ledermannii 0 Mitragyna 25 Rubiaceae 50 50 
Mitragyna rubrostipulata 0 Mitragyna 0 Rubiaceae 25 75 
Mitragyna stipulosa 75 Mitragyna 75 Rubiaceae 83.33333333 16.66666667 
Morinda chrysorhiza 0 Morinda 0 Rubiaceae 0 100 
Morinda citrifolia 0 Morinda 25 Rubiaceae 25 75 
Morinda lucida 100 Morinda 100 Rubiaceae 100 0 
Nauclea diderrichii 62.5 Nauclea 62.5 Rubiaceae 62.5 37.5 
Nauclea latifolia 0 Nauclea 25 Rubiaceae 50 50 
Nauclea pobeguinii 25 Nauclea 25 Rubiaceae 100 0 
Oxyanthus tubiflorus 0 Oxyanthus 0 Rubiaceae 75 25 
Psychotria dermatophylla 0 Psychotria 0 Rubiaceae 0 100 
Rothmannia longiflora 0 Rothmannia 0 Rubiaceae 75 25 
Rothmannia lujae 0 Rothmannia 0 Rubiaceae 25 75 
Schumanniophyton magnificum 100 Schumanniophyton 100 Rubiaceae 100 0 
Tricalysia pallens 75 Tricalysia 75 Rubiaceae 100 0 
Citrus x aurantium 25 Citrus 50 Rutaceae 50 50 
Citrus x limon 75 Citrus 75 Rutaceae 75 25 
Vepris louisii 0 Vepris 0 Rutaceae 0 100 
Zanthoxylum chalybeum 0 Zanthoxylum 0 Rutaceae 0 100 
Zanthoxylum gilletii 0 Zanthoxylum 25 Rutaceae 25 75 
Zanthoxylum heitzii 0 Zanthoxylum 0 Rutaceae 0 100 
Zanthoxylum lemairei 0 Zanthoxylum 25 Rutaceae 25 75 
Homalium abdessammadii 0 Homalium 25 Salicaceae 25 75 
Homalium africanum 0 Homalium 25 Salicaceae 25 75 
Homalium letestui 0 Homalium 50 Salicaceae 50 50 
Homalium longistylum 0 Homalium 75 Salicaceae 75 25 
Homalium stipulaceum 0 Homalium 50 Salicaceae 50 50 
Allophylus africanus 0 Allophylus 0 Sapindaceae 0 100 
Allophylus dummeri 0 Allophylus 0 Sapindaceae 0 100 
Blighia welwitschii 0 Blighia 0 Sapindaceae 0 100 
Chytranthus carneus 50 Chytranthus 50 Sapindaceae 50 50 
Chytranthus setosus 0 Chytranthus 0 Sapindaceae 0 100 
Haplocoelum intermedium 0 Haplocoelum 0 Sapindaceae 0 100 
Lecaniodiscus cupanioides 0 Lecaniodiscus 0 Sapindaceae 0 100 
Majidea fosteri 0 Majidea 0 Sapindaceae 0 100 
Pancovia floribunda 100 Pancovia 100 Sapindaceae 100 0 
Pancovia laurentii 75 Pancovia 75 Sapindaceae 75 25 
Sapindus rarak 0 Sapindus 0 Sapindaceae 0 100 
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Zanha golungensis 12.5 Zanha 25 Sapindaceae 25 75 
Aningeria adolfi-friederici 0 Aningeria 0 Sapotaceae 25 75 
Aningeria altissima 0 Aningeria 0 Sapotaceae 75 25 
Aningeria pierrei 0 Aningeria 0 Sapotaceae 75 25 
Autranella congolensis 91.66666667 Autranella 91.66666667 Sapotaceae 91.66666667 8.333333333 
Baillonella toxisperma 50 Baillonella 50 Sapotaceae 100 0 
Breviea sericea 0 Breviea 0 Sapotaceae 75 25 
Donella pruniformis 0 Donella 0 Sapotaceae 75 25 
Englerophytum laurentii 0 Englerophytum 0 Sapotaceae 100 0 
Englerophytum magalismontanum 0 Englerophytum 0 Sapotaceae 0 100 
Gambeya africana 0 Gambeya 37.5 Sapotaceae 100 0 
Gambeya albida 0 Gambeya 25 Sapotaceae 50 50 
Gambeya beguei 0 Gambeya 50 Sapotaceae 75 25 
Gambeya lacourtiana 0 Gambeya 75 Sapotaceae 75 25 
Gambeya lungi 0 Gambeya 50 Sapotaceae 75 25 
Gambeya perpulchra 0 Gambeya 37.5 Sapotaceae 50 50 
Gambeya subnuda 0 Gambeya 25 Sapotaceae 50 50 
Letestua durissima 0 Letestua 0 Sapotaceae 100 0 
Malacantha alnifolia 0 Malacantha 0 Sapotaceae 100 0 
Manilkara mochisia 0 Manilkara 0 Sapotaceae 75 25 
Manilkara obovata 37.5 Manilkara 37.5 Sapotaceae 50 50 
Mimusops zeyheri 0 Mimusops 0 Sapotaceae 75 25 
Neolemonniera clitandrifolia 0 Neolemonniera 0 Sapotaceae 75 25 
Omphalocarpum brieyi 0 Omphalocarpum 0 Sapotaceae 25 75 
Omphalocarpum lecomteanum 0 Omphalocarpum 0 Sapotaceae 0 100 
Synsepalum afzelii 0 Synsepalum 0 Sapotaceae 50 50 
Synsepalum brevipes 0 Synsepalum 75 Sapotaceae 100 0 
Synsepalum revolutum 0 Synsepalum 25 Sapotaceae 100 0 
Synsepalum stipulatum 0 Synsepalum 0 Sapotaceae 75 25 
Synsepalum subcordatum 75 Synsepalum 75 Sapotaceae 75 25 
Tieghemella africana 0 Tieghemella 37.5 Sapotaceae 75 25 
Tieghemella heckelii 37.5 Tieghemella 50 Sapotaceae 62.5 37.5 
Tridesmostemon omphalocarpoides 0 Tridesmostemon 0 Sapotaceae 75 25 
Vitellaria paradoxa 25 Vitellaria 50 Sapotaceae 100 0 
Odyendea gabunensis 0 Odyendea 0 Simaroubaceae 0 100 
Pierreodendron africanum 87.5 Pierreodendron 87.5 Simaroubaceae 87.5 12.5 
Ficalhoa laurifolia 0 Ficalhoa 0 Sladeniaceae 0 100 
Nuxia congesta 0 Nuxia 0 Stilbaceae 0 100 
Holoptelea grandis 12.5 Holoptelea 12.5 Ulmaceae 12.5 87.5 
Musanga cecropioides 25 Musanga 25 Urticaceae 25 75 
Myrianthus arboreus 25 Myrianthus 25 Urticaceae 25 75 
Myrianthus holstii 50 Myrianthus 50 Urticaceae 50 50 
Myrianthus preussii 0 Myrianthus 0 Urticaceae 0 100 
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Rinorea welwitschii 100 Rinorea 100 Violaceae 100 0 
Erismadelphus exsul 0 Erismadelphus 0 Vochysiaceae 0 100 
Balanites wilsoniana 50 Balanites 50 Zygophyllaceae 50 50 
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Table 8.4: Summary of botanical genera and species used for training and testing the CNN on timber genus classification. The first column gives the botanical genus, the second column 
presents the full taxon of all species included in this study, the final column shows the number of specimens of each species. 

Botanical Genus Full taxon Number of specimens 

Afzelia Sm. 

Afzelia africana Sm. ex Pers. 8 

Afzelia bella Harms 4 

Afzelia bipindensis Harms 11 

Afzelia pachyloba Harms 10 

Afzelia peturei De Wild. 1 

Afzelia quanzensis Welw. 7 

Albizia Durazz. 

Albizia spp. Durazz. 3 

Albizia adianthifolia (Schumach.) W.Wight 6 

Albizia adianthifolia var. intermedia (De Wild. & T.Durand) Villiers 2 

Albizia altissima Hook.f. 5 

Albizia antunesiana Harms 5 

Albizia chinensis (Osbeck) Merr. 6 

Albizia coriaria Welw. ex Oliv. 5 

Albizia ferruginea (Guill. & Perr.) Benth. 6 

Albizia glaberrima (Schumach. & Thonn.) Benth. 3 
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Albizia glaberrima var. glabrescens (Oliv.) Brenan 2 

Albizia grandibracteata Taub. 2 

Albizia gummifera (J.F.Gmel.) C.A.Sm. 4 

Albizia gummifera var. ealaensis (De Wild.) Brenan 6 

Albizia laurentii De Wild. 4 

Albizia lebbeck (L.) Benth. 2 

Albizia schimperiana Oliv. 2 

Albizia versicolor Welw. ex Oliv. 5 

Albizia zygia (DC.) J.F.Macbr. 4 

Alstonia R.Br. 
Alstonia boonei De Wild. 5 

Alstonia congensis Engl. 4 

Beilschmiedia Nees 

Beilschmiedia spp. Nees 4 

Beilschmiedia alata Robyns & R.Wilczek 1 

Beilschmiedia congolana Robyns & R.Wilczek 4 

Beilschmiedia corbisieri (Robyns) Robyns & R.Wilczek 5 

Beilschmiedia donisii Robyns & R.Wilczek 1 

Beilschmiedia gaboonensis (Meisn.) Benth. & Hook.fil. 1 

Beilschmiedia gilbertii Robyns & R.Wilczek 1 

Beilschmiedia louisii Robyns & R.Wilczek 2 

Beilschmiedia mannii (Meisn.) Robyns & R.Wilczek 5 

Beilschmiedia mannioides Robyns & R.Wilczek 1 

Beilschmiedia mayumbensis Robyns & R.Wilczek 1 
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Beilschmiedia michelsonii Robyns & R.Wilczek 1 

Beilschmiedia oblongifolia Robyns & R.Wilczek 4 

Beilschmiedia schmitzii Robyns & R.Wilczek 1 

Beilschmiedia ugandensis Rendle 2 

Beilschmiedia variabilis Robyns & R.Wilczek 1 

Beilschmiedia zenkeri Engl. 1 

Brachystegia Benth. 

Brachystegia spp. Benth. 3 

Brachystegia angustistipulata De Wild. 1 

Brachystegia boehmii Taub. 5 

Brachystegia bussei Harms 3 

Brachystegia floribunda Benth. 3 

Brachystegia gossweileri Hutch. & Burtt Davy 1 

Brachystegia laurentii (De Wild.) Louis ex J.Léonard 6 

Brachystegia longifolia Benth. 5 

Brachystegia manga De Wild. 5 

Brachystegia spiciformis Benth. 6 

Brachystegia stipulata De Wild. 1 

Brachystegia tamarindoides subsp. microphylla (Harms) Chikuni 3 

Brachystegia tamarindoides subsp. tamarindoides 4 

Brachystegia taxifolia Harms 5 

Brachystegia utilis Hutch. & Burtt Davy 3 

Celtis L. Celtis spp. L. 1 
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Celtis adolfi-friderici Engl. 4 

Celtis africana Burm.fil. 3 

Celtis gomphophylla Baker 8 

Celtis latifolia (Blume) Planch. 3 

Celtis mildbraedii Engl. 5 

Celtis philippensis Blanco 5 

Celtis tessmannii Rendle 3 

Celtis zenkeri Engl. 4 

Cynometra L. 

Cynometra alexandri C.H.Wright 4 

Cynometra hankei Harms 5 

Cynometra lujae De Wild. 3 

Cynometra mannii Oliv. 3 

Cynometra michelsonii J.Léonard 1 

Cynometra schlechteri Harms 1 

Cynometra sessiliflora Harms 5 

Dialium L. 

Dialium spp. L. 3 

Dialium angolense Welw. ex Oliv. 1 

Dialium englerianum Henriq. 4 

Dialium excelsum Louis ex Steyaert 5 

Dialium guineense Willd. 1 

Dialium kasaiense Louis ex Steyaert 2 

Dialium pachyphyllum Harms 8 
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Dialium pachyphyllum Harms 8 

Dialium pentandrum Louis ex Steyaert 5 

Dialium polyanthum Harms 4 

Dialium tessmannii Harms 3 

Dialium zenkeri Harms 4 

Diospyros L. 

Diospyros spp. L. 5 

Diospyros alboflavescens (Gürke) F.White 1 

Diospyros batocana Hiern 4 

Diospyros bipindensis Gürke 3 

Diospyros boala De Wild. 2 

Diospyros canaliculata De Wild. 3 

Diospyros chrysocarpa F.White 2 

Diospyros conocarpa Gürke 1 

Diospyros crassiflora Hiern 6 

Diospyros dendo Welw. ex Hiern 3 

Diospyros ferrea (Willd.) Bakh. 5 

Diospyros gilletii De Wild. 1 

Diospyros grex F.White 1 

Diospyros heterotricha (Welw. ex Hiern) F.White 3 

Diospyros hoyleana F.White 3 

Diospyros iturensis (Gürke) Letouzey & F.White 4 

Diospyros mespiliformis Hochst. ex A.DC. 3 
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Diospyros monbuttensis Gürke 1 

Diospyros physocalycina Gürke 1 

Diospyros piscatoria Gürke 1 

Diospyros polystemon Gürke 1 

Diospyros pseudomespilus Mildbr. 4 

Diospyros pseudomespilus subsp. undabunda (Hiern ex Greves) F.White 1 

Diospyros vermoesenii De Wild. 1 

Diospyros viridicans Hiern 2 

Diospyros zenkeri (Gürke) F.White 2 

Entandrophragma C.DC. 

Entandrophragma spp. C.DC. 6 

Entandrophragma angolense (Welw.) C.DC. 22 

Entandrophragma candollei Harms 17 

Entandrophragma cylindricum (Sprague) Sprague 14 

Entandrophragma delevoyi De Wild. 4 

Entandrophragma excelsum (Dawe & Sprague) Sprague 6 

Entandrophragma palustre Staner 5 

Entandrophragma utile (Dawe & Sprague) Sprague 19 

Ficus Tourn. ex L. 

Ficus spp. Tourn. ex L. 1 

Ficus ampelos Burm.fil. 1 

Ficus ardisioides Warb. 1 

Ficus bubu Warb. 5 

Ficus craterostoma Warb. ex Mildbr. & Burret 1 
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Ficus demeusei Warb. 2 

Ficus dicranostyla Mildbr. 2 

Ficus elastica Roxb. 2 

Ficus glumosa Delile 2 

Ficus ingens (Miq.) Miq. 1 

Ficus lutea Vahl 4 

Ficus mucuso Welw. ex Ficalho 4 

Ficus recurvata De Wild. 1 

Ficus sarmentosa var. sarmentosa 1 

Ficus sur Forssk. 4 

Ficus sycomorus L. 4 

Ficus thonningii Blume 4 

Ficus trichopoda Baker 1 

Ficus vallis-choudae Delile 2 

Ficus variifolia Warb. 3 

Ficus vogeliana (Miq.) Miq. 4 

Ficus wildemaniana Warb. ex De Wild. & T.Durand 2 

Gambeya Pierre 

Gambeya africana (A.DC.) Pierre 9 

Gambeya albida (G.Don) Aubrév. & Pellegr. 3 

Gambeya beguei (Aubrév. & Pellegr.) Aubrév. & Pellegr. 2 

Gambeya gorungosana (Engl.) Liben 2 

Gambeya lacourtiana (De Wild.) Aubrév. & Pellegr. 4 
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Gambeya lungi (De Wild.) Aubrév. & Pellegr. 3 

Gambeya perpulchra (Mildbr. ex Hutch. & Dalziel) Aubrév. & Pellegr. 5 

Gambeya subnuda (Baker) Pierre 5 

Gilbertiodendron J.Léonard 

Gilbertiodendron J.Léonard 1 

Gilbertiodendron dewevrei (De Wild.) J.Léonard 5 

Gilbertiodendron grandiflorum (De Wild.) J.Léonard 3 

Gilbertiodendron grandistipulatum (De Wild.) J.Léonard 6 

Gilbertiodendron mayombense (Pellegr.) J.Léonard 3 

Gilbertiodendron ogoouense (Pellegr.) J.Léonard 5 

Homalium Jacq. 

Homalium spp. Jacq. 1 

Homalium abdessammadii Asch. & Schweinf. 3 

Homalium africanum (Hook.f.) Benth. 4 

Homalium letestui Pellegr. 5 

Homalium longistylum Mast. 5 

Homalium stipulaceum Welw. ex Mast. 4 

Irvingia Hook.f. 

Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. 5 

Irvingia grandifolia (Engl.) Engl. 4 

Irvingia robur Mildbr. 6 

Irvingia smithii Hook.fil. 2 

Irvingia tenuinucleata Tiegh. 3 

Leplaea Vermoesen 
Leplaea cedrata (A.Chev.) E.J.M.Koenen & J.J.de Wilde 20 

Leplaea laurentii (De Wild.) E.J.M.Koenen & J.J.de Wilde 4 
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Leplaea mayombensis (Pellegr.) Staner 1 

Leplaea thompsonii (Sprague & Hutch.) E.J.M.Koenen & J.J.de Wilde 17 

Microcos L. 

Microcos coriacea (Mast.) Burret 2 

Microcos mildbraedii Burret 1 

Microcos oligoneura Burret 1 

Microcos pinnatifida (Mast.) Burret 5 

Milicia Sim Milicia excelsa (Welw.) C.C.Berg 13 

Millettia Wight & Arn. 

Millettia Wight & Arn. 2 

Millettia drastica Welw. ex Baker 3 

Millettia dura Dunn 3 

Millettia eetveldeana (Micheli) Hauman 3 

Millettia hockii De Wild. 1 

Millettia hylobia Louis ex Hauman 2 

Millettia laurentii De Wild. 7 

Millettia limbutuensis De Wild. 1 

Millettia macroura Harms 1 

Millettia stuhlmannii Taub. 3 

Millettia versicolor Welw. ex Baker 4 

Nauclea L. 

Nauclea spp. L. 3 

Nauclea diderrichii (De Wild.) Merr. 10 

Nauclea latifolia Sm. 3 

Nauclea pobeguinii (Hua ex Pobég.) Merr. 5 
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Nauclea vanderguchtii (De Wild.) E.M.A.Petit 1 

Prioria Griseb. 

Prioria spp. Griseb. 3 

Prioria balsamifera (Vermoesen) Breteler 7 

Prioria buchholzii (Harms) Breteler 3 

Prioria gilbertii (J.Léonard) Breteler 1 

Prioria mannii (Baill.) Breteler 2 

Prioria oxyphylla (Harms) Breteler 5 

Pterocarpus Jacq. 

Pterocarpus spp. Jacq. 7 

Pterocarpus angolensis DC. 17 

Pterocarpus gilletii De Wild. 1 

Pterocarpus lucens Lepr. ex Guill. & Perr. 1 

Pterocarpus rotundifolius (Sond.) Druce 3 

Pterocarpus soyauxii Taub. 16 

Pterocarpus tessmannii Harms 1 

Pterocarpus tinctorius Welw. 18 

Tessmannia Harms 

Tessmannia africana Harms 2 

Tessmannia anomala (Micheli) Harms 3 

Tessmannia anomala var. flamignii J.Léonard 2 

Tessmannia copallifera J.Léonard 2 

Tessmannia dewildemaniana Harms 1 

Tessmannia lescrauwaetii (De Wild.) Harms 5 

Tessmannia yangambiensis Louis ex J.Léonard 4 
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Uapaca Baill. 

Uapaca spp. Baill. 6 

Uapaca guineensis Müll.Arg. 5 

Uapaca heudelotii Baill. 5 

Uapaca kirkiana Müll.Arg. 3 

Uapaca kirkiana var. gossweileri (Hutch.) Meerts 1 

Uapaca mole Pax 6 

Uapaca nitida Müll.Arg. 4 

Uapaca pilosa Hutch. 3 

Uapaca pynaertii De Wild. 1 

Uapaca robynsii De Wild. 2 

Uapaca sansibarica Pax 4 

Uapaca togoensis Pax 2 

Uapaca vanhouttei De Wild. 2 

Vitex L. 

Vitex spp. L. 2 

Vitex congolensis De Wild. & T.Durand 10 

Vitex cuspidata Hiern 1 

Vitex doniana Sweet 5 

Vitex ferruginea Schumach. & Thonn. 7 

Vitex fischeri Gürke 1 

Vitex grandifolia Gürke 1 

Vitex madiensis Oliv. 6 

Vitex madiensis subsp. milanjiensis (Britten) F.White 2 
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Vitex micrantha Gürke 2 

Vitex mombassae Vatke 2 

Vitex rubroaurantiaca De Wild. 1 

Xylopia L. 

Xylopia spp. L.  

Xylopia acutiflora (Dunal) A.Rich. 4 
Xylopia aethiopica (Dunal) A.Rich. 3 

Xylopia aurantiiodora De Wild. & T.Durand 2 

Xylopia cupularis Mildbr. 6 

Xylopia flamignii Boutique 4 

Xylopia gilbertii Boutique 4 

Xylopia hypolampra Mildbr. & Diels 5 

Xylopia katangensis De Wild. 3 

Xylopia longipetala De Wild. & T.Durand 1 

Xylopia odoratissima Welw. ex Oliv. 1 

Xylopia phloiodora Mildbr. 5 

Xylopia rubescens Oliv. 5 

Xylopia staudtii Engl. & Diels 4 

Xylopia toussaintii Boutique 2 

Xylopia villosa Chipp 3 

Xylopia wilwerthii De Wild. 5 
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Table 8.5: The table shows quantified characteristics of the dataset for individual classes after division specimens into training and testing. Quantified characteristics are portrayed by 
gradient colour scales, portraying positive deviation of the average value. 

Botanical Genus 
Total number of 
specimens in 
Training data 

Total number of 
image patches in 
Training data 

Average number of 
training patches 
across specimens 
per class (genus) 

Total number of 
specimens in Test 
data 

Total number of 
image patches in 
Test data 

Average number of 
test patches 
across specimens 
per class (genus) 

Entandrophragma C.DC. 65 5698 88 27 2283 85 
Pterocarpus Jacq. 49 2305 47 13 341 26 
Albizia Durazz. 45 3695 82 26 1085 42 
Diospyros L. 31 1564 50 32 1121 35 
Uapaca Baill. 31 1659 54 15 969 65 
Xylopia L. 31 3848 124 29 2235 77 
Brachystegia Benth. 30 3976 133 23 1240 54 
Afzelia Sm. 27 1869 69 14 716 51 
Dialium L. 26 2529 97 14 508 36 
Leplaea Vermoesen 26 1846 71 16 812 51 
Beilschmiedia Nees 24 1120 47 10 422 42 
Gambeya Pierre 24 2912 121 9 684 76 
Vitex L. 23 1724 75 29 2235 77 
Ficus Tourn. ex L. 21 1973 94 31 1504 49 
Millettia Wight & Arn. 21 1653 79 6 404 67 
Celtis L. 20 1021 51 15 613 41 
Cynometra L. 18 1188 66 4 365 91 
Gilbertiodendron J. Léonard 18 1961 109 4 668 167 
Nauclea L. 16 1309 82 5 396 79 
Prioria Griseb. 16 1994 125 14 964 69 
Homalium Jacq. 14 2083 149 8 189 24 
Irvingia Hook.f. 13 2792 215 7 348 50 
Milicia Sim 11 1265 115 9 614 68 
Tessmannia Harms 5 698 140 13 563 43 
Alstonia R.Br. 3 875 292 6 333 56 
Microcos Burm. ex L. 3 1577 526 6 432 72 
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Figure 8.3: The Xception architecture, implemented in this study. Layers are sequenced from top-left to bottom-right. The legend underneath the architecture highlights the detailed structure of each layer (or "block") 
and the structure of the parameters (if applicable). The parameters (numerical values) for the layers in the figure are structured according to the listed parameters in the legend. Dashed lines represent residual (or 
skip) connections, which enables a bypass across layers and was implemented to prevent the vanishing gradient problem. The “8x” above the boxed section represents that the boxed sequence is repeated 8x 
sequentially.  
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8.2  Definitions of classification performance metrics: Accuracy, 
Precision, Recall, and F1-score 

In classification problems, the performance of a model is commonly evaluated using a confusion matrix, 
which summarizes predictions relative to ground-truth labels. For a binary classification problem, the 
outcomes are defined as: 

True Positives (TP): correctly predicted positive samples 

True Negatives (TN): correctly predicted negative samples 

False Positives (FP): negative samples incorrectly predicted as positive 

False Negatives (FN): positive samples incorrectly predicted as negative 

8.2.1 Accuracy 
Accuracy measures the overall proportion of correctly classified instances among all predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN + FP + FN

TP + TN
 

While accuracy is intuitive, it can be misleading in imbalanced datasets (e.g., many more negative than 
positive cases), as it does not distinguish between error types. 

8.2.2 Precision 
Precision (also called positive predictive value) quantifies the reliability of positive predictions by 
measuring the proportion of predicted positives that are actually correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP + FP

TP
 

High precision indicates that when the model predicts a positive class, it is usually correct.  

8.2.3 Recall 
Recall (also called sensitivity or true positive rate) measures the ability of the model to identify actual 
positives: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP + FN

TP
 

High recall indicates that the model successfully detects most of the positive cases. 

8.2.4 F1-Score 
Precision and recall often trade off against each other: increasing recall may lower precision, and vice 
versa. To balance these metrics, the F1-score is frequently used, defined as the harmonic mean of 
precision and recall: 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × (Precision + Recall)

Precision × Recall
 

This provides a single measure that rewards models with both high precision and high recall.  
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8.3  Model performance during training 
The Xception architecture achieved high training performance across all three models, consistently 
surpassing 99% accuracy with training loss remaining below 0.5. Within five epochs, accuracy exceeded 
95% and loss fell below 0.2, after which training stabilized (Figure 8.4). Validation accuracy closely tracked 
training accuracy in models with the training data containing anomaly(damage)-free patches. However, 
the inclusion of anomalous patches in the model trained with both types of patches, introduced greater 
variability in validation loss during the first 30 epochs and a temporary decline in validation accuracy 
compared to the model with only anomaly-free patches. In the model with only anomalous patches, 
validation accuracy dropped to 87.9% with a loss of 0.82. 

The reduced variability and faster convergence observed from the model with all patches, and the model 
with only anomaly-free patches suggest that excluding anomalous patches facilitates a more stable 
training process. Conversely, omitting anomaly-free patches led to a performance decline, with validation 
accuracy decreasing from 98.6% (model trained on both) to 87.9%. This indicates that a slight negative 
effect of anomalous patches on training stability and generalization, although the consistently high 
validation accuracies across all models suggest that the model’s capacity to classify individual patches 
effectively is not compromised. 
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Figure 8.4: Training progress of accuracy and loss for the 3 models: Upper: model 1 (trained on all patches), Middle: model 2 
(trained only on anomaly(damage)-free patches, Lower: model 3 (trained only on anomalous patches). 
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8.4  Correlations between class-specific changes in recall  
8.4.1 Across trained models and model-specific training metrics 
Pearson correlation coefficients revealed weak links between training data metrics and recall differences, except for stronger correlations with the average number 
of training patches per genus between models 1 and 2 (0.55 to 0.67). This suggests larger endgrain surface areas improve performance on anomaly-free specimens. 

Table 10.6: Pearson correlation coefficients between the class-specific metrics of the training data and the performance differences between the three models on the (filtered) test 
data. Model 1 was trained on all images, model 2 was trained only on anomaly-free images, model 3 was trained only on anomalous images 

 
Total number of 

specimens in Training 
data 

Total number of image 
patches in Training data 

Average number of 
image patches across 
specimens per class 

(genus) 
Performance difference on  
all test images  
(model 1 vs 2) 

-0,15 0,01 0,55 

Performance difference on  
all test images  
(model 1 vs 3) 

0,16 0,20 0,14 

Performance difference on 
anomaly-free test images 
 (model 1 vs 2) 

-0,21 -0,06 0,67 

Performance difference on 
anomaly-free test images 
(model 1 vs 3) 

0,10 0,20 0,20 

Performance difference on 
anomalous test images  
(model 1 vs 2) 

-0,05 0,15 0,36 

Performance difference on 
anomalous test images  
(model 1 vs 3) 

0,07 0,16 0,16 
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8.4.2 Within trained models (between anomaly-free and anomalous test data) and model-specific training metrics 
Pearson correlations between class-specific performance differences and training data metrics were weak (<30%), except for a moderate positive correlation with 
the average number of image patches per genus in the model trained on all patches (see Table 2 and Supplementary material 1). This indicates that the training data 
structure does not significantly correlate with recall differences. 

Table 10.7: Pearson correlation coefficients between the class-specific metrics of the training data and the performance differences between the anomaly-free and anomalous test 
patches on the training models. 

 
Total number of 
specimens in Training 
data 

Total number of image 
patches in Training data 

Average number of 
image patches across 
specimens per class 
(genus) 

Performance difference on 
anomaly-free and anomalous 
test images (model trained on 
all patches) 

-0,006 0,115 0,352 

Performance difference on 
anomaly-free and anomalous 
test images (model trained 
only on anomaly-free patches) 

0,101 0,262 0,137 

Performance difference on 
anomaly-free and anomalous 
test images (model trained 
only on anomalous patches) 

-0,089 -0,027 0,180 
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Table 8.8: Full overview of all specimens (split across reference and test sets) of non-Congolese timbers used in chapter 5 on the generalisation of object re-identification beyond the 
learned taxonomic scope of African timbers. 

Family Number of Training 
Specimen par Family 

Number of Testing 
Specimen par Family 

Genus Number of Training 
Specimen par Genus 

Number of Testing 
Specimen par Genus 

Species Training Specimen ID 
Tervuren xylarium 

Testing Specimen ID 
Tervuren xylarium 

Achariaceae 18 7 

Erythrospermum 
Lam. 

8 3 
Erythrospermum 
candidum Becc. 

Tw74955, Tw74581, 
Tw80935, Tw73711, 
Tw74744, Tw73826, 
Tw72021, Tw73975 

Tw74576, Tw73380, 
Tw73899 

Pangium Reinw. 5 2 Pangium edule Reinw. 
Tw74592, Tw72760, 
Tw73531, Tw71974, 
Tw73773 

Tw71113, Tw71060 

Trichadenia Thwaites 5 2 Trichadenia 
philippinensis Merr. 

Tw74201, Tw72936, 
Tw73402, Tw74745, 
Tw74640 

Tw72756, Tw72221 

Anacardiaceae 82 33 

Buchanania Spreng. 27 10 

Buchanania 
arborescens Blume 

Tw74789, Tw71377, 
Tw74311, Tw74905 

Tw71294, Tw71289 

Buchanania 
macrocarpa Merr. ex 
Setch. 

Tw72131, Tw72630, 
Tw73652, Tw71702, 
Tw73172, Tw73296, 
Tw72935a, Tw71496, 
Tw73848, Tw72794, 
Tw74714, Tw73400, 
Tw72761, Tw74292, 
Tw71824, Tw74492, 
Tw74037, Tw73213, 
Tw74883a, Tw71226, 
Tw74883b, Tw72284, 
Tw74468 

Tw73184, Tw72246, 
Tw72244, Tw72943, 
Tw71115, Tw74865, 
Tw74012, Tw71688 

Campnosperma 
Thwaites 

19 8 

Campnosperma 
brevipetiolatum 
Volkens 

Tw71390, Tw72779, 
Tw72422, Tw71922, 
Tw72988, Tw73406, 
Tw71283, Tw71766, 
Tw73775, Tw74983, 
Tw71150, Tw74464, 
Tw74482, Tw74615, 
Tw72981, Tw72806 

Tw74922, Tw72965, 
Tw74800, Tw73734, 
Tw71045, Tw71284 

Campnosperma 
coriaceum (Jack) 
Hallier fil. 

Tw73003 Tw72168 

Campnosperma 
montanum Lauterb. 

Tw74914, Tw73058 Tw72871 

Dracontomelon 
Blume 

16 6 Dracontomelon dao 
(Blanco) Merr. & Rolfe 

Tw71997, Tw72408, 
Tw73645, Tw73502, 
Tw73803, Tw73314, 
Tw72602, Tw73201, 
Tw73858, Tw72675, 
Tw74550, Tw73552, 
Tw72922, Tw74899, 
Tw71823, Tw73916 

Tw73339, Tw74785, 
Tw72384, Tw74828, 
Tw73672, Tw71435 
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Gluta L. 1 1 
Gluta papuana Ding 
Hou Tw72489 Tw72181 

Koordersiodendron 
Engl. ex Koord. 

6 3 
Koordersiodendron 
pinnatum (Blanco) 
Merr. 

Tw74258, Tw72855, 
Tw74187, Tw71707, 
Tw74593, Tw74943 

Tw71437, Tw72480, 
Tw71245 

Pentaspadon Hook.f. 6 2 
Pentaspadon motleyi 
Hook.fil. 

Tw72087, Tw71506, 
Tw72641, Tw72331, 
Tw71472, Tw72968 

Tw71402, Tw72065 

Semecarpus L.f. 7 3 

Semecarpus aruensis 
Engl. 

Tw74892 Tw72588 

Semecarpus forstenii 
Blume 

Tw73981, Tw73781, 
Tw74260, Tw74569, 
Tw73295, Tw72071 

Tw73468, Tw71287 

Annonaceae 26 11 

Cananga (Dunal) 
Hook.f. & Thomson 

20 7 
Cananga odorata 
(Lam.) Hook.f. & 
Thomson 

Tw74185, Tw72653, 
Tw74695, Tw71779, 
Tw71695, Tw72283, 
Tw71387, Tw73083, 
Tw73474, Tw71339, 
Tw72000, Tw74502, 
Tw73150, Tw74275, 
Tw73489, Tw74938, 
Tw73320, Tw73494, 
Tw72944, Tw74716 

Tw73530, Tw72685, 
Tw73075, Tw73144, 
Tw71660, Tw72196, 
Tw71190 

Drepananthus 
Maingay ex Hook.f. & 
Thomson 

3 2 

Drepananthus 
petiolatus (Diels) 
Survesw. & 
R.M.K.Saunders 

Tw73908, Tw73514 Tw71931 

Drepananthus 
polycarpus 
(C.T.White & 
W.D.Francis) 
Survesw. & R.M.K. 

Tw74452 Tw72734 

Miliusa Lesch. ex 
A.DC. 3 2 

Miliusa koolsii 
(Kosterm.) J.Sinclair 

Tw74953, Tw74986, 
Tw73677 Tw73335, Tw73548 

Apocynaceae 18 9 

Cerbera L. 6 3 
Cerbera floribunda 
K.Schum. 

Tw74484, Tw74885, 
Tw74966, Tw74656, 
Tw74367, Tw72768 

Tw72418, Tw71454, 
Tw73783 

Ochrosia Juss. 6 3 

Ochrosia ficifolia 
(S.Moore) Markgr. 

Tw74528, Tw72709, 
Tw74698, Tw72757 

Tw72573, Tw72632 

Ochrosia glomerata 
(Blume) F.Muell. Tw74064, Tw72464 Tw72204 

Wrightia R.Br. 6 3 
Wrightia laevis 
Hook.fil. 

Tw74755, Tw72515, 
Tw74838, Tw74405, 
Tw73796, Tw72380 

Tw72462, Tw72377, 
Tw72295 

Aquifoliaceae 2 1 Ilex L.L. 2 1 Ilex cymosa Blume Tw71170, Tw71235 Tw71074 

Bignoniaceae 3 1 
Dolichandrone (Fenzl) 
Seem. 3 1 

Dolichandrone 
spathacea (L.fil.) 
K.Schum. 

Tw72180, Tw74595, 
Tw73022 Tw74274 

Burseraceae 34 13 Garuga Roxb. 1 1 
Garuga floribunda 
Decne. 

Tw74288 Tw73661 
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Haplolobus H.J.Lam 33 12 

Haplolobus 
acuminatus 
(K.Schum.) H.J.Lam 

Tw73821, Tw73968, 
Tw74912, Tw73145 

Tw72939, Tw72706 

Haplolobus 
floribundus 
(K.Schum.) H.J.Lam 

Tw73596, Tw71674, 
Tw72738, Tw74529, 
Tw71296, Tw71556, 
Tw73164, Tw73573, 
Tw71676, Tw73693, 
Tw73478, Tw73699, 
Tw73115, Tw73352, 
Tw71677, Tw73316, 
Tw74834, Tw74812, 
Tw73301, Tw72989, 
Tw74632, Tw73073, 
Tw72780, Tw72990, 
Tw74149, Tw73591, 
Tw73729 

Tw71684, Tw71585, 
Tw73732, Tw72695, 
Tw74897, Tw73961, 
Tw71169, Tw73357, 
Tw74148 

Haplolobus leeifolius 
(Lauterb.) H.J.Lam Tw71964, Tw72502 Tw71921 

Calophyllaceae 10 5 Calophyllum L. 10 5 

Calophyllum 
euryphyllum Lauterb. 

Tw73653 Tw71330 

Calophyllum peekelii 
Lauterb. Tw71587 Tw71174 

Calophyllum soulattri 
Burm.fil. 

Tw74760, Tw74741 Tw72044 

Calophyllum 
suberosum 
P.F.Stevens 

Tw72978, Tw72172, 
Tw73013 Tw72980 

Calophyllum vexans 
P.F.Stevens 

Tw71225, Tw71987, 
Tw71465 Tw71968 

Cannabaceae 22 8 Gironniera Gaudich. 22 8 

Gironniera hirta Ridl. Tw74113, Tw74151 Tw74111 

Gironniera 
subaequalis Planch. 

Tw71604, Tw74433, 
Tw73212, Tw71253, 
Tw74807, Tw72764, 
Tw71259, Tw73227, 
Tw74307, Tw74749, 
Tw71732, Tw73395, 
Tw72723, Tw75002a, 
Tw75002b, Tw72908, 
Tw71541, Tw73386, 
Tw72920, Tw73087 

Tw72128, Tw71529, 
Tw72917, Tw72929, 
Tw72777, Tw73874, 
Tw71096 

Cardiopteridaceae 3 2 
Citronella D.Don 2 1 

Citronella suaveolens 
(Blume) R.A.Howard Tw73049, Tw74473 Tw71929 

Gonocaryum Miq. 1 1 Gonocaryum litorale 
(Blume) Sleumer 

Tw72504 Tw72473 

Celastraceae 8 3 Lophopetalum Wight 
ex Arn. 

8 3 

Lophopetalum 
ledermannii (Loes.) 
Ding Hou 

Tw72876, Tw72804 Tw72796 

Lophopetalum 
torricellense Loes. 

Tw72640, Tw74921, 
Tw74574, Tw74848, 
Tw74996, Tw74862 

Tw72589, Tw74795 
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Centroplacaceae 2 1 Bhesa Buch.-Ham. ex 
Arn. 

2 1 
Bhesa archboldiana 
(Merr. & L.M.Perry) 
Ding Hou 

Tw74353, Tw74896 Tw73401 

Chrysobalanaceae 15 5 

Atuna Raf. 6 2 Atuna excelsa (Jack) 
Kosterm. 

Tw72306, Tw73883, 
Tw72309, Tw73624, 
Tw72600, Tw74406 

Tw71507, Tw72501 

Parastemon A.DC. 9 3 
Parastemon 
versteeghii Merr. & 
Perry 

Tw74377, Tw73864, 
Tw73598, Tw73594, 
Tw73987, Tw71935, 
Tw73822, Tw73576, 
Tw72627 

Tw73867, Tw73606, 
Tw72485 

Cornaceae 10 4 Alangium Lam. 10 4 Alangium javanicum 
(Blume) Wangerin 

Tw74070, Tw73976, 
Tw74023, Tw73717, 
Tw73941, Tw73812, 
Tw74950, Tw73817, 
Tw74305, Tw74303 

Tw72079, Tw74306, 
Tw74671, Tw72110 

Ctenolophonaceae 2 1 Ctenolophon Oliv. 2 1 
Ctenolophon 
parvifolius Oliv. Tw74223, Tw72365 Tw72256 

Cunoniaceae 3 1 Schizomeria D.Don 3 1 Schizomeria serrata 
(Hochr.) Hochr. 

Tw72716, Tw73578, 
Tw74768 

Tw74162 

Dilleniaceae 11 5 Dillenia L. 11 5 

Dillenia castaneifolia 
(Miq.) Martelli ex 
T.Durand & B.D.Jacks. 

Tw73650, Tw73845 Tw72047 

Dillenia papuana 
Martelli 

Tw71152, Tw74446, 
Tw71765, Tw73050, 
Tw74777, Tw72175, 
Tw72900, Tw73167 

Tw72405, Tw72910, 
Tw71719 

Dillenia pteropoda 
(Miq.) Hoogland Tw72506 Tw71468 

Dipterocarpaceae 44 17 

Anisoptera Korth. 14 5 Anisoptera thurifera 
(Blanco) Blume 

Tw73869, Tw73007, 
Tw74814, Tw71923, 
Tw73000, Tw72866, 
Tw72074, Tw72795, 
Tw73683, Tw73617, 
Tw74222, Tw73002, 
Tw74366, Tw73872 

Tw73188, Tw72169, 
Tw74401, Tw71565, 
Tw73687 

Hopea Roxb. 9 5 

Hopea iriana Slooten 
Tw73686, Tw72954, 
Tw74673 

Tw72946, Tw72495 

Hopea 
novoguineensis 
Slooten 

Tw72816, Tw74934 Tw72491 

Hopea papuana Diels Tw73712, Tw71992 Tw71991 

Hopea scabra 
P.S.Ashton 

Tw73580, Tw71971 Tw71962 

Vatica L. 21 7 
Vatica rassak (Korth.) 
Blume 

Tw74364, Tw72498, 
Tw74968, Tw73629, 
Tw71307, Tw71734, 
Tw72826, Tw72314, 
Tw72153, Tw74967, 
Tw71509, Tw73720, 
Tw72537, Tw71501, 

Tw72237, Tw72130, 
Tw71727, Tw73601, 
Tw72313, Tw71265, 
Tw71434 
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Tw71547, Tw74283, 
Tw71425, Tw72299, 
Tw74627, Tw71731, 
Tw72864 

Elaeocarpaceae 54 23 

Elaeocarpus L. 35 14 

Elaeocarpus 
altisectus Schltr. 

Tw74347, Tw72577, 
Tw73042 Tw73620 

Elaeocarpus 
dolichostylus Schltr. 

Tw71623, Tw72953, 
Tw74453, Tw73925, 
Tw74120, Tw74121, 
Tw74876, Tw73922, 
Tw71633, Tw72775 

Tw74618, Tw74775, 
Tw71338, Tw71368 

Elaeocarpus miegei 
Weibel 

Tw71181, Tw71228, 
Tw73792 Tw73024 

Elaeocarpus 
nouhuysii Koord. 

Tw71184, Tw71656, 
Tw72397, Tw73378, 
Tw71641, Tw73756, 
Tw73139, Tw72316, 
Tw71773, Tw73291, 
Tw74873 

Tw71077, Tw73439, 
Tw71111, Tw74509 

Elaeocarpus 
sepikanus Schltr. 

Tw74400, Tw71620, 
Tw71630 Tw73749 

Elaeocarpus 
sphaericus (Gaertn.) 
Ettingsh. 

Tw73888, Tw73777, 
Tw72671, Tw74319 Tw71761, Tw71808 

Elaeocarpus 
undulatus Warb. 

Tw73820 Tw72271 

Sloanea L. 19 9 

Sloanea aberrans 
(Brandis) A.C.Sm. 

Tw74621, Tw74954, 
Tw74371 Tw72496, Tw73258 

Sloanea brachystyla 
(Schltr.) A.C.Sm. 

Tw73030 Tw73025 

Sloanea forbesii 
F.Muell. Tw73486, Tw72317 Tw71104 

Sloanea 
paradisearum 
F.Muell. 

Tw74075, Tw74459 Tw73244 

Sloanea pullei 
O.C.Schmidt ex 
A.C.Sm. 

Tw72941, Tw73102, 
Tw72740, Tw72844, 
Tw73142, Tw72762, 
Tw73414, Tw73735, 
Tw72420, Tw74375, 
Tw74988 

Tw71628, Tw74441, 
Tw71581, Tw73737 

Euphorbiaceae 21 12 

Aleurites J.R.Forst. & 
G.Forst. 

1 1 Aleurites moluccanus 
(L.) Willd. 

Tw74977 Tw71476 

Balakata Esser 1 1 
Balakata luzonica 
(Vidal) Esser 

Tw73338 Tw72027 

Endospermum Benth. 11 5 

Endospermum 
medullosum L.S.Sm. 

Tw74117, Tw72650, 
Tw74198, Tw74704, 
Tw74128, Tw74706 

Tw72310, Tw72201, 
Tw73814 

Endospermum 
moluccanum (Teijsm. 
& Binn.) Kurz 

Tw74864, Tw71762, 
Tw72870, Tw73260, 
Tw72460 

Tw71129, Tw71127 
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Excoecaria L. 1 1 
Excoecaria 
myrioneura Airy Shaw Tw74361 Tw74157 

Mallotus Lour. 6 3 

Mallotus philippensis 
(Lam.) Müll.Arg. 

Tw73521, Tw73554 Tw72466 

Mallotus pleiogynus 
Pax & K.Hoffm. 

Tw72727, Tw74228, 
Tw74963, Tw74277 

Tw72385, Tw71989 

Spathiostemon 
Blume 1 1 

Spathiostemon 
javensis Blume Tw73719 Tw73669 

Fabaceae 23 12 

Adenanthera L. 2 1 
Adenanthera 
novoguineensis Baker 
f. 

Tw72477, Tw74435 Tw72112 

Archidendron F.Muell. 1 1 
Archidendron molle 
(K.Schum.) de Wit Tw73664 Tw73648 

Falcataria 
(I.C.Nielsen) Barneby 
& J.W.Grimes 

3 2 
Falcataria falcata (L.) 
Greuter & R.Rankin 

Tw74474, Tw74322, 
Tw74566 

Tw73240, Tw73483 

Inocarpus J.R.Forst. & 
G.Forst. 

11 5 

Inocarpus fagifer 
(Parkinson ex 
F.A.Zorn) Fosberg 

Tw74940, Tw72179, 
Tw72452, Tw71549, 
Tw71768, Tw72404, 
Tw71391, Tw72960, 
Tw74483, Tw72356 

Tw71050, Tw74756, 
Tw74894, Tw71379 

Inocarpus papuanus 
Kosterm. 

Tw73193 Tw73179 

Pongamia Adans. 3 2 
Pongamia pinnata (L.) 
Pierre 

Tw73856, Tw73533, 
Tw73722 

Tw72789, Tw71994 

Serianthes Benth. 3 1 
Serianthes 
minahassae (Koord.) 
Merr. & L.M.Perry 

Tw74895, Tw71503, 
Tw72483 

Tw72585 

Fagaceae 7 3 

Castanopsis (D.Don) 
Spach 

2 1 
Castanopsis 
acuminatissima 
(Blume) A.DC. 

Tw73451, Tw73477 Tw73252 

Lithocarpus Blume 5 2 

Lithocarpus celebicus 
(Miq.) Rehder 

Tw73742, Tw72919 Tw71171 

Lithocarpus 
rufovillosus (Markgr.) 
Rehder 

Tw74373, Tw73436, 
Tw72676 

Tw73450 

Gentianaceae 3 2 Fagraea Thunb. 3 2 
Fagraea gracilipes 
A.Gray 

Tw72950, Tw73626, 
Tw73105 Tw72812, Tw72690 

Hernandiaceae 15 5 Hernandia L. 15 5 Hernandia ovigera L. 

Tw74471, Tw74910, 
Tw73843, Tw72805, 
Tw71705, Tw71572, 
Tw73463, Tw73107, 
Tw73498, Tw74450, 
Tw74549, Tw73276, 
Tw71976, Tw74973, 
Tw71480 

Tw71689, Tw73780, 
Tw73399, Tw71196, 
Tw74869 

Himantandraceae 6 2 
Galbulimima 
F.M.Bailey 6 2 

Galbulimima 
belgraveana (F.Muell.) 
Sprague 

Tw74080, Tw73225, 
Tw74156, Tw73415, 
Tw74540, Tw74372 

Tw73613, Tw73113 
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Juglandaceae 8 3 
Engelhardia Lesch. ex 
Blume 8 3 

Engelhardia rigida 
Blume 

Tw74065, Tw74047, 
Tw74399, Tw73445, 
Tw74412, Tw73738 

Tw73111, Tw73746 

Engelhardia spicata 
Lesch. ex Blume Tw74819, Tw74669 Tw74628 

Lamiaceae 7 3 Teijsmanniodendron 
Koord. 

7 3 Teijsmanniodendron 
bogoriense Koord. 

Tw72104, Tw73873, 
Tw73416, Tw73413, 
Tw74815, Tw72752, 
Tw72721 

Tw73403, Tw74428, 
Tw72587 

Lauraceae 68 35 

Alseodaphne Nees 5 2 
Alseodaphne 
archboldiana 
(C.K.Allen) Kosterm. 

Tw71687, Tw74281, 
Tw72951, Tw71746, 
Tw73248 

Tw71430, Tw71222 

Cinnamomum 
Schaeff. 2 1 

Cinnamomum 
grandiflorum 
Kosterm. 

Tw72520, Tw72976 Tw71925 

Cryptocarya R.Br. 9 5 

Cryptocarya alleniana 
C.T.White Tw73430, Tw73119 Tw72923 

Cryptocarya brevipes 
C.K.Allen 

Tw74112 Tw74106 

Cryptocarya 
diversifolia Blume Tw73710 Tw72503 

Cryptocarya murrayi 
F.Muell. 

Tw74316, Tw73834, 
Tw73562 

Tw74123 

Cryptocarya 
verrucosa Teschner 

Tw71334, Tw71306 Tw71292 

Endiandra R.Br. 7 4 

Endiandra brassii 
C.K.Allen Tw74650, Tw72693 Tw71449 

Endiandra forbesii 
Gamble 

Tw74004, Tw74804 Tw71234 

Endiandra latifolia 
Kosterm. Tw74489, Tw74526 Tw71643 

Endiandra 
ledermannii Teschner 

Tw74849 Tw72896 

Litsea Lam. 41 20 

Litsea calophyllantha 
K.Schum. 

Tw74684 Tw72755 

Litsea elliptica Blume Tw74176 Tw74132 

Litsea firma (Blume) 
Hook.fil. 

Tw71215, Tw74357, 
Tw74699, Tw74362, 
Tw74060, Tw72912, 
Tw73104, Tw72417, 
Tw72884 

Tw72146, Tw74136, 
Tw74015, Tw74079 

Litsea glutinosa 
(Lour.) C.B.Rob. 

Tw74878 Tw74500 

Litsea grandis (Wall. 
ex Nees) Hook.fil. 

Tw74061 Tw74025 

Litsea irianensis 
Kosterm. 

Tw74118, Tw73541, 
Tw73311 

Tw72620, Tw71117 

Litsea ledermannii 
Teschner 

Tw73411, Tw74919, 
Tw72867, Tw73464, 
Tw73421, Tw74806 

Tw73097, Tw72666, 
Tw72724 
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Litsea timoriana 
Span. 

Tw74125, Tw72885, 
Tw72629, Tw74124, 
Tw74532, Tw71632, 
Tw74284, Tw74246, 
Tw74248, Tw72341, 
Tw73308, Tw74559, 
Tw71081, Tw74636, 
Tw72655, Tw72129, 
Tw73884, Tw72320, 
Tw73524 

Tw72750, Tw74245, 
Tw73495, Tw73264, 
Tw71071, Tw71737, 
Tw72343 

Nothaphoebe Blume 3 2 
Nothaphoebe 
archboldiana 
C.K.Allen 

Tw74608 Tw73763 

   
Nothaphoebe elata 
(Kosterm.) Kosterm. Tw71146, Tw73085 Tw71080 

Phoebe Nees 1 1 Phoebe forbesii 
Gamble 

Tw74083 Tw73190 

Lecythidaceae 9 4 

Barringtonia J.R.Forst. 
& G.Forst. 

7 3 Barringtonia 
lauterbachii R.Knuth 

Tw73971, Tw73804, 
Tw74675, Tw73844, 
Tw74739, Tw80930, 
Tw71112 

Tw74903, Tw71158, 
Tw73960 

Planchonia Blume 2 1 
Planchonia papuana 
R.Knuth 

Tw73949, Tw73937 Tw72214 

Loganiaceae 3 2 Neuburgia Blume 3 2 
Neuburgia 
corynocarpa (A.Gray) 
Leenh. 

Tw74253, Tw74270, 
Tw74272 

Tw71075, Tw74166 

Lythraceae 4 3 

Duabanga Buch.-
Ham. 

1 1 Duabanga moluccana 
Blume 

Tw74945 Tw74419 

Lagerstroemia L. 2 1 
Lagerstroemia 
celebica Blume 

Tw72901, Tw72624 Tw72584 

Sonneratia L.f. 1 1 
Sonneratia caseolaris 
(L.) Engl. Tw72555 Tw72359 

Magnoliaceae 4 2 Magnolia Plum. ex L. 4 2 
Magnolia tsiampacca 
(L.) Figlar & Noot. 

Tw74710, Tw74158, 
Tw74898, Tw73427 

Tw72711, Tw72613 

Malvaceae 16 8 

Colona Cav. 9 3 Colona scabra (Sm.) 
Burret 

Tw72433, Tw72162, 
Tw72773, Tw74328, 
Tw74722, Tw73082, 
Tw72430, Tw74510, 
Tw74729 

Tw74649, Tw73151, 
Tw72415 

Kleinhovia L. 3 2 Kleinhovia hospita L. 
Tw73526, Tw72516, 
Tw73784 Tw72265, Tw71340 

Trichospermum 
Blume 

4 3 

Trichospermum 
pleiostigma (F.Muell.) 
Kosterm. 

Tw73458, Tw73488, 
Tw74479 

Tw73440, Tw73455 

Trichospermum 
tripyxis (Schum.) 
Kosterm. 

Tw74638 Tw71475 

Melastomataceae 8 4 Astronia Blume 5 2 
Astronia hollrungii 
Cogn. 

Tw74490, Tw73204, 
Tw74591, Tw73435, 
Tw74451 

Tw72751, Tw72959 
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Astronidium A.Gray 2 1 
Astronidium biakense 
J.F.Maxwell Tw74030, Tw74035 Tw74029 

Pternandra Jack 1 1 
Pternandra 
tuberculata (Korth.) 
M.P.Nayar 

Tw74674 Tw71532 

Meliaceae 86 39 

Aglaia Lour. 22 11 

Aglaia flavida Merr. & 
L.M.Perry 

Tw72018, Tw72992 Tw71085 

Aglaia lawii (Wight) 
C.J.Saldanha 

Tw73299, Tw74332, 
Tw72670, Tw73284, 
Tw73304 

Tw72481, Tw72070 

Aglaia lepiorrhachis 
Harms Tw74942 Tw73948 

Aglaia oligophylla Miq. Tw74712 Tw74421 

Aglaia sexipetala 
Griff. 

Tw73662 Tw73532 

Aglaia silvestris 
(M.Roem.) Merr. 

Tw72785, Tw73833, 
Tw74203, Tw72014, 
Tw73921, Tw74205, 
Tw74742, Tw74668 

Tw73919, Tw74066, 
Tw72357 

Aglaia spectabilis 
(Miq.) S.S.Jain & 
Bennet 

Tw71322 Tw71304 

Aglaia subminutiflora 
C.DC. 

Tw73286, Tw71328, 
Tw73564 Tw73329 

Aphanamixis Pierre 1 1 
Aphanamixis 
polystachya (Wall.) 
R.Parker 

Tw73384 Tw72342 

Azadirachta A.Juss. 3 2 
Azadirachta excelsa 
(Jack) Jacobs 

Tw73211, Tw72425, 
Tw72429 

Tw71785, Tw72290 

Chisocheton Blume 20 9 

Chisocheton 
ceramicus Miq. 

Tw73503, Tw74350, 
Tw73067, Tw72414, 
Tw71063, Tw74243, 
Tw72272, Tw74570 

Tw73426, Tw72066, 
Tw72592 

Chisocheton 
cumingianus (C.DC.) 
Harms 

Tw73808 Tw73441 

Chisocheton 
lasiocarpum (Miq.) 
Valeton 

Tw71998, Tw71333, 
Tw72543, Tw74438, 
Tw74182, Tw73232, 
Tw74449, Tw73665 

Tw73368, Tw73064, 
Tw71508 

Chisocheton 
longistipitatus 
(F.M.Bailey) L.S.Sm. 

Tw71800 Tw71203 

Chisocheton stellatus 
P.F.Stevens 

Tw73846, Tw73663 Tw71189 

Dysoxylum Blume 11 5 

Dysoxylum excelsum 
Blume 

Tw74478, Tw73835, 
Tw73496, Tw73404, 
Tw74560 

Tw72963, Tw73210 

Dysoxylum 
mollissimum Blume 

Tw73482, Tw73283, 
Tw73432 Tw73434 
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Dysoxylum 
oppositifolium 
F.Muell. 

Tw72997, Tw74542, 
Tw73034 

Tw71502, Tw72421 

Pseudocarapa 
Hemsl. 

6 2 Pseudocarapa 
inopinata Harms 

Tw74096, Tw72798, 
Tw74647, Tw74014, 
Tw72742, Tw74388 

Tw72722, Tw72934 

Sandoricum Cav. 4 2 Sandoricum koetjape 
(Burm.fil.) Merr. 

Tw74734, Tw74290, 
Tw74282, Tw74928 

Tw74271, Tw74231 

Toona (Endl.) 
M.Roem. 5 2 

Toona sureni (Blume) 
Merr. 

Tw74979, Tw73733, 
Tw73794, Tw73472, 
Tw73500 

Tw73268, Tw73467 

Vavaea Benth. 12 4 Vavaea amicorum 
Benth. 

Tw72673, Tw74981, 
Tw74172, Tw72134, 
Tw72661, Tw71970, 
Tw74285, Tw72667, 
Tw74291, Tw73752, 
Tw72488, Tw73743 

Tw74192, Tw74590, 
Tw74167, Tw73631 

Xylocarpus J.Koenig 2 1 Xylocarpus granatum 
J.Koenig 

Tw74603, Tw74730 Tw71414 

Metteniusaceae 4 2 Platea Blume 4 2 Platea excelsa Blume 
Tw71616, Tw73758, 
Tw72776, Tw71721 Tw71308, Tw71124 

Moraceae 18 7 Parartocarpus Baill. 4 2 
Parartocarpus 
venenosa (Zoll. & 
Moritzi) Becc. 

Tw74078, Tw74582, 
Tw75001, Tw74696 

Tw72080, Tw71937 

Moraceae 18 7 

Paratrophis Blume 8 3 

Paratrophis glabra 
(Merr.) Steenis 

Tw73906, Tw74661 Tw73237 

Paratrophis 
philippinensis 
(Bureau) Fern.-Vill. 

Tw73340, Tw72603, 
Tw72928, Tw74890, 
Tw72260, Tw73180 

Tw72714, Tw71069 

Prainea King ex 
Hook.f. 

6 2 
Prainea limpato (Miq.) 
Beumée ex K.Heyne 

Tw73923, Tw74140, 
Tw74978, Tw71580, 
Tw74831, Tw74635 

Tw74031, Tw71559 

Myristicaceae 50 22 

Endocomia W.J.de 
Wilde 3 1 

Endocomia 
macrocoma (Miq.) 
W.J.de Wilde 

Tw74678, Tw72697, 
Tw73818 Tw74491 

Horsfieldia Willd. 16 7 

Horsfieldia irya 
(Gaertn.) Warb. 

Tw74425 Tw71094 

Horsfieldia 
pachyrachis W.J.de 
Wilde 

Tw74497 Tw71367 

Horsfieldia sylvestris 
(Houtt.) Warb. 

Tw73681, Tw71806, 
Tw71639, Tw73839, 
Tw71219, Tw71137, 
Tw72862, Tw74867, 
Tw72771, Tw71794, 
Tw71791, Tw71792, 
Tw71756, Tw71653 

Tw74855, Tw71078, 
Tw71793, Tw71946, 
Tw71432 

Myristica Gronov. 31 14 Myristica fatua Houtt. 

Tw73057, Tw71221, 
Tw74374, Tw74280, 
Tw74926, Tw74547, 
Tw71535 

Tw71504, Tw74753, 
Tw74226 
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Myristica garciniifolia 
Warb. Tw72546 Tw71271 

Myristica globosa 
Warb. 

Tw73709, Tw73569 Tw73341 

Myristica hollrungii 
Warb. 

Tw72167, Tw72040, 
Tw73037, Tw74503, 
Tw72388, Tw71610, 
Tw72238, Tw71375, 
Tw72006, Tw72681 

Tw71042, Tw73106, 
Tw73133, Tw71299 

Myristica inutilis Rich. 
ex A.Gray 

Tw74682, Tw72219, 
Tw72045 

Tw73895 

Myristica mediovibex 
W.J.de Wilde Tw74393, Tw73882 Tw73592 

Myristica scripta 
W.J.de Wilde 

Tw74131 Tw74119 

Myristica sulcata 
Warb. 

Tw73649, Tw74543, 
Tw74469, Tw73614, 
Tw73830 

Tw73156, Tw72710 

Myrtaceae 10 5 

Eucalyptopsis 
C.T.White 1 1 

Eucalyptopsis 
papuana C.T.White Tw72559 Tw72367 

Rhodamnia Jack 4 2 

Rhodamnia 
pachyloba A.J.Scott 

Tw73374, Tw72707, 
Tw74499 

Tw74434 

Rhodamnia reticulata 
A.J.Scott Tw74663 Tw72726 

Tristaniopsis Brongn. 
& Gris 5 2 

Tristaniopsis 
ferruginea (C.T.White) 
Paul G.Wilson & 
J.T.Waterh. 

Tw73701, Tw73692, 
Tw74705, Tw72879, 
Tw74210 

Tw72857, Tw72143 

Nyssaceae 3 1 Mastixia Blume 3 1 Mastixia kaniensis 
Melch. 

Tw72835, Tw74700, 
Tw73682 

Tw73885 

Oleaceae 2 1 Chionanthus Royen 2 1 
Chionanthus 
ramiflorus Roxb. 

Tw74936, Tw74302 Tw72125 

Pentaphylacaceae 3 1 
Ternstroemia Mutis ex 
L.f. 3 1 

Ternstroemia 
merrilliana Kobuski 

Tw72248, Tw74667, 
Tw71517 Tw72561 

Phyllanthaceae 11 5 

Baccaurea Lour. 3 1 Baccaurea nanihua 
Merr. 

Tw74073, Tw74155, 
Tw72895 

Tw74126 

Bischofia Blume 4 2 
Bischofia javanica 
Blume 

Tw74565, Tw73547, 
Tw74515, Tw73520 Tw72637, Tw72007 

Glochidion J.R.Forst. 
& G.Forst. 

4 2 

Glochidion lucidum 
Blume 

Tw74995 Tw71533 

Glochidion 
stenophyllum Airy 
Shaw 

Tw72072, Tw72595, 
Tw74152 Tw73689 

Podocarpaceae 4 2 
Nageia Gaertn. 3 1 

Nageia wallichiana 
(Presl) Kuntze 

Tw72873, Tw72536, 
Tw74626 Tw72916 

Podocarpus L'Hér. ex 
Pers. 

1 1 Podocarpus rumphii 
Blume 

Tw74331 Tw74251 

Polygalaceae 4 2 Xanthophyllum Roxb. 4 2 
Xanthophyllum 
papuanum Whitmore 
ex Meijden 

Tw71351, Tw72754, 
Tw71070 

Tw72656 
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Xanthophyllum 
suberosum C.T.White Tw75005 Tw74224 

Rhamnaceae 7 4 Alphitonia Reissek ex 
Endl. 

7 4 

Alphitonia excelsa 
(Fenzl) Benth. 

Tw73480, Tw74900, 
Tw73457, Tw73456 

Tw73424, Tw72509 

Alphitonia 
macrocarpa 
Mansfield 

Tw74676, Tw74708, 
Tw74539 Tw71635, Tw73372 

Rhizophoraceae 12 6 

Bruguiera Lam. 2 1 
Bruguiera gymnorhiza 
(L.) Lam. Tw74604, Tw74686 Tw72156 

Carallia Roxb. ex R.Br. 9 4 Carallia brachiata 
(Lour.) Merr. 

Tw72401, Tw72875, 
Tw74351, Tw73787, 
Tw73523, Tw73076, 
Tw73091, Tw74792, 
Tw74623 

Tw74074, Tw74114, 
Tw72401a, Tw73725 

Gynotroches Blume 1 1 
Gynotroches axillaris 
Blume Tw74929 Tw74798 

Rubiaceae 31 14 

Adina Salisb. 2 1 Adina multifolia Havil. Tw72275, Tw73166 Tw72251 

Mastixiodendron 
Melch. 11 4 

Mastixiodendron 
pachyclados 
(K.Schum.) Melch. 

Tw72036, Tw71709, 
Tw71555, Tw72200, 
Tw74641, Tw71825, 
Tw71701, Tw71941, 
Tw71557, Tw73768, 
Tw71936 

Tw73643, Tw71255, 
Tw73956, Tw71199 

Neolamarckia Bosser 7 3 
Neolamarckia 
cadamba (Roxb.) 
Bosser 

Tw74980, Tw74178, 
Tw73305, Tw71927, 
Tw74552, Tw73141, 
Tw74769 

Tw73771, Tw72098, 
Tw74964 

Neonauclea Merr. 9 5 

Neonauclea brassii 
S.Moore 

Tw74447, Tw73108, 
Tw74925, Tw73247, 
Tw73565, Tw72493, 
Tw74141 

Tw74501, Tw72662, 
Tw73257 

Neonauclea hagenii 
(Lauterb. & K.Schum.) 
Merr. 

Tw73449 Tw72969 

Neonauclea 
lanceolata (Blume) 
Merr. 

Tw74818 Tw74229 

Timonius Rumph. ex 
DC. 

2 1 Timonius timon 
(Spreng.) Merr. 

Tw72004, Tw73779 Tw71043 

Rutaceae 34 16 

Flindersia R.Br. 14 6 

Flindersia 
amboinensis Poir. 

Tw74356, Tw73487, 
Tw71131, Tw72399, 
Tw72609, Tw72427, 
Tw73255, Tw74553, 
Tw74597 

Tw74536, Tw72383, 
Tw73361 

Flindersia 
pimenteliana F.Muell. 

Tw74368, Tw74095, 
Tw74003, Tw74021 

Tw73605, Tw73597 

Flindersia schottiana 
F.Muell. Tw73563 Tw73259 

Halfordia F.Muell. 1 1 
Halfordia kendack 
(Montrouz.) 
Guillaumin 

Tw73608 Tw72792 
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Melicope J.R.Forst. & 
G.Forst. 

19 9 

Melicope bonwickii 
(F.Muell.) T.G.Hartley 

Tw74408, Tw73558, 
Tw72362 Tw71782, Tw72279 

Melicope elleryana 
(F.Muell.) T.G.Hartley 

Tw72538, Tw73223, 
Tw73173, Tw72578, 
Tw72434, Tw71777, 
Tw74530, Tw73074, 
Tw73940, Tw73280, 
Tw71750, Tw73066, 
Tw73954, Tw72850, 
Tw74466 

Tw74537, Tw73136, 
Tw71153, Tw73407, 
Tw74735, Tw72165 

Melicope exuta 
T.G.Hartley 

Tw72853 Tw72277 

Sabiaceae 1 1 Meliosma Blume 1 1 
Meliosma pinnata 
(Roxb.) Maxim. Tw74217 Tw72135 

Salicaceae 4 2 
Casearia Jacq. 1 1 Casearia grewiifolia 

Vent. 
Tw74586 Tw74567 

Itoa Hemsl. 3 1 
Itoa stapfii (Koord.) 
Sleumer 

Tw73275, Tw73285, 
Tw73490 

Tw73471 

Sapindaceae 88 32 

Arytera Blume 1 1 Arytera litoralis Blume Tw74461 Tw74352 

Dimocarpus Lour. 1 1 
Dimocarpus longan 
Lour. Tw71738 Tw71673 

Pometia J.R.Forst. & 
G.Forst. 

83 28 Pometia pinnata 
J.R.Forst. & G.Forst. 

Tw73343, Tw72540, 
Tw72012, Tw73807, 
Tw71554, Tw71661, 
Tw73121, Tw72409, 
Tw73392a, 
Tw74998b, Tw73881, 
Tw74858, Tw73518, 
Tw74596, Tw71319, 
Tw72243, Tw71729, 
Tw71324, Tw71224, 
Tw72808, Tw71257, 
Tw71148, Tw73730, 
Tw71944, Tw71478, 
Tw72625, Tw73408, 
Tw71242, Tw71954, 
Tw73473, Tw71650, 
Tw72913, Tw72888, 
Tw71389, Tw72455, 
Tw72240, Tw73609, 
Tw73881a, Tw73219, 
Tw72807, Tw74583, 
Tw74511, Tw74989, 
Tw73159, Tw74889, 
Tw73397, Tw74426, 
Tw74780, Tw72581, 
Tw72608, Tw74631, 
Tw71041, Tw74998a, 
Tw71563, Tw72325, 
Tw73392, Tw72529a, 
Tw71144, Tw71314, 

Tw71461, Tw72743, 
Tw71950, Tw73630, 
Tw71120, Tw71960, 
Tw72529, Tw74998c, 
Tw72234, Tw71386, 
Tw72524a, Tw73604, 
Tw71363, Tw72043a, 
Tw71380, Tw72443, 
Tw74516, Tw74170, 
Tw72599, Tw71151, 
Tw71820, Tw73325, 
Tw72530, Tw71126, 
Tw73375, Tw72541, 
Tw72534, Tw71065 
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Tw72043, Tw71492, 
Tw74177, Tw72431, 
Tw72787, Tw74263, 
Tw72970, Tw71477, 
Tw71913, Tw72228, 
Tw72601, Tw73176, 
Tw73220, Tw71400, 
Tw73890, Tw72524, 
Tw72118, Tw71605, 
Tw71358, Tw71975, 
Tw71419, Tw72582, 
Tw73398, Tw73375a 

Tristiropsis Radlk. 3 2 Tristiropsis 
acutangula Radlk. 

Tw72225, Tw73932, 
Tw72458 

Tw72223, Tw71947 

Sapotaceae 86 38 

Burckella Pierre 14 5 

Burckella macropoda 
(K.Krause) H.J.Lam 

Tw74329, Tw73632, 
Tw74326, Tw73053, 
Tw74200, Tw74737 

Tw72512, Tw73953 

Burckella polymera 
P.Royen 

Tw73695, Tw74924, 
Tw71498, Tw71448, 
Tw74961, Tw74754, 
Tw71481, Tw71603 

Tw71474, Tw72352, 
Tw71594 

Madhuca Buch.-Ham. 
ex J.F.Gmel. 

4 3 

Madhuca 
boerlageana (Burck) 
Baehni 

Tw74068 Tw73607 

Madhuca 
leucodermis 
(K.Krause) H.J.Lam 

Tw73221, Tw74160, 
Tw73405 

Tw71258, Tw71669 

Palaquium Blanco 40 17 

Palaquium 
amboinense Burck 

Tw72042a, Tw71809, 
Tw74278, Tw74606, 
Tw74204, Tw74175, 
Tw74841, Tw72973, 
Tw71967, Tw71297, 
Tw71963, Tw71982, 
Tw72972, Tw71955, 
Tw74327, Tw71816, 
Tw73123a, Tw71300 

Tw71366, Tw72042, 
Tw71164, Tw73123, 
Tw74657, Tw73891 

Palaquium 
galactoxylum 
(F.Muell.) H.J.Lam 

Tw73603, Tw72991, 
Tw73006 

Tw73008 

Palaquium lobbianum 
Burck 

Tw74051, Tw74032, 
Tw71320, Tw74770, 
Tw74917, Tw72786, 
Tw73101, Tw72937, 
Tw71369, Tw73793, 
Tw71374 

Tw74888, Tw71309, 
Tw71200, Tw74707 

Palaquium 
obtusifolium Burck 

Tw74485, Tw73770, 
Tw73540 Tw73307, Tw72725 

Palaquium ridleyi King 
& Gamble 

Tw74209, Tw74358, 
Tw74359 

Tw73599, Tw72797 

Palaquium supfianum 
Schltr. Tw72924 Tw71583 
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Palaquium 
warburgianum Schltr. 
ex K.Krause 

Tw71571 Tw71263 

Planchonella Pierre 25 11 

Planchonella 
chartacea (F.Muell. ex 
Benth.) H.J.Lam 

Tw74391, Tw74213 Tw73658 

Planchonella 
keyensis H.J.Lam 

Tw72413, Tw72213, 
Tw72926, Tw71784, 
Tw72435 

Tw71431, Tw71047 

Planchonella menait 
(Vink) Swenson 

Tw74665, Tw73684, 
Tw74087, Tw74028 

Tw72574, Tw72025 

Planchonella 
myrsinodendron 
(F.Muell.) Swenson, 
Bartish & Munzinger 

Tw74313, Tw74935 Tw72475 

Planchonella obovata 
(R.Br.) Pierre 

Tw71485, Tw73390, 
Tw71346 Tw72241 

Planchonella 
pomifera (Pierre ex 
Baill.) Dubard 

Tw72749 Tw71089 

Planchonella 
torricellensis 
(K.Schum.) H.J.Lam 

Tw73538, Tw74556, 
Tw74517, Tw73566, 
Tw73358 

Tw71813, Tw72889 

Planchonella 
xylocarpa (C.T.White) 
Swenson, Bartish & 
Munzinger 

Tw71810, Tw74607, 
Tw71811 

Tw71812 

Sarcosperma Hook.f. 3 2 
Sarcosperma 
paniculatum (King) 
Stapf & King 

Tw74548, Tw73460, 
Tw74816 

Tw73250, Tw73130 

Simaroubaceae 7 3 Ailanthus Desf. 7 3 
Ailanthus integrifolia 
Lam. ex Steud. 

Tw73309, Tw73549, 
Tw73336, Tw71345, 
Tw71084, Tw73627, 
Tw74971 

Tw73917, Tw71232, 
Tw73318 

Stemonuraceae 6 2 Stemonurus Blume 6 2 

Stemonurus 
monticola 
(G.Schellenb.) 
Sleumer 

Tw74382, Tw80936, 
Tw73716, Tw74212, 
Tw74594, Tw73014 

Tw74086, Tw73005 

Styracaceae 3 1 Bruinsmia Boerl. & 
Koord. 

3 1 
Bruinsmia 
styracoides Boerl. & 
Koord. 

Tw72860, Tw74709, 
Tw74216 

Tw74677 

Tetramelaceae 15 5 
Octomeles Miq. 12 4 

Octomeles 
sumatranum Miq. 

Tw72782, Tw72085, 
Tw71342, Tw73791, 
Tw72784, Tw72360, 
Tw72133, Tw71948, 
Tw73556, Tw73149, 
Tw72335, Tw74783 

Tw73419, Tw72837, 
Tw73942, Tw72407 

Tetrameles R.Br. 3 1 
Tetrameles nudiflora 
R.Br. 

Tw72160, Tw73815, 
Tw72449 Tw73148 

Theaceae 6 3 Polyspora Sweet 6 3 Polyspora 
amboinensis (Miq.) 

Tw74153, Tw74670, 
Tw74150 

Tw73747, Tw73690 
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Orel, Peter G.Wilson, 
Curry & Luu 
Polyspora papuana 
(Kobuski) Orel, Peter 
G.Wilson, Curry & Luu 

Tw74402, Tw72492, 
Tw72231 

Tw73570 

 

 

Table 8.9: Overview of the applied class counts and simulations for the experiment in Chapter 5 on generalisation of object re-identification beyond the learned taxonomic scope. 

Number of Classes Number of Simulations per Class count 

10 50 

15 30 

20 20 

30 15 

50 10 

75 6 

100 3 
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