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Woord vooraf

If you want to go fast, go alone. if you want to go far, go together.
African Wisdom

Dat gezegde is meer dan waar, en misschien nog sterker bij het schrijven van een doctoraat. Dit werk is niet enkel het resultaat van
mijn inspanningen, maar van de steun en warmte die ik de afgelopen vier jaar heb mogen ervaren. Familie, vrienden, collega’s, mijn
promotoren, en vooral die ene bijzonder persoon die altijd aan mijn zijde stond, in dit verhaal én in mijn leven. Jullie maakten dit
mogelijk.

Graag wil ik mijn collega's in het UGent-Woodlab bedanken. Jullie gaven me niet alleen een luisterend oor, maar ook energie, plezier,
en inzicht. Brainstormen met jullie leidde vaak tot de doorbraken waar dit werk op steunt. Bedankt voor alle lunches, gesprekken en
momenten van inspiratie. In het bijzonder: Stijn Willen, het was een voorrecht je bureaupartner te zijn; jouw technische inzicht en
goedgezindheid waren goud waard. Ik zal onze precisiewerkjes, zoals het zagen van de beukenstam, nooit vergeten. Toon Gheyle,
bedankt voor je enthousiasme dat het werk altijd lichter maakte. Maxime Dekegeleer, onze gesprekken over Al gaven me inzichten die
dit onderzoek sterker hebben gemaakt. Maarten Perneel, bedankt voor je tijd, behulpzaamheid, en me een beetje extra wegwijs te
maken in neurale netwerken en computer visie. Liselotte De Ligne, jouw begeleiding en huiselijkheid bij mijn masterproef waren
fundamenten waar ik op kon bouwen. Ik ben zeker dat anderen dit ook ervaren, en ik twijfel er geen seconde aan dat je die mooie
waarden ook mee zal geven aan je kinderen. Joris Van Acker, jij hebt mijn liefde voor hout verder aangewakkerd en gevoed - jouw
lessen, begeleiding en steun hebben mij mede gevormd en hebben me op een pad gestuurd dat ik met plezier heb mogen bewandelen.
Ook wil ik graag Katrien en Kasper bedanken: jullie vriendschap en onze gezellige lunches als alumni waren telkens iets om naar uit
te kijken.

Ook alle jobstudenten en stagiaires met wie ik samen heb mogen werken wil ik graag bedanken. Naast Michael Monnoye wil ik ook
Miro Cnops, Senne Suyckerbuyck, en Tibo Deckers bedanken voor al hun hulp bij het annoteren. Simon Vansuyt ook jou wil ik bedanken
voor de inzet en kunde waarmee je een CNC machine kon ombouwen naar een indrukwekkend robot voor hoogwaardige beeldname.
Ik wens je veel succes in je toekomstige carriére.

In het Africamuseum wil ik graag al mijn collega's doorheen de tijd bedanken voor de fijne collegiale momenten. Ook in het
Africamuseum zijn er enkele personen die ik graag extra in de verf wil zetten. Te beginnen met een persoon die het meeste praktisch
werk verzet heeft voor mijn doctoraat. Daniel Wallenus, jouw tomeloze inzet voor SmartWoodID en de houtcollectie, je vriendelijkheid
en eindeloze uren densiteitmetingen, foto's, en scanning zijn van onschatbare waarde. Verder wil ik ook in het bijzonder Michael
Monnoye bedanken. We hebben elkaar leren kennen als PhD student en jobstudent, maar daaruit is uiteindelijke een collegiaal gegeven
mogen groeien. Je inzet voor het annoteren van de houtkenmerken en je verdere ontwikkeling als jonge ervaren houtidentificatie
expert, zijn indrukwekkend en ik hoop dat we in de toekomst nog veel samen mogen werken om samen houtidentificatie nog
efficiénter, accurater en toegankelijker te mogen maken voor het bestrijden van illegale houthandel. Kévin Lievens, onze brainstormen
waren onvergetelijk. Ze waren een genot en hebben me veel bijgebracht. Ik wens je veel succes in je nieuwe uitdaging. Eric Van
Herreweghe, al was onze tijd als collega's kort, ik kan terugkijken op je inzichten en onze carpoolgesprekken als waardevolle lessen.
Ze hebben de fundamenten gevormd voor automatisering en nieuwe onderzoeksmogelijkheden. 0ok de technische ondersteuning wil
ik graag bedanken met in het bijzonder: Dieter Van Hassel, bedankt voor je kennis en inzet rond databanken en het online beschikbaar
maken van SmartWoodID. Franck Theeten, voor je creatieve ideeén en hulp bij deep learning. Kristof Bollen, voor je snelle en vriendelijke
technische ondersteuning die altijd klaar stond. Bovendien wil ik ook graag de directie bedanken.

Naast mijn collega's in wil ik ook een bijzonder groepje mensen bedanken. Mensen die zich over de jaren ingezet hebben voor
wetenschappelijk werk vanuit hun eigen initiatief. Ik wil graag alle vrijwilligers bedanken die me geholpen hebben bij het digitaliseren
en managen van de SmartWoodID collectie en bij uitbreiding de Tervuren houtcollectie. Cécile De Troyer, Frank Simoens, Michéle
Florquin, Ferre Caron, Olayemi Razaq Saliu, Véronique Maes, Philippe Quintin, Patrick De Snijder, en José Kempenaers. Verder wil ik
graag Luiza Mitrache bedanken voor de (itizen scienceinitiatieven die dit mogelijk maken.

Verder wil ik 0ok graag iets groters bedanken dan enkele bijzonder individuen. Ik wil alle voorgaande wetenschappers bedanken, en in
het bijzonder allen die hebben bijgedragen aan de twee instituten waarin ik zo hartelijk ben verwelkomd. Mijn onderzoek zou nooit
mogelijk zijn geweest zonder jullie steun en inspanningen. In essentie:

1 stand on the shoulders of giants.

Bernard of Chartres & sir Isaac Newton
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En de grootste giant is daarbij de Tervuren houtcollectie. Deze impressionante collectie is de basis van mijn onderzoek, wat niet
mogelijk geweest zou zijn zonder al wetenschappelijk werk dat mijn voorgangers gedaan hebben in de afgelopen eeuw. Jullie, en alle
onderzoekers uit het verleden wil ik bedanken, opdat ik op jullie kennis verder mocht bouwen en dat anderen na mij dat ook mogen.

Extern wil ik ook graag Bart Peeters en Filip Mollé bedanken voor hun inzicht en vriendelijkheid om samen de automatisering uit te
werken, die befaamde robotarm aan te kopen, ondanks de uitdagende administratieve procedures aan de overheid. 0ok Kristof Haneca,
Tom De Mil, Steven Janssens, Alex Dedeckel en vele anderen wil ik bedanken om jullie te hebben mogen leren kennen tijdens mijn
doctoraat en hopelijk nog beter in de toekomst.

Ik wil graag de jury leden bedanken voor hun zorgvuldige en inzichtvolle feedback. Daarbij wil ik graag een speciaal woord van dank
brengen aan Victor De Klerck. Uw ervaring, warmte en geloof in mij waren een bron van kracht. Uw woorden - dat inzet en gedrevenheid
minstens even belangrijk zijn als punten - hebben me gedragen. U bent een voorbeeld en een inspiratie. Ik ben dankbaar dat ik met u
heb mogen samenwerken en hoop dat dit in de toekomst nog vaak het geval zal zijn.

Naast al die fijne collega's wil ik nu graag in het bijzonder mijn promotoren bedanken. ELk van jullie hebben me waardevolle lessen
geleerd waardoor ik niet alleen als wetenschapper, maar ook als mens heb kunnen groeien.

Ik wil Jan Van den Bulcke bedanken. Ik heb veel ontzag voor de manier waarop u wetenschap beoefent. Uw efficiéntie, 0og voor detail
envermogen om steeds meteen tot de essentie te komen, hebben me enorm geholpen om beter te leren schrijven en informatie helder
over te brengen. Ik heb genoten van onze samenwerking en hoop oprecht dat die in de toekomst verdergezet kan worden.

Jan Verwaeren, ook u wil ik graag bedanken voor de vele aangename en inzichtvolle gesprekken. Ze hebben me veel geleerd over data-
analyse en over de manier waarop ik naar onderzoek kan kijken. Uw toewijding om mij steeds bij te staan met antwoorden over deep
learning was cruciaal om dit doctoraat tot een goed einde te brengen. Uw vriendelijkheid en geduld heb ik bijzonder geapprecieerd.

Wannes Hubau, ik ben u dankbaar voor alle ondersteuning, maar in het bijzonder voor uw inzet met het oog op de toekomst. De tijd en
moeite die u hebt geinvesteerd in het voorzien van sponsoring en het samen uitschrijven van nieuwe projecten betekenen veel voor
mij en mijn verdere carriére. Ik ben blij dat u me kansen biedt om hopelijk mijn onderzoek voort te zetten en dat u mijn ideeén ziet als
waardevolle pistes voor toekomstig werk. Mijn dank is nu groot, maar ik weet dat die in de toekomst alleen maar verder zal groeien.

Ten slotte wil ik een zeer bijzondere promotor bedanken: Hans Beeckman. U hebt mij iets gegeven dat ik nooit kan teruggeven: een
kans. Zonder u had ik dit avontuur nooit kunnen aangaan. U schonk een onbekende, pas afgestudeerde bio-ingenieur, die u nog niet
kende, de mogelijkheid om in te stappen in een project dat u nauw aan het hart lag. Dat vertrouwen betekende alles voor mij. Het
leerde me hoe belangrijk het is om jonge onderzoekers kansen te geven. De tijd die u vrijmaakte voor doelgerichte, pragmatische
ondersteuning heeft me doen groeien als wetenschapper en als persoon. 0ok nu u met pensioen bent, weet ik dat ik nog steeds op u
kan rekenen. Ik hoop oprecht dat ik u nog vele jaren mag kennen en dat we samen nog veel kunnen realiseren—tot we de volledige
Tervuren houtcollectie hebben gedigitaliseerd en alle houtsoorten ter wereld in kaart hebben gebracht.

Ten slotte wil ik ook al mijn vrienden en familie bedanken voor hun onvoorwaardelijke betrokkenheid bij mij en mijn onderzoek. Jullie
oprechte interesse en enthousiasme waren voor mij een baken van motivatie en bevestiging dat mijn werk er werkelijk toe doet. Soms
zag ik de ogen wel eens wegdromen wanneer ik weer te enthousiast over mijn onderzoek vertelde, maar toch bleven jullie vragen naar
mijn werk. Dat vertrouwen en die warmte zijn misschien wel het mooiste geschenk dat jullie mij konden geven.

In het bijzonder wil ik mijn ouders bedanken. Mama en Papa, jullie maakten het mogelijk dat ik kon studeren en hebben mij altijd
gesteund in mijn keuzes. Jullie geloof in mij heeft de basis gelegd voor alles wat ik vandaag bereikt heb. 0ok mijn grootmoeder, Marie
‘Mammie’ Wynant, wil ik hier met veel dankbaarheid vernoemen. Dankzij jou leerde ik Hans kennen, wat de deur geopend heeft naar
deze vier fantastische jaren.

En bovenal wil ik mijn vrouw, Kim, bedanken. Laat niemand ooit zeggen dat een doctoraat geen druk zet op een relatie; vooral dit
laatste jaar was zwaar tijdens de afwerking van dit manuscript. Liefje, zonder jouw steun had ik dit nooit kunnen volbrengen. Terwijl
jij zelf aan je eigen doctoraat begon en daarnaast ook nog het huishouden grotendeels op je nam, bleef je me aanmoedigen en kracht
geven om door te zetten (soms lief en warm, maar altijd recht voor de raap en ongefilterd). Zelfs wanneer ik gefrustreerd mijn bureau
kapot kon timmeren op het programmeren, of eens zat te klagen over mijn werk, bleef jij geduldig en begripvol. Ik weet dat dit niet
altijd eenvoudig was. Voor al die steun, voor al dat geduld en voor de liefde waarmee je me door deze storm hielp, ben ik je eindeloos
dankbaar.



List of abbreviations

Al Artificial Intelligence
API Application Programming Interface
AUC Area Under the Curve
BCE Binary Cross Entropy

BELSPO Belgian Science Policy Office

CCE Categorical Cross Entropy

CDF cumulative distribution function

CITES Convention on International Trade in Endangered Species
CNN Convolutional Neural Networks

CROSR Classification-Reconstruction learning for Open-Set Recognition
CT Computed Tomography
cVv Computer Vision

DART Direct Analysis in Real Time

DRC Democratic Republic of the Congo

DT Decision Tree

EUDR European Union Deforestation Regulation

EUTR European Union Timber Regulation

FLEGT Forest Law Enforcement, Governance and Trade

Grad-CAM Gradient Weighted Class Activation Mapping

IAWA International Association of Wood Anatomists

IF International Image Interoperability Framework

IUCN International Union for Conservation of Nature
IUFRO International Union of Forest Research Organizations
NIRS Near-Infrared Spectroscopy

RelLU Rectified Linear Unit

RF Random Forests

RGB Red Green Blue

RMCA Royal Museum for Central-Africa
SVM Support Vector Machines

TOFMS Time-Of-Flight Mass Spectrometry



Summary (Dutch)

Illegale houtkap vormt een ernstige bedreiging voor bossen en kan onherstelbare schade met zich
meebrengen, zeker wanneer beschermde boomsoorten worden geéxploiteerd. Naar schatting is tussen de
30 en 90 procent van het verhandelde tropisch hout illegaal gekapt. Om dit tegen te gaan zijn verschillende
regelgevingen en beleidsmaatregelen ingevoerd, gericht op meer transparantie en traceerbaarheid binnen
de houtketen. Voorbeelden hiervan zijn het FLEGT-actieplan, de Europese Houtverordening (EUTR), de
Europese Ontbossingsverordening (EUDR), de Amerikaanse Lacey Act en het CITES-verdrag. Het succes
van deze maatregelen hangt in grote mate af van één cruciale voorwaarde: de snelle en betrouwbare
identificatie van houtsoorten, van het moment van kap tot aan transport, opslag en uitvoer.

Houtidentificatie gebeurt a.d.h.v. anatomische, chemische en genetische technieken. Van deze methoden
is de anatomische analyse — gebaseerd op de structuur van houtcellen en -weefsels — het meest
gebruikelijk. De IAWA heeft gestandaardiseerde kenmerken opgesteld die wereldwijd als referentie gelden.
Microscopische analyse levert een hoge nauwkeurigheid op, maar vereist gespecialiseerde apparatuur,
training en tijdrovende voorbereiding van stalen. Daardoor is deze methode minder geschikt voor screening
in het veld. Macroscopische analyse, waarbij gekeken wordt naar kenmerken die met het blote oog of een
loep zichtbaar zijn op vers gezaagde of geschuurde oppervlakken, is veel toegankelijker en goedkoper.
Vooral een dwarsdoorsnede van het hout toont belangrijke kenmerken zoals de ligging van vaten, breedte
van stralen en verdeling van parenchym — elementen die vaak worden gebruikt in veldgidsen.

Toch kent deze methode duidelijke beperkingen. Het aantal waarneembare kenmerken is beperkt, en er
bestaat vaak grote variatie binnen dezelfde soort. Dat maakt het moeilijk om met zekerheid een soort te
benoemen. De IAWA-kenmerken zijn bovendien beschrijvend van aard (“aanwezig”, “variabel”, “afwezig”),
wat subtiele maar relevante verschillen kan verhullen en interpretatie subjectief maakt. Bovendien is er tot
op het heden weinig onderzoek uitgevoerd naar hoe goed deze kenmerken werkelijk onderscheid tussen
houtsoorten mogelijk maken, vooral in soortenrijke tropische gebieden. Daardoor blijven betrouwbare
identificatiesleutels en de ontwikkeling van nieuwe herkenningsmodellen achter.

Beeldherkenning via computer visie biedt hierin een veelbelovend alternatief. CNNs kunnen zelfstandig
visuele kenmerken herkennen op foto’s van houtdoorsneden en zo automatisch en snel soorten
identificeren. Deze technologie werkt op draagbare apparaten en wordt al toegepast in de praktijk,
bijvoorbeeld met het XyloTron-systeem in Ghana. Toch kent ook deze aanpak uitdagingen. De trainingsdata
bestaat vaak uit perfecte stalen, terwijl hout in de praktijk beschadigd kan zijn door bijvoorbeeld scheuren,
verkleuring of aantasting door insecten of schimmels. Zulke schade kan kenmerken verbergen en de
nauwkeurigheid van modellen aantasten. Recente studies (zoals Ravindran et al., 2023 en Owens et al.,
2024) hebben aangetoond dat beschadiging de prestaties beinvloedt, maar er wordt nog weinig rekening
gehouden met dit soort schade tijdens het trainen van modellen.

Een ander knelpunt is dat de meeste CNN-modellen uitgaan van een gesloten systeem: ze gaan ervan uit
dat elk monster tot een bekende soort behoort. In regio’s met veel biodiversiteit is dat niet realistisch,
omdat daar ook onbekende of moeilijk te onderscheiden soorten voorkomen. Pogingen om dit op te lossen
met opt-out categorieén of drempelwaarden hebben tot nu toe weinig succes gehad. Daarom groeit de
belangstelling voor zogenaamde open-wereldmodellen. Een veelbelovende aanpak hierin is object-
herkenning via re-identificatie: beelden worden vertaald naar zogeheten ‘embeddings’, een soort digitale
vingerafdruk, waarbij beelden van dezelfde soort in dezelfde cluster vallen. Nieuwe beelden kunnen dan
vergeleken worden met een referentiedatabase. Met technieken als triplet learning en binaire verificatie
worden modellen getraind om subtiele verschillen tussen soorten te herkennen. Hoewel deze aanpak
complexer is en nauwkeurige selectie van trainingsvoorbeelden vereist, sluit ze beter aan bij hoe experts in
de praktijk te werk gaan: via vergelijking in plaats van categorisatie.

Een belangrijke uitdaging bij het opzetten van effectieve herkenningssystemen is de enorme
soortenrijkdom van bomen wereldwijd, vooral in tropische gebieden zoals de DRC. Hout is bovendien een
zeer variabel materiaal, beinvloed door genetica, groeiplaats en de positie binnen de boom (bijvoorbeeld



stam versus tak). Daardoor is het lastig om uniforme herkenningskenmerken vast te stellen. Ook worden
wetenschappelijke namen regelmatig herzien, wat het samenstellen van betrouwbare databases
bemoeilijkt. In de houtindustrie worden soorten bovendien vaak gegroepeerd onder handelsnamen, die
niet altijd overeenkomen met botanische realiteit. Bestaande databases zoals InsideWood,
macroHOLZdata, CITESWoodID en het Atlas of Macroscopic Wood Identification bieden nuttige informatie,
maar bevatten vaak te weinig variatie binnen soorten en zijn niet altijd gekoppeld aan fysieke referenties.
Daardoor zijn ze minder geschikt voor het trainen van robuuste Al-modellen. De beperkingen en
achterliggend problematiek wordt omschreven in hoofdstuk 1 a.d.h.v. literatuur.

Om deze beperkingen tegemoet te komen, ontwikkelden we SmartWoodID - de grootste
referentiedatabase van gelabelde macroscopische houtdoorsneden, specifiek bedoeld voor snelle en
nauwkeurige soortherkenning in de DRC, waar illegale houtkap veel voorkomt. De database is gebaseerd
op de uitgebreide Tervuren houtcollectie (ondergebracht in het Koninklijk Museum voor Midden-Afrika,
Tervuren, Belgi€é) en bevat meerdere, kwalitatief hoogwaardige beelden per soort, met focus op
commercieel belangrijke taxa. In tegenstelling tot andere databases bevat SmartWoodID ook hout met
zichtbare schade of variatie, zoals scheuren, schimmel of insectenvraat. Hierdoor zijn modellen die op
deze beelden getraind zijn beter bestand tegen realistische veldomstandigheden. De bouw van deze
databank wordt beschreven in hoofdstuk 2.

In hoofdstuk 3 onderzochten we de in welke mate de 31 gestandaardiseerde kenmerken bij 601
houtsoorten identificatie mogelijk maken, gebruikmakend van de SmartWoodID-database. Hoewel deze
kenmerken helpen om binnen kleine taxonomische groepen te onderscheiden, bleken ze op bredere schaal
onvoldoende onderscheidend. Modellen die alleen op deze kenmerken gebaseerd waren, behaalden
slechts ongeveer 50% nauwkeurigheid op genusniveau bij 56 Congolese commerciéle houtsoorten. Dit
benadrukt de noodzaak om ook de andere houtanatomische kenmerken, zichtbaar op andere vlakken en
bij grotere microscopische vergroting, te gebruikenen te combineren met andere methoden.

Hoofdstukken 4 en 5 onderzochten CNN-modellen die getraind werden op beelden van houtdoorsneden.
Deze modellen bleken veel beter in staat om fijne kleur- en textuurpatronen te herkennen - informatie die
experts intuitief gebruiken, maar niet in vaste kenmerken wordt vastgelegd. CNNs presteerden aanzienlijk
beter dan modellen op basis van handmatige geannoteerde kenmerken, met nauwkeurigheden boven de
85% en in meer dan 95% van de gevallen stond het juiste genus in de top zes voorspellingen. Dit bevestigt
datvisuele data meer diagnostische waarde heeft dan eerder werd aangenomen, en dat Al deze informatie
effectief kan benutten.

Omdat in de praktijk vaak een combinatie van visuele indrukken en gestandaardiseerde kenmerken wordt
gebruikt, onderzochten we in hoofdstuk 6 of deze twee benaderingen gecombineerd konden worden. Het
opnieuw rangschikken van CNN-voorspellingen met behulp van handmatige kenmerken leverde voor
sommige soorten verbeteringen op, maar bij andere — waaronder belangrijke zoals Khaya - leidde het tot
lagere nauwkeurigheid. Dit wijst op het belang van zorgvuldige afstemming bij het combineren van
methodes.

We onderzochten ook hoe de samenstelling van de trainingsdata de prestaties beinvloedt. Modellen
presteerden beter naarmate er meer verschillende monsters en grotere scanoppervlakken beschikbaar
waren. Modellen getraind op onbeschadigde beelden behaalden de hoogste sensitiviteit (90,5%), gevolgd
door gemengde (88,4%) en beschadigde beelden (79,1%). Analyse met Grad-CAM liet zien dat modellen
zich vooral richten op intacte structuren, wat het belang van zorgvuldig monsterbeheer en beeldkwaliteit
benadrukt.

Tot slot keken we in hoofdstuk 5 naar herkenningsstrategieén voor open-wereldtoepassingen (scenario’s
waarin niet alle mogelijke soorten vooraf in het model zijn opgenomen). Binaire verificatie, waarbij beelden
vergeleken worden met referentievoorbeelden in plaats van direct geclassificeerd, bleek robuust en
effectief — zelfs bij onbekende soorten. Deze aanpak is bijzonder geschikt voor situaties waarin de vraag
niet is "welke soort is dit?" maar "komt deze soort overeen met wat is opgegeven?". In vrijwel alle gevallen
presteerde deze methode minstens zo goed als of beter dan traditionele classificatie.



We onderzochten ook triplet learning, waarbij beelden worden omgezet in numerieke vectoren die het
anatomisch patroon vastleggen. Deze vectoren kunnen vervolgens worden vergeleken of ingevoerd in
eenvoudige technieken zoals nearest neighbour of XGBoost. De eerste resultaten waren gemengd —
mogelijk door suboptimale training — maar de aanpak blijft veelbelovend, vooral voor toekomstige
systemen die meerdere soorten data (zoals DNA of chemische profielen) combineren.

Dit onderzoek biedt een directe vergelijking van houtidentificatie a.d.h.v. traditionele houtkenmerken en
CNN-classificatie op houtsoorten in de DRC. Het benadrukt het belang van open-wereld benaderingen
voor de ontwikkeling van betrouwbare, schaalbare en toegankelijke identificatiesystemen. De bevindingen
bieden waardevolle handvatten voor de bestrijding van illegale houtkap en vormen de basis voor de
volgende generatie Al-ondersteunde houtherkenningstools.



Summary (English)

Illegal logging significantly impacts forests, posing a high risk of irreversible damage, particularly when
exploiting populations of protected species. Thirty to ninety percent of traded tropical timber is estimated
to have been harvested illegally. In response, a range of regulatory frameworks has been established to
enhance transparency and traceability within the timber supply chain. These include the FLEGT Action
Plan, the EUTR and EUDR, the U.S. Lacey Act, and CITES. The effectiveness of these measures, however,
hinges on a single critical capability: the rapid and accurate identification of wood species across all stages
of the supply chain—from forest harvest sites to transport hubs, storage facilities, and ports.

Wood identification methods encompass anatomical, chemical, and genetic techniques. Of these,
anatomical assessment—based on the observation of wood's cellular and tissue structures—remains the
mostwidely applied. The IAWA provides standardized anatomical features that underpin global anatomical
assessment practices. While microscopic analysis offers high taxonomic resolution, it is constrained by
the need for specialized equipment, expert training, and intensive sample preparation, limiting its utility for
frontline enforcement. Macroscopic anatomical assessment, by contrast, relies on features visible to the
naked eye or a hand lens and provides a more accessible, low-cost alternative applicable to freshly cut or
sanded surfaces. Cross-sectional views are especially informative, revealing diagnostic traits such as
vessel arrangement, ray width, and parenchyma distribution—features used in field keys and identification
guides.

Despite its operational simplicity, macroscopic anatomical assessment is limited by the relatively small
number of observable features and significant intra-species variation, which can undermine diagnostic
accuracy. Furthermore, the categorical nature of IAWA descriptors (e.g., "present,” "variable," "absent")
may obscure subtle but taxonomically relevant variation and introduce subjectivity in interpretation.
Importantly, the actual discriminatory power of these features—especially in species-rich tropical
regions—has not been systematically evaluated at scale, constraining the development of reliable
identification keys and limiting the benchmarking of emerging data-driven models.

CV offers a compelling alternative by automating wood species recognition through image analysis. CNNs,
in particular, can extract diagnostic features directly from macroscopic cross-sectional images, enabling
rapid and accurate assessments. These models can operate on portable devices and have already been
piloted in enforcement scenarios, such as with the XyloTron system in Ghana. However, existing computer
vision applications face key limitations. Training and testing data are often derived from pristine specimens,
raising concerns about robustness in real-world conditions, where samples may exhibit cracks, insect
damage, discoloration, or fungal decay. These factors can obscure anatomical features and degrade model
performance. Recent studies (e.g., Ravindran et al. 2023; Owens et al. 2024) have begun to quantify the
impact of occlusion of anatomical information on classification accuracy, but do not tackle the influence
of including damage during training of models.

Moreover, most CNN-based models adopt a multiclass classification approach, which assumes that all
test samples belong to a fixed set of known species. This closed-world assumption limits their applicability
in biodiverse regions, where unknown or closely related species may occur. Attempts to mitigate this
limitation through opt-out classes or confidence thresholds have shown limited success. In response, the
field is increasingly turning to open-world recognition frameworks. One promising approach is object re-
identification, which encodes images as embedding vectors (anatomical fingerprints) within a learned
feature space, where samples from the same species form clusters. Identification is then performed by
comparing a query image to a reference database, allowing recognition of both known and novel species.
Training strategies such as triplet learning and binary verification promote the learning of discriminative,
species-specific representations. While more complex to implement—requiring careful sample selection
and robust loss functions—re-identification approaches offer generalizability to timbers beyond the
taxonomic scope of the training data, and aligh more closely with expert practices, which often rely on
comparative rather than categorical judgments.



A central challenge in building effective wood identification systems is the immense diversity of tree
species worldwide, particularly in tropical regions like the DRC. Wood is a highly variable biological
material, influenced by genetics, environmental conditions, and intra-tree location (e.g., trunk vs.
branches, pith vs. bark). This complexity makes it difficult to define consistent diagnostic criteria.
Additionally, taxonomic classifications are frequently revised, complicating database curation.
Commercial trade further obscures species-level identification by grouping timbers under broad trade
names based on physical properties rather than botanical identity. Current databases, such as
InsideWood, macroHOLZdata, and CITESWoodID, and the Atlas of Macroscopic Wood Identification, offer
valuable resources but may not cover the necessary variability that wood anatomical feature can portray
within a species. InsideWood, for example, compiles species descriptions and images but often
generalizes from limited specimens and lacks traceability to physical references. This constrains
assessments of intra-specific variation and undermines the reliability of training data for machine learning
models. The limitations and underlying problems are described in Chapter 1, based on literature.

To address these limitations, we built SmartWoodID, the largest reference database of annotated
macroscopic cross-sectional images designed to support rapid and accurate wood identification in the
DRC, a hotspot of illegal logging. SmartWoodID draws on the extensive Tervuren wood collection and
includes multiple high-quality images per species, prioritizing economically important taxa. Unlike other
databases, SmartWoodID intentionally includes specimens with natural variation and surface defects
(e.g., cracks, fungal stains, insect damage) to better represent real-world conditions. This ensures that
models trained on the dataset are more resilient to the variability encountered in field applications. The
construction of this database is described in Chapter 2.

In Chapter 3, we systematically evaluated the diagnostic utility of 31 standardized macroscopic features
across 601 timber species using the SmartWoodID dataset. While useful for narrowing identifications
within small taxonomic scopes, these features exhibited limited discriminatory power at broader scales.
Predictive models based solely on expert-defined features achieved only ~50% genus-level accuracy
across 56 commercial Congolese genera, with significant anatomical overlap and large candidate sets
required for confident identifications. These findings highlight the need to reassess the diagnostic validity
of traditional descriptors and suggest that future research should explore both improvements to feature-
based methodologies and complementary techniques to enhance field applicability.

To investigate whether visual information not captured by standard descriptors could improve
identification, Chapters 4 and 5 explored CNN models trained on raw cross-sectional images. These
models preserved nuanced patterns of colour and texture that experts intuitively use but which are not
codified in existing feature sets. CNNs achieved substantially better performance than feature-based
models, with precision, recall, and accuracy all exceeding 85% at the genus level. The correct genus was
among the top six predictions in over 95% of test cases. These results affirm that raw visual data contains
richer diagnostic information than codified features alone and that CV can effectively harness this
information.

Recognizing that real-world identifications often integrate anatomical descriptors and visual impressions,
Chapter 6 examined whether expert-defined features could be used to refine CNN predictions. Re-ranking
top-k CNN outputs using feature data led to modest improvements for some genera but reduced accuracy
for others, including priority genera such as Khaya. This indicates that while hybrid approaches have
potential, their implementation must be carefully tailored to avoid counterproductive effects.

The study also addressed critical factors in building effective training databases. Empirical analyses
showed thatincreasing specimen representation and scan areaimproved CNN performance, underscoring
the value of capturing anatomical variability. Models trained on pristine image patches achieved higher
recall (90.5%) than those trained on mixed (88.4%) or damaged (79.1%) patches. Grad-CAM visualizations
confirmed that CNNs consistently focused on intact anatomical structures, further supporting the
emphasis on high-quality specimen preparation and imaging during database construction.



Chapter 5 evaluated scalable identification strategies for open-world contexts. Binary verification emerged
as a particularly promising approach, comparing query images to reference samples to generate similarity
scores rather than fixed labels. This method performed robustly, even for species not included in training,
and proved effective in practical scenarios where the goal is to verify the plausibility of declared identities
rather than assign definitive species labels. Binary verification matched or outperformed multiclass
models in ranking the correct genus among top candidates for the 56 Congolese genera studied.

We also evaluated triplet learning, which transforms images into numerical vectors representing
anatomical patterns. These embeddings can be directly compared or fed into lightweight classifiers such
as nearest-neighbour or XGBoost. Although initial performance was suboptimal—likely due to suboptimal
selection of hard training examples—the approach remains promising, particularly for integrating
multimodal data (e.g., DNA, chemical signatures) into unified identification systems.

In conclusion, this study provides the first direct comparison of expert-defined feature-based keys, CNN
classifiers, and re-identification models under realistic, field-like conditions in the DRC. It emphasizes the
need for open-world recognition frameworks and hybrid strategies to create robust, scalable, and
interpretable systems for timber identification. The findings have direct implications for international
efforts to combatillegal logging and lay the groundwork for next-generation, Al-enabled wood identification
tools tailored to the operational realities of enforcement.
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Chapter 1:  General introduction

1.1 lllegal logging: A major threat to global forests and sustainability

Environmental crimes—illegal activities that exploit natural resources and harm ecosystems—are among
the most pressing global challenges (van Uhm, 2024; White, 2018). They contribute to biodiversity loss by
driving deforestation, habitat destruction, and the decline of vulnerable species through illegal logging,
poaching, and land degradation (FAO, 2022; Gibbs and Boratto, 2017; Liréza and Kogi, 2023). These
activities disrupt entire ecosystems, reducing species richness and threatening key species that maintain
ecological stability. Furthermore, these crimes undermine sustainable development by depleting essential
natural resources such as timber, freshwater, and soil fertility, which local communities and economies
rely on for their livelihoods, jeopardizing the well-being of future generations (Gabris, 2025). Protecting
forests, wildlife, and other natural resources is therefore crucial to preserving ecological balance and
ensuring long-term environmental sustainability. (DeFries et al., 2007; Inatimi, 2023). Among
environmental crimes, illegal logging is the most profitable, representing 50 to 152 billion USD per year
(equivalent to 10-30 % of the total global timber trade (Nellemann and INTERPOL Evironmental Crime
Programme (eds), 2012)), posing a high risk of irreversible damage, particularly when targeting threatened
species (Lowe et al., 2016; Tacconi et al., 2016). It leads to widespread deforestation and endangers the
survival of vulnerable tree species.

1.1.1 The importance of forests in tropical regions

The problem is particularly severe in tropical regions, where forests play an indispensable role in regulating
climate and sustaining species richness (Stokstad, 2014). Tropical forests sequester and store vast
amounts of carbon, acting as one of the planet’s most important carbon sinks and helping to mitigate the
effects of anthropogenic climate change (Lewis et al., 2015; Watson et al., 2000). Forest degradation not
only releases stored carbon into the atmosphere but also reduces the planet’s capacity to sequester future
emissions, intensifying global warming (Mitchell et al., 2017). Estimates suggest that 30% to 90% of traded
tropical timber is harvested illegally, making illegal logging a major driver of forest loss (Hirschberger, 2008;
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Figure 1.1: Map of the Democratic Republic of the Congo, showing the land area cover in vegetation classes according
to GlobalLandCover map 2000, adapted from (“Global Land Cover 2000 database. European Commission, Joint
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Hoare, 2015; Magrath et al., 2009). Among these regions, the Congo Basin stands out as a crucial
stronghold for climate stability and biodiversity conservation (Shapiro et al., 2021). As the second-largest
tropical rainforest in the world, it spans approximately 178 million hectares (Mayaux et al., 2013) and plays
a pivotal role in carbon sequestration, acting as a significant and stable carbon sink in aboveground
biomass—sequestering 0.66 tonnes of carbon per hectare per year over the three decades leading up to
2015 (Dargie et al., 2017; Hubau et al., 2020). However, illegal logging threatens this critical biome, not only
accelerating forest degradation but also disrupting indigenous communities that depend on these forests
for their livelihoods (Aleman et al., 2017; Mulvagh, 2006; Piabuo et al., 2021; Réjou-Méchain et al., 2021).
This problem s especially pertinentin the DRC. Approximately half of the rainforest area in the Congo Basin
is located within the boundaries of the DRC (Potapov et al., 2012), and the DRC features the highest area
of annual forest cover loss compared to other Central-African countries ((Rome), 2010; Lawson, 2014).
Other forest types in the DRC, such as the dry deciduous Miombo woodlands, are also being overexploited,
particularly for tree species that are currently—or soon may be—threatened with extinction (CITES, 2022a,
2019). In southern DRC, Miombo woodlands cover nearly 23% of the national forest area and dominate the
former Katanga province (Kabulu Djibu et al., 2008; Potapov et al., 2012) (see Figure 1.1). These forests face
increasing anthropogenic pressure from agricultural expansion, fuelwood collection, charcoal production,
and rapid urbanisation (Hourticq and Carole Megevand, 2013; Miinkner et al., 2015; Potapov et al., 2012).
This has led to loss in species diversity and abundance, reduced availability of non-wood forest products,
declining access to bushmeat, and negative climatic effects such as altered rainfall patterns (Barima et al.,
2011; Kazadi and Kaoru, 1996; Malaisse, 1997). A particularly alarming trend is the illegal exploitation of
Pterocarpus tinctorius Welw., a high-value timber species. Once used primarily in traditional medicine and
as a dye (Augustino and Hall, 2008), it has become a target for unsustainable logging driven by demand in
the non-Congolese luxury furniture market (Hong et al., 2020). In areas such as Kasenga territory, this has
shifted local labour away from subsistence farming toward illicit logging, accelerating forest fragmentation
and degradation (Cabala Kaleba et al., 2017). Given its ecological significance, protecting tropical regions
like the Congo Basin, and the DRC in particular, is paramount to mitigating climate change, preserving
biodiversity, and ensuring the sustainability of tropical forest ecosystems worldwide.

1.1.2 Law enforcement

To combat this issue, a complex framework of international and national regulations has been established.
At the international level, the Convention on International Trade in Endangered Species of Wild Fauna and
Flora (CITES) plays a central role (UNEP-WCMC (Comps.), 2022). CITES regulates the trade of protected
species through a tiered system of Appendices: Appendix | prohibits commercial trade in species
threatened with extinction; Appendix Il restricts trade in species that are not currently threatened but could
become so without strict regulation; and Appendix Ill covers species protected at the request of a Party
that requires international cooperation to prevent unsustainable exploitation (UNEP-WCMC (Comps.),
2022). Importantly, CITES also extends protections to so-called “look-alike” species, which resemble listed
taxa closely enough to be easily confused in trade (Gasson et al., 2011). Under CITES, importers are
required to declare both the botanical identity and geographic origin of imported wood (Wiedenhoeft et al.,
2019).

Complementing CITES, a variety of policy measures have been adopted at regional and national levels to
improve forest law enforcement and governance. In the European Union, the FLEGT Action Plan was
launched in 2003 (Ayed, 2006; EC, 2003; Jonsson et al., 2015). The plan evolved into the FLEGT licensing
system, operationalized through bilateral voluntary partnership agreements with exporting countries, to
ensure only legally harvested timber enters the EU market (European Commission, 2019; Jonsson et al.,
2015). To further strengthen the system, the EUTR came into force in 2013, shifting responsibility to
importers and first-time suppliers to exercise due diligence in minimizing the risk of illegality (Parliament,
2023; Tegegne et al., 2018; Union, 2010). More recently, the EUDR expanded this framework by imposing
stricter requirements on deforestation-free supply chains (Kdthke et al., 2023; Parliament, 2023). Together,
these instruments prohibit placing illegally harvested timber on the EU market, mandate risk assessment
and mitigation measures, and require traceability back to the country, region, or concession of harvest
(Lowe et al., 2016).
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In the United States, the Lacey Act—originally enacted in 1900 and amended in 2008 to cover plants and
plant products—prohibits the trade of illegally sourced timber (Alexander, 2014; Lowe et al., 2016). This law
requires identification at the genus—species level and specification of the country of harvest, and violations
include importing, exporting, transporting, selling, or acquiring plants in violation of any domestic or foreign
law, as well as falsifying records or mislabelling products.

Comparable legislation is enforced in other parts of the world. Australia regulates illegal timber through the
Illegal Logging Prohibition Act 2012 and Regulation 2012, which criminalize the import or processing of
illegally harvested timber and require businesses to conduct due diligence on supply chains (Lowe et al.,
2016; World Resources Institute, 2024). The framework obliges importers and processors to collect
information on product species, origin, and harvest location, assess risks of illegality, and maintain written
records. Following a mandatory ten-year review, the original act was amended in 2024 through the /llegal
Logging Prohibition Amendment (Strengthening Measures to Prevent Illegal Timber Trade) Act 2024 and the
Illegal Logging Prohibition Rules 2024. These were enforced starting March 2025, with a six-month
transition period. The reforms introduced two streamlined risk-assessment pathways (certified vs. non-
certified timber), a repeat due diligence exception for imports from the same supplier within twelve
months, and strengthened monitoring through timber testing technologies and mandatory pre-import
notices. Enforcement has also been tightened. The reforms expand audit powers, establish strict liability
offenses alongside fault-based ones, and increase penalties. Public disclosure of non-compliance further
raises reputational risks.

Canada similarly enforces the Wild Animal and Plant Protection and Regulation of International and
Interprovincial Trade Act (1992), which prohibits the import or possession of illegally harvested plants and
imposes penalties for misrepresentation of plant identity or origin (Government of Canada, 2025; Lowe et
al., 2016).

Despite these legal frameworks, enforcement remains a major challenge. Enforcing these mechanisms is
crucialto curbingillegal logging and ensuring forests remain a vital resource for future generations (Gasson
et al., 2021; Piabuo et al., 2021). The enforcement of timber trade regulations depends on the ability to
accurately verify both the species and origin of traded wood (Lowe et al., 2016). Species verification
ensures that the declared taxon matches the wood being sold, which is critical where regulations apply to
particular taxa (e.g., Dalbergia spp. under CITES). Origin verification, in contrast, establishes the
geographic source of the timber, since legality is tied to compliance with harvesting laws in the jurisdiction
of harvest. Trade documents do not always reflect the actual timber being sold enablingillegal timber trade
and fraud, and underscoring the need to verify claims of legality and ensure compliance with regulatory
frameworks.

1.2 State-of-the-artin wood identification techniques

Wood identification refers to the process of determining the botanical taxon of a given sample with the
highest possible certainty based on a set of diagnostic features (Jacobs and Baker, 2018). Identification
follows a hierarchical refinement process, iteratively adjusting the classification to achieve the highest
possible taxonomic specificity. Ideally, a sample is identified at the species level, but when species-level
resolution is not feasible, it may be assigned to a broader genus or functional group representing similar
timber types. Identification consists of two key steps: feature extraction (or assessment) and classification.
Feature extraction involves isolating diagnostically relevant characteristics from raw data. These features
can later be used in classification models to distinguish between taxa or other categories, depending on
the analytical context. Classification, in turn, uses these extracted features to predict class probabilities
and assign specimens to one or more taxa based on the highest probability.
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Figure 1.2: Overview of methods for extracting diagnostic information for taxonomic identification or origin tracking, based
on Schmitz et al. (2019) (Schmitz et al., 2019). From left to right: Anatomical assessment; Near-Infrared Spectroscopy
(NIRS); Genetic methods; Stable isotope ration analysis; DART-TOFMS; Computer Vision-based wood identification.

Various approaches to extract stable diagnostic patterns are being studied. An overview is presented in
Figure 1.2, based on Schmitz et al. (2019) (Schmitz et al., 2019). One of the most established methods
involves the study of wood anatomy (Koch et al., 2015; Richter and Dallwitz, 2000; Wheeler, 2011). Wood
is an anisotropic material composed of multiple tissues that function together to support tree growth and
physiological processes. Tracheids, the main cell elements of softwoods and present in some hardwoods,
conduct water transport and provide mechanical support. Vessels facilitate the transport of water and
mineral solutes in hardwoods from the roots to the leaves, enabling photosynthesis. Rays serve as
horizontal transport pathways between the pith and bark. Parenchyma cells act as pathways for metabolic
products, short-distance transport, and storage. Those pathways form a complex three-dimensional
network that distributes resources throughout the tree. Fibres provide structural strength, allowing trees to
withstand external forces such as wind and gravity. The unique characteristics of these tissues—whether
individually, in combination, or as part of larger anatomical patterns—contain diagnostic information that
can be used to differentiate species and even determine geographic origin based on local environmental
influences. (Butterfield, 2012; Niemz et al., 2023b)

Traditionally, wood identification has relied on anatomical assessment, where the structure of the cells,
cell walls and tissues is visualized using partially destructive techniques such as microtomy, sanding, or
laser ablation (Arzac et al., 2018; Fukuta et al., 2016; Guo et al., 2021; Spiecker et al., 2000; Tardif and
Conciatori, 2015). Processed samples are then examined through microscopic observation across
different planes and magnifications to identify species-specific diagnostic features (Niemz et al., 2023b;
NS, 1989; Tardif and Conciatori, 2015). The three primary anatomical planes considered in wood
identification are the transverse plane, radial plane, and tangential plane (see Figure 1.3), each providing a
distinct perspective on wood structure (Butterfield, 2012). Their orientation is determined by the natural
growth pattern of the tree. The transverse plane (also known as the axial plane, cross-sectional plane, or
end-grain) is obtained by cutting the wood perpendicular to the trunk’s length. This reveals a circular cross-
section, exposing growth rings, vessel arrangements, and other structural features essential for species
differentiation. The radial plane (vertical longitudinal section through the centre) is obtained by cutting
vertically along the trunk’s length, passing through the pith. The tangential plane (vertical longitudinal
section away from the centre) is obtained by cutting vertically along the trunk’s length but not through the
pith, following the curvature of the growth rings. Traditionally, these planes are studied separately to
analyse specific features. Modern imaging technologies, such as X-ray CT, enables researchers to examine
wood anatomy across all three planes in a three-dimensional dynamic, interactive manner, revealing how
structures change throughout the tree and how they are interconnected (Van den Bulcke et al., 2009).
Additionally, some diagnostic features (e.g. fluorescence of heartwood, or water/ethanol extracts) are only
visible at specific magnifications or by using specific wavelengths of the electromagnetic spectrum,
necessitating customized visualization techniques to enhance accuracy in species identification (NS,
1989; Price et al., 2021). To ensure consistency in wood anatomical assessment, standardized feature sets
have been established by the IAWA (Angyalossy et al., 2016; Committee, 2004; Gasson et al., 2011; NS,
1989; Ruffinatto et al.,, 2015; Wheeler, 2011). These descriptors provide a systematic framework for
comparing species, improving both reliability and reproducibility. The long-established practice of
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anatomical assessments continues to be one of the most fundamental approaches in forensic and
regulatory applications (Wheeler and Baas, 1998).
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Figure 1.3: The three primary anatomical planes considered in wood identification: transverse plane (or
cross-sectional plan), radial plane, and tangential plane. ©RubenDeBlaere(first author)

Several alternative techniques have been developed in recent decades for identifying the botanical taxa
and determining geographic provenance, by leveraging chemical composition, genetic markers, and stable
isotope ratios. NIRS is primarily used to analyse the chemical and physical properties of wood, but it has
potential for species differentiation (Deklerck, 2019; Lowe et al., 2016; Tsuchikawa et al., 2003). This
technique operates by measuring the absorption of near-infrared light (800-2500 nm), which interacts with
high-molecular-weight compounds such as cellulose, hemicellulose, lignin, and extractives (Tsuchikawa
et al., 2003; Tsuchikawa and Kobori, 2015). Because different species exhibit distinct absorption patterns,
NIRS can be used to distinguish between species or even subspecies. Genetic techniques use
deoxyribonucleic acid (DNA)-based approaches for species identification and origin determination.
Genetic methods are particularly effective at distinguishing closely related species through techniques
such as DNA-barcoding (Jiao et al., 2020, 2019) and, in some cases, even tracing individual logs throughout
the supply chain using DNA fingerprinting (Lowe et al., 2010). Stable isotope analysis provides insights into
the geographic origin of timber rather than species identification (Lin et al., 2024). This technique examines
the ratios of naturally occurring stable isotopes in wood, which vary based on geographical location,
climate conditions, soil composition, and local geology (Camin et al., 2017; Horacek et al., 2009). Since
trees absorb elements from their surrounding environment, their isotopic composition reflects their growth
location, allowing researchers to estimate timber provenance (Dormontt et al., 2015; Kagawa and Leavitt,
2010). Mass spectrometry serves as a valuable analytical tool for wood identification, with DART-TOFMS
being extensively studied (Cody et al., 2005). This method produces chemical fingerprint for wood by
ionizing low-molecular-weight compounds (<1000 Daltons) through thermal desorption. A single wood
sliver is placed in an open stream of excited helium atoms, which ionize the chemical compounds present
in the sample. These ionized molecules are then propelled into the mass spectrometer, where their mass-
to-charge (m/z) ratios are measured and shown to the user in real time (DART). The technique operates on
the principle of TOFMS, in which heavier molecules take longer to travel through the instrument, allowing
for their precise differentiation based on mass. DART-TOFMS has shown significant potential for both
species identification and geographic provenance determination, making it a promising tool for forensic
and regulatory applications in timber trade monitoring (Deklerck, 2019).These alternative identification
techniques, while still evolving, provide valuable complementary tools to traditional wood anatomical
assessment, expanding the capacity to identify timber species and trace their origins. As research
continues and reference databases grow, these methods are expected to play an increasingly critical role
in timber trade regulation and enforcement.
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The field of wood identification has increasingly explored the use of Al to automate the extraction of
diagnostic patterns, aiming to enhance objectivity, scalability, and accuracy beyond traditional expert-
driven methods (Hwang and Sugiyama, 2021; Silva et al., 2022). Image-based analysis of wood anatomy
has proven particularly effective, demonstrating strong performance in distinguishing between timbers
with highly similar anatomical structures (Owens et al., 2024; Ravindran et al., 2021, 2020, 2018; Rosa da
Silva et al., 2017; Wu et al., 2021). In CV-based wood identification, the input data typically consists of
images derived from various imaging modalities, including light microscopy (JANSEN et al., 1998), scanning
electron microscopy (Baas and Werker, 1981; Jansen et al., 2001, 2000; Jansen and Smets, 1998), and X-
ray CT (Dierickx et al., 2024). These images may capture one or multiple anatomical sections—such as
cross, radial, or tangential views (Rosa da Silva et al., 2017)—or even 3D structures (Dierickx et al., 2024),
depending on the imaging setup. CV-based techniques are being integrated into tools that enable non-
experts to verify whether traded timber matches documentation, providing a practical mechanism for
flagging suspicious cases for further forensic analysis. This approach has already shown promise in real-
world deployments, such as in Ghana (Ravindran et al., 2019). A range of systems has emerged, including
those using custom-designed microscopes for standardized image capture to improve model consistency
(Ravindran et al., 2020), as well as smartphone-based applications that offer portability and ease of use in
the field (Tang and Tay, 2019; Wiedenhoeft, 2020).

CV-based approaches to wood identification have explored using classical machine learning pipelines
using hand-crafted features such as Local Phase Quantization (Rosa da Silva et al., 2022, 2017), Local
Binary Patterns (Dormontt et al., 2015; Souza et al.,, 2020), Gray-Level Co-occurrence Matrices
(Bremananth et al., 2009), or edge descriptors like Histogram of Oriented Gradients (Sugiarto et al., 2017).
These descriptors were then classified with algorithms such as SVM (Joachims, 2002), RF (Biau and
Scornet, 2016), or gradient boosting (Bentéjac et al., 2021). While interpretable and computationally
efficient, such approaches were limited by their reliance on predefined features, which cannot fully capture
the anatomical variation of wood.

Deep learning has since enabled more powerful alternatives (Hwang and Sugiyama, 2021; Silva et al.,
2022). Early methods using multilayer perceptron treated images as flattened vectors, ignoring spatial
structure and requiring large parameter counts, which often led to overfitting on small datasets. More
recently, Vision Transformers have set benchmarks in general computer vision by employing self-attention
mechanisms that capture global dependencies from the earliest layers (Gufran et al., 2023; Ye et al., 2024).
However, their success depends heavily on large-scale pretraining or extensive labelled data, conditions
rarely available in wood identification tasks.

CNNs remain the most effective and practical solution under these constraints. Their hierarchical
architecture learns feature representations directly from images: shallow layers extract local patterns such
as edges, vessels, and rays, while deeper layers integrate these into higher-level anatomical structures
(Hwang and Sugiyama, 2021; Silva et al., 2022). This local-to-global progression and efficiency in small-to-
moderate data regimes, makes CNNs particularly well suited to automating wood identification. CNNs can
capture subtle structural differences that are imperceptible to human observers, substantially enhancing
the discriminatory power of macroscopic imagery. For these reasons, CNNs were chosen as the basis for
the models developed in this dissertation. The general principles of Al, deep learning, and the internal
mechanisms of CNNs for image classification are outlined on further detail in Supplementary materials:
CNNs for image classification.

1.3 Scalable wood Identification: assessment of available techniques
for field-application and knowledge gaps

The scale of global timber production complicates regulatory oversight. In 2022, industrial roundwood,
sawn wood, veneer, and plywood production amounted to approximately 2,651 million m?®, with tropical
species contributing significantly to these figures, with ~16% of logs, ~15% of sawnwood, ~51% of veneer,
~38% of plywood (ITTO, 2021). Timber is frequently processed at different locations worldwide, making
traceability increasingly difficult. Given the vast volumes of timber moving through complex global supply
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chains there is a need for identification systems that are scalable. Researchers have increasingly focused
on methodologies that expedite identification while also making it more scalable across global supply
chains (Brack et al., 2002; Hoare, 2015; Johnson and Laestadius, 2011; Tacconi, 2012). The effectiveness
of identification methods in a laboratory setting does not necessarily translate to scalability for widespread
enforcement and trade monitoring (Spiecker et al., 2000; Tardif and Conciatori, 2015). Regarding feasibility
in the field, methodologies should have low costs for initial purchase, maintenance, and consumables. In
addition, it is favourable if the methodologies involve tools are robust and have a long service life. In
addition, feasibility entails a low expertise barrier during use, so the method can be applied by non-experts.
Finally, execution speed is also essential due to the large volumes of timber that necessitate rapid
assessment to systematically cover enough wood.

1.3.1 Diagnostic information for rapid identification in the field

NIRS could become a screening tool, due to the machinery being rather straightforward and fast, but
requires further development to become a common method in forensic research (Dormontt et al., 2015).
DART-TOFMS, demonstrated speed and automation potential in extracting diagnostic information from
wood. However, these methods come with high costs for purchasing equipment and require controlled
laboratory conditions to prevent contamination, which could otherwise compromise identification
accuracy. Additionally, DART-TOFMS is not a standalone technique; instead, it serves to refine broad
identifications initially made through other techniques (Cody et al., 2005; Deklerck, 2019; Dormontt et al.,
2015). Engineered wood products are difficult to identify using DART-TOFMS due to processing steps, such
as the incorporation of adhesives, resins, and chemical preservatives (e.g., copper-based compounds,
borates, creosote) or even non-wood materials introducing interference. Genetic methods face similar
challenges in field applicability. While ongoing efforts aim to develop portable solutions, extracting high-
quality DNA from timber remains difficult (Jiao et al., 2020, 2019, 2012; Michael Holtken et al., 2012).
Especially due to heat treatments frequently applied for drying, which degrades DNA (Jiao et al., 2020;
Michael Holtken et al., 2012). Nevertheless, as sequencing technologies and stable extraction procedure
from dry wood advance, costs are decreasing, making genetic approaches increasingly viable for forensic
applications and combating illegal logging (Deklerck, 2019; Lu et al., 2024). The application of stable
isotope analysis in forensic wood identification is still relatively underexplored (Dormontt et al., 2015; Lin
etal., 2024).

Wood anatomy presents significant opportunities for large-scale applications (Beeckman et al., 2020;
Gasson, 2011). Anatomical structures serve as a stable form of diagnostic information, remaining largely
preserved despite the transformative processes that roundwood undergoes when converted into
commonly traded wood products. Visualizing wood anatomy can be achieved through various techniques,
each with distinct advantages and limitations for field applications. The traditional approach involves
cutting wood along its three principal orientations using sharp blades to expose anatomical structures
(Tardif and Conciatori, 2015). This method allows for two primary modes of study: thin sectioning, where
the excised tissue is observed under a microscope with transmitted light, or direct surface examination,
where the exposed surface is analysed under reflected light (either natural light or enhanced via external
light sources). Qualitative thin sections are typically cut to a thickness of around 14 pm, allowing
anatomical features to be observed clearly under transmitted light microscopy (JANSEN et al., 1998). These
sections are bleached to enhance visibility of the cell walls and stained to increase contrast between
different tissue types. This technique enables the observation of most, if not all, of the anatomical features
listed by the IAWA. However, certain fine details, such as pit vestures, are more effectively visualized using
scanning electron microscopy (SEM) (Baas and Werker, 1981; Jansen et al., 2001, 2000; Jansen and Smets,
1998). While cutting approaches are relatively fast and cost-effective, they also present several challenges.
An important, limitation of cutting is the dependence on wood moisture content and density. As wood
dries, it becomes increasingly difficult to cut, particularly in dense species, making it challenging to obtain
clean surfaces. Irregular or torn cuts may obscure anatomical details (on the surface directly) (Ravindran
et al., 2023) and complicate the extraction of clean tissue samples for thin sectioning. To mitigate this
issue, softening techniques—such as boiling, storing in glycerol, or continuously wetting the wood—are
often employed (Tardif and Conciatori, 2015)(Spiecker et al., 2000; Tardif and Conciatori, 2015; von Arx et
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al., 2016). However, these additional steps increase both the complexity and time required, reducing the
practicality of cutting-based methods for fieldwork. Producing high-quality thin sections also demands
specialized expertise, followed by additional steps such as staining, fixing, and mounting samples on glass
slides, which further increase costs and preparation time. Another drawback of cutting is the difficulty in
achieving precise orientations, particularly in field conditions. While microtomes in laboratory settings
allow for precise sectioning, field applications typically rely on handheld knives. This introduces several
limitations. Cutting naturally begins at the edge of the wood sample for practical handling, meaning the
centralregions of the wood often remain unsampled, introducing a minor bias. Additionally, manual cutting
tends to produce concave surfaces, which can distort anatomical features and complicate quantitative
analysis, especially when preparing thin sections.

Sanding offers a more accessible and practical alternative for field applications (Arzac et al., 2018). Unlike
thin sectioning, which allows for transmitted light microscopy, sanding only permits examination under
reflected light. The sanding process involves the sequential use of progressively finer grits of sandpaper to
expose cellular structures (Spiecker et al.,, 2000). Like cutting, it requires only inexpensive and
straightforward equipment, such as manual or motorized sanders and sandpaper, and allows for rapid
processing. An advantage compared to cutting is the fact that the surface quality is not impaired by the
density of the material, with only minor added processing time as a result. Additionally, sanding is
particularly advantageous for preparing large surface areas, making it a widely employed technique in
dendrochronological studies. However, one of its primary limitations is the need for precise and consistent
handling, as inconsistent sanding can obscure anatomical details and compromise analysis. Achieving
high-quality results through manual manipulation of sanding tools is challenging, as it demands
exceptionally steady manual control to ensure uniform surface preparation (Spiecker et al., 2000). Recent
advancements in robotics, have demonstrated that automating the sanding process can overcome these
limitations, producing surfaces of exceptionally high quality that facilitate detailed quantification of wood
anatomical features (Van den Bulcke et al., 2025). Field application of robotic sanding remains limited due
to the need for stable electricity and controlled conditions. However, small handheld tools enable sanding
of small sections in under two minutes, achieving quality comparable to robotic systems and providing an
effective method for rapid and scalable wood identification in the field.

Other advanced techniques, such as laser ablation or diamond fly-cutting, provide high precision but come
with significant limitations (Fukuta et al., 2016; Guo et al., 2021; Spiecker et al., 2000). While effective for
exposing fine anatomical structures, the techniques require specialized equipment, involves high costs,
and are limited to small sample areas, restricting feasibility for field applications (Spiecker et al., 2000). In
contrast, cutting and sanding remain the most affordable and widely accessible methods for wood
anatomical analysis (Spiecker et al., 2000).

Despite its diagnostic power, traditional wood anatomical assessment faces challenges related to
expertise, limiting scalability. Skilled specialists are required to accurately interpret anatomical features,
and the increasing demand for large-scale timber identification necessitates further advancements in
automation and accessibility. To reduce the expertise barrier, limited ranges of features have been
proposed to serve as preliminary screening tools (Richter et al., 2017; Ruffinatto et al., 2019, 2015;
Ruffinatto and Crivellaro, 2019). These methods prioritize broad taxonomic identification based on key
anatomical features that are easy to visualize and assess, enabling rapid assessment of potentially
suspicious cargo. The cross-section is particularly valuable for rapid field assessment. Firstly, among the
three principal planes of wood—cross, radial, and tangential—the cross-section (or end-grain) is the
simplest to locate, as it is characterized by the presence of ring-like growth patterns formed by secondary
growth. In contrast, identifying the radial and tangential sections requires first locating the cross-section
and then determining their orientation based on the wood’s structure and grain direction. Secondly, the
cross-section reveals numerous anatomical features that can be examined with the naked eye or a hand
lens, facilitating on-site wood identification without the need for microscopes. Thirdly, radial and tangential
sections are often processed and refined for use as aesthetic outer layers, whereas the cross-section is
generally not utilized for this purpose. This is particularly relevant given that most wood identification
methodologies involve some degree of destructive sampling, such as extracting a small splinter, sawing off
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a section, cutting the surface with a knife, or sanding. Non-destructive methods, such as X-ray Computer
Tomography, offer an alternative; however, their practical application in the field is limited due to the need
for highly precise imaging, costly equipment, radiation shielding, complex image processing, and the
challenge of selecting appropriate resolutions to clearly visualize multiple anatomical features (each
requiring its own resolution range for accurate anatomical assessment) (Dierickx et al., 2024).
Consequently, the cross-section is well-suited for sanding and cutting, offering a minimally invasive
method for rapid wood identification without significantly damaging finished products like furniture.

1.3.2 The need for reference databases

Several databases have been developed for wood identification using cross-sectional macroscopic
anatomy, relying on visual comparison, IAWA features, or a combination of both. Many of these have been
implemented in field-deployable applications that integrate identification keys with visual aids to support
user interpretation. Notable examples include macroHOLZdata (Richter et al., 2017), CITESWoodID (Koch
et al., 2011; Weerth, 2024), the Malaysian Timber Council’s Wood Wizard (Malaysian Timber Council,
2018), and the Atlas of Macroscopic Wood Identification (Ruffinatto et al., 2019). The most complete online
database for wood identification is InsideWood, a wood anatomy reference, research and teaching tool,
containing wood anatomical descriptions of wood based on the IAWA Lists of Microscopic Features for
Hardwood and Softwood Identification accompanied by a collection of photomicrographs (NS, 1989;
Wheeler, 2011; Wheeler et al., 2020). This database has a global scope, incorporating timber samples from
around the world. It includes over 9,400 wood anatomical descriptions of both fossil and modern woody
dicotyledons, representing more than 10,000 species across 200 plant families, and is accompanied by
over 50,000 images showcasing both microscopic and macroscopic features (Wheeler, 2011). While it
serves as a valuable reference resource, the anatomical descriptions are generalized and often compiled
from varying numbers of individual specimens. However, no direct link is provided between the
descriptions and specific reference specimens, making it impossible to verify the original source material
or assess intraspecific variation with accuracy. Furthermore, certainly not all species are represented.

Wood identification is particularly challenging due to the inherent complexity of wood as a biological
material. Wood is a highly variable natural material influenced by genetic and environmental factors
(Downes and Drew, 2008; Stackpole et al., 2011; Wodzicki, 2001). Trees have evolved over millions of years,
diversifying into a vast number of species, many of which exhibit similar diagnostic characteristics (Beech
et al., 2017). This makes distinguishing between closely related species challenging, even for experts.
Moreover, diagnostic features not only vary between individual trees of the same species but also within a
single tree—depending on the organ (e.g., stem, branches, roots), the radial position from pith to bark, and
the vertical position along the height of the tree. The number of species in tropical regions is especially
high, increasing the challenge within tropical regions such as the Congo basin (Ifo et al., 2016; Partnership.,
2005). Furthermore, the taxonomic classification of tree species is continuously updated as advances in
plant phylogenetics refine taxonomic relationships (Denk et al., 2017; Mishler, 2000; Wiley and Lieberman,
2011; Yang et al., 2022). These ongoing revisions can lead to inconsistencies, further complicating
identification. Beyond biological complexity, industrial processing introduces additional challenges. The
timber industry often groups multiple species under broad trade names based on shared functional
properties rather than strict taxonomic distinctions (Chudnoff, 1984; Mark et al., 2014). While practical for
trade, this practice introduces additional ambiguity, making it difficult to identify the exact species
composition of a given timber product (Mboma et al., 2022). Currently, hundreds of tree species are
commercially traded worldwide, with an even greater number used locally, highlighting the immense
diversity that wood identification systems must account for (Chudnoff, 1984; Council and Organization,
2012; Mark et al., 2014; Richter and Dallwitz, 2000; tropicaux, 1979). Those challenges underscore the
need for solid reference databases of the diagnostic features, that encompass enough reliable reference
specimens to consider biological variations.

It is the paucity of large databases that cover the variability of diagnostic features, which is the main
obstacle currently faced when developing wood identification methodologies (Cody et al., 2005; Deklerck,
2019; Dormontt et al., 2015; Ravindran et al., 2018; Silva et al., 2022). This paucity of large-quality datasets
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stems from the difficulty of acquiring sufficient wood specimens that give a faithful representation of all
species and their variability. Those wood specimens can be gathered by collecting specimens in targeted
field expeditions, active timber harvest sites, lumber mills or other sites in the field. While such endeavours
may faithfully capture the current data distribution, they can be logistically challenging and expensive to
accomplish at large scale. A second source of information is institutional wood collections that have the
advantage of having specimens readily available and that are, in some cases, the result of century-long
collecting efforts. This makes them fit for rapidly building reference databases by extracting different types
of diagnostic features. However, relatively few wood collections meet the essential criteria for establishing
a robust reference database, particularly regarding collection size and specimen reliability. Most
collections include only a limited number of specimens per species, typically focusing on vouchered
samples verified by expert botanists based on traits (e.g. leaves, fruits, flowers, roots). While these
specimens are representative of the species as a whole, they often fail to capture the full range of variation
in diagnostic features that can occur within a species. The vast number of tree species makes it difficult to
capture the full variability of wood anatomy with limited numbers of specimens per species. Among the
most extensive and scientifically valuable wood collections is that of the Naturalis Biodiversity Centre in
Leiden, The Netherlands. With a long-standing history in wood anatomical research, Naturalis houses the
world's largest scientific wood collection, comprising approximately 125,000 specimens representing tree
species from across the globe (Naturalis Biodiversity center, 2025). The second-largest collection is
maintained by the USDA Forest Service at the University of Wisconsin-Madison, United States. This
collection contains over 103,000 specimens, including approximately 25,000 samples with corresponding
herbarium material stored in the Wisconsin State Herbarium (University of Wisconsin-Madison, 2025).
Anotherimportant reference for wood identification is the Thunen Institute for Wood Research in Hamburg,
Germany. Serving as a centre of competence on the origin of timber, wood samples can be determined at
the genus or species level, and the geographical origin of the wood can be determined for various tree
species (Johann Heinrich von Thinen-Institut, 2025a). Forensic research is based on the scientific wood
collection of the Thiinen Institute encompassing 35,000 wood samples from 11,300 species (Johann
Heinrich von Thinen-Institut, 2025b). The third largest is the Tervuren Wood Collection of the Royal
Museum for Central Africa (RMCA, Belgium), founded in 1898 to demonstrate the importance of African
tropical timber for economic purposes. During the first half of the 20th century, the economic purpose has
been gradually extended with a much broader scientific interest. Not only tropical species and lower taxa
(subspecies and varieties) with commercial value but also any tropical African tree species and lower taxa
that could be of interest in comparative wood anatomy or for the study of ethnographic objects were
collected. From the middle of the 20th century and onwards, wood specimens from other continents were
also incorporated in the collection (Beeckman, 2007, 2003; RMCA, 2019). Today, the wood collection has
become the Belgian scientific reference collection for wood, containing ca. 81 000 specimens from 13 533
species and lower taxa with accompanying microtome sections, ca. 20 500 sets of thin sections in the
three principal directions (Beeckman, 2007; Deklerck, 2019; RMCA, 2019). Most of the species and lower
taxa are represented by multiple samples, each from a different specimen. The Tervuren Wood Collection
holds 26 604 specimens of DRC tree species and lower taxa, which encompasses 30% of the total
collection, thereby offering the most complete collection of reference material for wood identification of
>2000 woody species and lower taxa from the DRC (timber trees, small trees, shrubs, dwarf shrubs and
lianas) (Beeckman, 2007). The Tervuren wood collection presents a unique opportunity to develop a robust
reference database for wood identification, essential for combating illegal logging in the DRC. By leveraging
its vast database of tree species and lower taxa with potential timber applications, the collection supports
efforts to protect the Congo Basin—one of the world’s most critical carbon sinks and biodiversity
hotspots—thereby contributing to climate change mitigation and sustainable forest management.

1.3.3 Unexplored areas in literature regarding macroscopic cross-sectional

identification applications

To facilitate wood identification in species-rich contexts, dichotomous and multi-entry keys offer a
straightforward means of interpreting wood anatomy without requiring users to memorize distinct
diagnostic features across a wide range of timbers. These tools guide users through the anatomical
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assessment process by narrowing down potential species based on observed traits (Brazier and Franklin,
1961; Ilic, 1993; Richter et al., 2017). Available in both printed and digital formats, they provide a structured
pathway from standardized anatomical features to a shortlist of likely taxa, improving field accessibility
(Barefoot and Hankins, 1982; Gregory, 1980; LaPasha and Wheeler, 1987; Malaysian Timber Council, 2018;
Vander Mijnsbrugge and Beeckman, 1992). Although their simplicity contributes to their popularity, keys
also have clear limitations. Their effective use still depends on a foundational understanding of wood
anatomy, as users must accurately recognize diagnostic features—limiting their scalability. They often fail
to accommodate intra-specific anatomical variation and do not fully exploit the richness of anatomical
data. Categorical feature states (e.g., present, variable, or absent) are inherently subjective, with
thresholds that lack standardized definitions. For example, what one user considers a ‘present’ feature may
be scored as ‘variable’ by another, leading to divergent identification pathways and potentially excluding
the correct species early in the process. While multi-entry keys offer more flexibility than dichotomous
ones, they still risk generating misleading results if the underlying database does not adequately capture
natural variation. More critically, the limited number of macroscopic diagnostic features constrains the
ability of keys to distinguish among species in taxonomically diverse or morphologically convergent groups.
Combined with observer bias, this scarcity of features can result in partial or inaccurate identifications.
Despite their widespread use, no systematic, quantitative assessment has been conducted to evaluate the
real-world accuracy of macroscopic features for identification in species-rich contexts. Empirical
evaluation is crucial to objectively determine the resolution enabled by applied methodologies.

In this context, raw visual information retains diagnostic patterns that are lost when converting the anatomy
into the expert-defined, standardized codified features. This has long been leveraged in pure visual keys,
which offer intuitive, user-friendly tools by presenting curated reference images for direct comparison
(Kirchoff et al., 2008). These visuals allow users to identify wood based on observable traits without
requiring extensive anatomical expertise. Building on this foundation, the growing need for rapid, accurate,
and scalable wood identification has accelerated the development of fully automated systems using Al
(Hwang and Sugiyama, 2021; Silva et al., 2022). Despite advances, CV-based wood identification remains
an evolving field, challenged by the biological variability of wood and the need for large, diverse datasets.
Given these challenges, it is essential to evaluate the performance of CV-based methods—especially in
species-rich, high-diversity contexts—and to compare them with traditional approaches based on expert-
defined anatomical features. Such comparisons are critical to understanding their relative strengths,
limitations, and potential for integration into practical identification workflows.

Wood identification presents some unique CV-related challenges that are rarely encountered in other
domains. While advancements in CV have improved model robustness to variations in lighting, resolution,
and image quality (e.g., blur) (Shorten and Khoshgoftaar, 2019), wood often exhibits physical anomalies
that obscure key anatomical features and complicate classification (Goodell and Nielsen, 2023; Niemz et
al., 2023a; Schmidt, 2006). As a biological material, wood is subject to degradation from disease,
infestation, and physical stress. Insects and marine borers can damage wood, by removing wood material,
and fungi and bacteria can cause discoloration and decay (Goodell and Nielsen, 2023; Schmidt, 2006).
Furthermore, wood can crack, especially during drying (Niemz et al., 2023a). These alterations can obscure
diagnostic structures, hinder DNA extraction, and even change wood chemistry, thereby complicating both
visual and laboratory-based identification. However, the impact of these anomalies on CV-based
classification remains largely unexplored. Owens et al. (2024) is the only study to date that systematically
tested how CNN predictions are affected by digital perturbations mimicking real-world wood degradation
(Owens et al., 2024). Most other work has relied on defect-free specimens (Hwang and Sugiyama, 2021;
Ravindran et al., 2021; Silva et al., 2022), overlooking the imperfections typically encountered in applied
contexts. To ensure reliable field deployment, it is essential to evaluate how such anomalies influence
model predictions—and to develop mitigation strategies that improve classification resilience under
realistic conditions.

Beyond the challenges presented of anomalies on wood, model design—particularly the classification
strategy—also plays a critical role in the performance and interpretability of CV-based wood identification.
Despite its importance, this aspect remains understudied. Most existing approaches rely on a single
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strategy: multiclass classification, in which CNNs assign each image to one of a fixed set of predefined
labels, such as species or commercial timber names (Ravindran et al., 2021, 2018; Silva et al., 2022).
However, this method assumes a closed set, limiting recognition to species included in the training data
and struggling with unknown samples in real-world applications (Stnderhauf et al., 2018; Wilber et al.,
2013). While adding an "unknown" class can help, it remains an imperfect solution (Entezari and Saukh,
2020; Geifman and El-Yaniv, 2019). Moreover, these models require balanced datasets, yet collecting
diverse, high-quality timber specimens is costly and time-consuming. As a result, most studies use small
datasets with limited species diversity, reducing model generalizability (Hwang and Sugiyama, 2021; Silva
et al., 2022). This makes it risky to assume CNN-based wood identification can be directly applied in the
field, as classifying between learned timbers is not the same as identifying or verifying the timber species
of field samples. To overcome this limitation, other domains, such as facial and vehicle recognition, have
adopted open-world approaches like object re-identification (Kumar et al., 2020; Schroff et al., 2015).
Instead of assigning fixed labels, these networks compute similarity between images, allowing
comparisons against a reference database (Yoshihashi et al., 2019). By embedding images into a feature
space where distances reflect species similarity, object re-identification provides a more flexible solution
for handling novel timbers (Chen et al., 2017; Ghosh et al., 2023; Ye et al., 2021). Despite its promise, this
approach remains underexplored in wood identification (Hwang and Sugiyama, 2021; Silva et al., 2022).

Despite ongoing advances in both identification keys and CV approaches for wood identification, these
methods have largely developed in parallel, with no current system effectively integrating their
complementary strengths. Both rely on macroscopic anatomical features, yet they extract and interpret
these features in fundamentally different ways. Deep learning models autonomously learn complex visual
representations through optimization, often identifying patterns that differ from those traditionally
recognized by wood anatomists. This divergence is not a limitation but a potential advantage: expert-
defined anatomical features may provide structured, interpretable information that complements the
data-driven outputs of CNNs. Integrating these perspectives offers a promising path to improve both the
accuracy and transparency of automated wood identification.

1.4 Structure of the PhD

This research bridges key gaps in wood identification by integrating traditional macroscopic anatomical
assessment with state-of-the-art deep learning techniques. By doing so, it contributes to the development
of more effective, scalable, and field-deployable solutions for combating illegal logging.

Chapter 2 - SmartWoodID: an image collection of large end-grain surfaces to support wood
identification systems

To address the urgent need for rapid and accessible wood identification in the field—particularly in key
countries like the DRC, where illegal logging poses a significant threat—we developed SmartWoodID, the
largest reference database of sanded macroscopic cross-sectional images of local timber species,
accompanied by descriptions of observable (expert-defined) wood anatomical features for wood
identification. Chapter 2 describes the development of a comprehensive reference database to support
rapid wood identification in the DRC. This effort leverages the extensive Tervuren wood collection, ensuring
the inclusion of a vast number of DRC timber species, selecting species based on national and
international timber trade relevance and standardized nomenclature using the World Checklist of Vascular
Plants [202]. To account for natural variability within species, multiple specimens were digitized per
species, prioritizing those with large end-grain surfaces to capture intra-individual variation. Specimens
exhibiting natural anomalies (e.g., cracks, fungal damage, insect activity) were intentionally included for
later evaluation of their impact on classification accuracy (chapter 4).

Chapter 3 - Evaluating Expert-Defined Anatomical Features for rapid identification of
Congolese tree species
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General Hypothesis: Macroscopic anatomical features, as encoded in standardized expert-defined
descriptors, retain measurable discriminatory power for taxonomic identification across taxonomic ranks
(family, genus, species)—even in highly diverse tropical datasets.

Despite their widespread use in field identification and identification keys, the diagnostic resolution of
macroscopic features has not been systematically evaluated in species-rich contexts, such as the DRC.
Chapter 3 addresses this gap by applying clustering and classification techniques to the SmartWoodID
dataset. The goal is to quantify how well these 31 features distinguish among taxa at various taxonomic
levels and to identify feature groupings that drive taxonomic separation. This chapter provides a baseline
for comparison with more automated approaches.

Individual research questions:

- To what extent can hierarchical agglomerative clustering of the 31 expert-defined macroscopic
feature codes delineate statistically distinct groups of DRC timber species?

- Which individual macroscopic features exhibit statistically significant associations with specific
species clusters, and what is the strength of these associations?

- Arethererecurrent groupings of macroscopic features that consistently co-occur within particular
clusters, and can these be formalised into diagnostic feature sets?

- What is the classification accuracy at the family, genus, and species levels when species-level
predictions are made, and their corresponding higher taxa are inferred and compared to the
ground truth?

- Howdoesthe accuracy of the above hierarchical inference approach compare with that of models
trained directly at each taxonomic rank (family, genus, species)?

- Whatis the minimum k in top-k predictions required to achieve 295% correct identification at all
taxonomic levels for the evaluated specimens?

- To what extent can species-level prediction accuracy be improved by constraining predictions
using the output of a separately trained family-level classifier?

- Do the expert-defined macroscopic features annotated in SmartWoodID enable accurate
classification of commercial timber species in other databases (e.g., InsideWood), and what are
the measurable limits of this transferability?

- Can expert-defined macroscopic features reliably discriminate among morphologically similar,
closely related species (for example African Pterocarpus spp.)?

Chapter 4 - Evaluating the effect of anomalous images on CV-based wood identification
models

Hypothesis: Physical anomalies common in real-world wood samples—such as cracks, discoloration,
insect damage, and fungal decay— affect CNN-based classification accuracy by obscuring key diagnostic
regions, and models trained on clean images may not generalize to damaged ones.

This chapter investigates whether CNN performance degrades when confronted with anomalies that can
be encountered on wood in the field and whether training on damaged or mixed-image sets improves
resilience. Using Grad-CAM, model attention is visualized to determine whether CNNs rely on
diagnostically meaningful regions or are misled by noise introduced by degradation. The findings provide
information on the importance of this aspect regarding database construction for CV-based models by
simulating the imperfect conditions typical of field and enforcement scenarios.

Individual research questions:

- What are the observed classification metrics—accuracy, precision, recall, and F1-score—of a
pretrained, field-validated CNN in verifying the presence or absence of anomalies in macroscopic
images of DRC timber specimens?
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- Do Class Grad-CAM visualisations show consistent spatial correspondence between model-
activated regions and visible anomalies in anomalous images, and can these correspondences
explain specific false-positive and false-negative predictions?

- How does classification accuracy differ between models trained on (i) anomaly-free images only,
(i) anomalous images only, and (iii) a combined dataset, when evaluated on independent test
specimens at both patch level and specimen level (using majority voting)? Do these differences
vary systematically between anomalous and anomaly-free patches?

- How do classification performances under the three training scenarios vary across individual
genera, and are certain taxa more susceptible to performance degradation caused by anomalies?

- For a genus-level model trained exclusively on anomaly-free images, which regions are activated
according to Grad-CAM visualisations when classifying anomalous samples, and do these
activations target non-diagnostic areas? Does incorporating anomalous images into the training
dataset significantly improve both the alignment of attention with diagnostically relevant regions
and overall classification performance?

Chapter 5 - Expert-defined vs. Deep Learning Approaches for Scalable and Generalizable
Timber Identification

Hypothesis 1: Deep learning models trained on raw images outperform classifiers trained on expert-
defined anatomical features when both are applied to the same macroscopic specimens.

In this chapter, classification models trained on 31 expert-coded anatomical features are directly
compared with multiclass CNNs trained on the same Congolese species. This parallel analysis evaluates
whether manually defined features can match or augment CNN performance and lays the foundation for
integrating both approaches in Chapter 6.

Individual research questions:

- How do the classification metrics—accuracy, precision, recall, and F1-score—differ between (i)
machine learning classifiers trained on 31 expert-coded anatomical features and (ii) CNNs trained
directly on macroscopic images of the same specimens?

- Do differences between class-specific F1-scores vary across individual genera?

Hypothesis 2: Closed-world Comparison (SmartWoodID)

Open-world identification strategies, such as object re-identification via triplet learning and binary
verification, provide improved classification flexibility compared to traditional closed-world multiclass
CNN classifiers when applied to the same species used during training.

Individual research questions:

- How do performance metrics (accuracy, precision, recall, F1-score) compare between (i) closed-
world CNN mutlticlass classification and (ii) open-world CNN methods, including binary
verification and triplet-learning-based object re-identification?

- Do differences between class-specific F1-scores vary across individual genera?

- Whichidentification techniques demonstrates the smallest value of kin top-k predictions required
to achieve =95% correct identification?

These methods allow pairwise or similarity-based reasoning, better capturing intra-class variability and
providing more robust predictions under real-world conditions were data imbalance and taxonomic
convergence challenge multiclass architectures.

Hypothesis 3: Open-world Generalization (non-Congolese Timber Dataset)

Open-world identification strategy generalizes to unseen species.
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By embedding novel samples into a learned feature space or comparing them to reference images, these
approaches can offer scalable and adaptive solutions for timber identification across geographic regions,
as demonstrated by performance on a separate dataset of non-Congolese timbers.

Individual research questions:

- How does the performance of binary verification—measured by accuracy, precision, recall, F1-
score, the minimum k for =95% correct identification, and the area under the top-k curve (AUC)—
differ between genera included in training and novel genera not seen during training?

- How does classification performance vary when the number of possible candidate genera in the
search space is systematically increased, thereby simulating progressively more challenging
identification scenarios?

Chapter 6 — Combining expert-defined and CV-extracted macroscopic cross-sectional
features for enhanced wood identification

Hypothesis: Combining CNN-derived predictions with expert-defined anatomical data through a re-
ranking or fusion model enhances the accuracy of automated wood identification systems.

This integrative chapter tests whether a hybrid pipeline can leverage the strengths of both CV and human-
curated anatomical knowledge. CNN outputs from Chapter 5 are re-ranked using a RF model trained on
expert-defined features from Chapter 3. This hybrid framework aims to reduce false positives, improve
species discrimination, and increase trust in model decisions—particularly for users in enforcement and
forensic contexts.

Individual research questions:

- How do performance metrics—accuracy, precision, recall, and F1-score—change when re-
ranking the top-k predicted genera from a binary verification CNN using arandom forest (RF) model
trained on expert-defined anatomical features? Performance will be assessed by visualizing metric
distributions per genus for varying k values and aggregating them into boxplots to observe
progression.

- How does re-ranking affect the classification performance of individual genera, as measured by
changes in per-class precision, recall, and F1-scores?

- What is the optimal k value for which re-ranking consistently improves performance while
minimizing adverse effects such as misranking correct predictions?

- Which factors explain genus-specific increases or decrease in performance after re-ranking?
Potential factors include (i) differences in visual field coverage between CNN image features and
expert-defined descriptors, (ii) reduction of morphological information during feature extraction,
and (iii) taxonomic convergence or “look-alike” taxa within the top-k predictions.

An overview of the data and methodologies used in each chapter and in function of each hypothesis
is shown and described underneath.
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1.5 Structure of the data in each chapter

This study is based on the SmartWoodID database, a digitized subcollection of the Tervuren xylarium
housed at the RMCA, Belgium. SmartWoodID serves as a valuable resource for examining the relationship
between macroscopic cross-sectional wood anatomy and the botanical diversity of Congolese tree taxa
(De Blaere et al., 2023). The database contains high-resolution RGB scans of the macroscopic end-grain
surfaces of 3,742 wood specimens, representing 954 species native to the DRC. Each specimen was
prepared by scanning the cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the
visualization of macroscopic features essential for wood identification.

Each image is annotated with macroscopic IAWA features, which are observable at this resolution and
assigned standardized feature numbers (NS, 1989; Ruffinatto et al., 2015). Features were recorded as
Present (clearly visible), Variable (sporadically observed), Absent (below the threshold for Variable), or NA
(undiscernible due to ambiguous visual cues or resolution limitations). Descriptions of growth rings were
excluded, as these were often not discernible with sufficient certainty at the available resolution. Species
and lower taxa are represented by multiple specimens, capturing both intra- and interspecific anatomical
variation. This makes the database well-suited for studying wood identification using macroscopic
anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et al. (2023) (De
Blaere et al., 2023), while Supplementary Materials Table 8.1 all unique specimen identifiers and metadata.
To enable machine learning analysis, we selected only species represented by at least two specimens. This
set comprises 2,296 digitized specimens across 601 species, 286 genera, and 64 families. Discriminatory
power was mainly assessed by training and evaluating classification models on the specimens. Therefore,
specimens were allocated random to training (75%) or test set (25%), while preserving distribution of
species across both sets. Within both sets, a subset of 78 commercially important species was defined for
targeted evaluation. Both the full set and the commercial subset are used throughout the analyses in this
thesis unless specified otherwise.

Chapters 3 through 6 each build on this core dataset to evaluate different approaches to wood
identification. Chapter 3 assesses the discriminatory power of expert-defined anatomical features as
recorded in the SmartWoodID database. Chapter 4 to 5 focuses on training CNNs directly on macroscopic
images for genus-level classification. Given the large surface area of the scanned images, training directly
on full-resolution inputs is both computationally intensive and prone to overfitting due to the limited
number of images. To mitigate this, we extracted non-overlapping patches of 512 x 512 pixels from each
fullimage, corresponding to a physical area of 5.42 x 5.42 mm (see Figure 1.4). This patch size is sufficient
to capture key diagnostic features while also reflecting natural variability between different regions of the
same specimen.

5.42
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Figure 1.4: An example of a typical image in the SmartWoodID collection (Tw26431), cropped into patches of 5.42x5.42 mm.
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Patches were allocated random to training (75%) or validation set (25%), while preserving distribution of
specimens across both sets, using different regions of the same specimens for training and validating.
These patches allow for efficient model training while preserving macroscopic features relevant for
identification and displaying anomalies (damage) on wood at an optimal scale for observation. Examples
of different anomalies are presented in chapter 4 (Figure 4.1). For chapter 4 only, 26 genera were selected,
to ensure a balanced distribution of damaged and undamaged specimens to ensure fair performance
evaluation. Patches were manually inspected and labelled based on the presence or absence of visible
damage. Furthermore, any fullimage yielding fewer than four usable patches was removed, as these would
cover less than one square centimetre—below the typical area assessed by a human expert during wood
anatomical identification. Chapter 5 extends the CNN approach to the full set of available species and also
evaluates the open-world recognition potential on a separate image dataset of non-Congolese genera (for
further details see section 5.3.9). Chapter 6 integrates the expert-defined features and CNN-derived image
information into a tiered identification system that evaluates if the top genus predictions by a CNN can be
refined by re-ranking the top k predicted genera using expert-defined features. This approach employs RF
trained on coded anatomical features (chapter 3) and binary verification CNN (chapter 5). The dataset in
chapter 6 is constrained to the 78 commercial species, which regards 56 genera.

All CNN models and associated training procedures were implemented using Python (v3.9.15) with
TensorFlow (v2.6.0) and Scikit-learn (v1.3.0). Data analysis and visualizations were conducted using
Pandas (v1.5.3) and Matplotlib (v3.7.1). Additional statistical analyses, including ecological metrics and
heatmaps, were performed in R (v4.4.1) using the ‘vegan’ package (v2.6-8) and the ‘pheatmap’ package
(v1.0.12). All computations were executed on a desktop workstation equipped with an Intel Core i9-11900F
processor (8 cores, 16 threads, 2.5 GHz) and a single NVIDIA GeForce RTX 3080 Ti GPU.
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2.1 Abstract

Wood identification is a key step in enforcing laws and regulations against illegal timber trade. Effective
wood identification tools, capable of distinguishing a large number of timbers, require a robust reference
database. Such reference material is typically curated in botanical wood collections and consists of
secondary xylem samples from lignified plants.

This chapter, adapted from De Blaere et al. (2023) (De Blaere et al., 2023), elucidates on the construction
of SmartWoodID, a dataset derived from the Tervuren Wood Collection—one of the largest institutional
wood collections worldwide and a major reference for DRC tree species with potential timber applications.
SmartWoodID contains macroscopic RGB scans of cross-sectional surfaces enriched with expert-defined
descriptions of 31 observable anatomical features. These annotated images support both interactive
identification keys and CV models for Al-based wood identification.

Since the original publication (De Blaere et al., 2023), a full quality control assessment (Section 2.3.7) was
completed to detect and exclude misclassified specimens, resulting in revised counts for specimens,
botanical families, genera, and species. A first edition of the database consists of images of 954 taxa, with
a focus on potential timber species from the DRC aiming to include at least four different specimens per
speciesincluded.
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2.2 Introduction

Illegal logging significantly impacts forests, posing a high risk of irreversible damage, particularly when
exploiting populations of protected species. Thirty to ninety percent of traded tropical timber is estimated
to have been harvested illegally (Hirschberger, 2008; Hoare, 2015; Magrath et al., 2009). Fast and accurate
wood identification systems are key to properly enforce timber regulations (such as FLEGT, EUTR, U.S.
Lacey Act, the Illegal Logging Prohibition Act in Australia) and CITES by verifying whether the traded species
matches the species name on accompanying documents (Gasson et al., 2021; Piabuo et al., 2021).

The most commonly used and affordable method for wood identification is the wood anatomical
assessment. It involves observing tissues and cells at different scales and planes to identify diagnostic
features of the botanical taxon. Macroscopic cross-sectional wood anatomy provides an accessible range
of diagnostic information, observable with a hand lens, for faster identification in the field (Koch et al.,
2018; Ruffinatto et al., 2015) compared to other microscopic features, requiring a controlled laboratory
environment with specialized equipment.

The macroscopic cross-sectional wood anatomy can be used for identification using different methods of
feature extraction. Visual keys provide users with a list of exemplary images to compare with, relying on the
expertise of the user with wood species. A secondary method aligns more closely with the traditional wood
anatomical assessment, relying on standardized expert-defined features to ensure consistent predictions
(Angyalossy et al., 2016; Committee, 2004; Gasson et al., 2011; NS, 1989; Ruffinatto et al., 2015; Wheeler,
2011). This second method can be applied in tandem with classification keys, allowing for the observation
of anatomical features and provide a list of matching species. These classification keys are advantageous
for their speed and flexibility, with some allowing for a specified number of feature mismatches or required
presence/absence of certain features (LaPasha and Wheeler, 1987; Vander Mijnsbrugge and Beeckman,
1992). Keys can be accessed online with large reference material or offline, suitable for remote locations
such as local lumber mills in the tropics.

CV-based wood identification is a third method for rapid identification in the field, that effectively
automates the process of wood anatomical assessment. CV is a field of Al that trains computers to
interpret and understand the visual world, relying on machine learning algorithms that use vast numbers
of human-annotated reference images to distinguish timbers based on imagery (Bay et al., 2006; Hwang
and Sugiyama, 2021; Lowe, 2004). CV-based wood identification tools have demonstrated their potential
for real-world field deployment (e.g. evaluated in Ghana (Ravindran et al., 2019)), enabling non-expert field
workers to perform timber tracking. This technique has the advantage of fast and easy application butfaces
risks due to the highly variable nature of wood, which exhibits inter- and intra-specific variability and
anomalies like cracks, insect holes, and fungal damage that can hinder the recognition of wood features
(Figure 2.1). This makes it challenging to train machine learning models for field-based wood identification.

Figure 2.1: Examples of the intra-variability and anomalies that can be encountered on images of wood (end-grain
surface). From left to right: (a) An example of the variability of wood anatomical features (such as axial parenchyma) on
a single specimen. (b) An example of a possible anomaly on wood, a crack. (c) An example of a possible anomaly on
wood, insect holes. (d) An example of a possible anomaly on wood, fungi damage. RubenDeBlaere ©RMCA.

To build accurate identification tools, a database with typical species features and sufficient detail is
needed, including information on multiple specimens to consider biological variation. Online databases,
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such as macroHOLZdata (Richter et al., 2017) and the Atlas of Macroscopic Wood Identification (Ruffinatto
and Crivellaro, 2019), provide macroscopic anatomical descriptions of wood, but they may not cover all
intra-species variability of anatomical features that can occurin wood. The most complete online database
for timber identification is InsideWood, a wood anatomy reference, research, and teaching tool, containing
wood anatomical descriptions of wood based on the IAWA Lists of Microscopic Features for Hardwood and
Softwood Identification accompanied by a collection of photomicrographs (NS, 1989; Wheeler, 2011;
Wheeler et al., 2020). This database has a global scope and therefore incorporates timbers from all over
the world, having over 9.400 wood anatomical descriptions of fossil and modern woody dicots,
representing over 10.000 species and 200 plant families, accompanied by over 50.000 images of both
microscopic and macroscopic features (Wheeler et al., 2020). Still, while this database serves a key
purpose as a reference resource, this does not mean that its descriptions cover all intra-species variability
of anatomical features that can occur in wood. Wood is variable, and requires descriptions of large areas
on multiple specimens. Additionally, although this database is relatively large, certainly not all woody
species are represented with a sufficient number of individuals. It is the paucity of large databases, that
cover the variability of wood anatomical features, which is the main obstacle currently faced when building
classification keys or machine-learning models (Hwang and Sugiyama, 2021; Ravindran et al., 2018). This
paucity of large quality datasets stems from the difficulty of acquiring sufficient wood specimens that give
a faithful representation of all species and their variability in a geographically delineated area.

We built the first edition of SmartWoodID, an image database of end-grain wood that includes macroscopic
features and anomalies, such as cracks, fungi damage, and insect damage, and their variability along a
radial gradient (i.e. a gradient from pith to bark). This information enables evaluation of the diagnostic
power of macroscopic wood anatomy under visible light, comparing traditional expert-defined features
with computer vision—-extracted features for field-based wood identification. This first edition focuses on
tree species from the DRC and serves as annotated training data for developing classification keys and Al
for CV-based wood identification. SmartWoodID will be gradually extended with images of timbers from
other continents in the coming years. The resulting database can also provide unique insights into the
occurrence of characteristics, for example within families.

2.3 Material and methods

2.3.1 Delineating a set area for the first edition

Given the complex and variable structure of a wooden tissue and the large number of tree species
worldwide, digitizing a large amount of wood specimens is a long-term process. The SmartWoodID
database will therefore gradually be extended over the following years with images and annotated materials
from wood species from all over the world. This will be done in several editions containing images and
annotated materials from large geographically delineated regions, to ensure that the data are available and
usable for research on entire biomes rather than adding species ad hoc.

The first edition of the database focuses on the tree species of Central Africa and more specifically the tree
species from the DRC. The following definition of trees is used here: perennial woody seed plants with a
single dominant stem that is self-supporting and undergoes secondary growth. The DRC was selected
because the vast area of the country and the different forest biomes make the DRCrich in tree species and
thereby representative of species richness for all countries in the Congo Basin and ensure that many
timbers or potentially commercial tree taxa of tropical Africa are included. An overview of the procedure,
explaining the material and methods, is shown as a flowchart in Figure 2.2.
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Figure 2.2: A flowchart showing the procedure of building the database.
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2.3.2 Species selection

A list with accepted species names has been created according to the World Checklist of Vascular Plants
(WCVP) (WCVP, 2022) and the African Plant Database (APD) (APD, 2012), providing information on
accepted name status and synonymy. In this research, we will regard not only species but also accepted
varieties and subspecies. All instances of species, varieties and sub-species shall be named ‘species and
lower taxa’ from this point onwards to improve the ease of reading.

Two lists were used as a reference for all current and potential timbers in the DRC. The firstis the list of the
DRC forest administration Direction Inventaire et Aménagement Forestiers (DIAF), summarizing all tree
species and lower taxa present in DRC forests, along with an indication of their current economic value
(DIAF, 2017). The second list is extracted from the RAINBIO database, from which all tree species and lower
taxa were selected that occur in the DRC (Dauby et al., 2016). The accepted name status of species and
lower taxa names was cross-referenced and harmonized with the WCVP (WCVP, 2022) as a reference, using
a custom-developed Python script. The number of species and lower taxa for which no direct match to
WCVP was found was checked against the APD (APD, 2012), a curated list of >205 456 names of African
plants with their nomenclatural status being a product of a collaboration between the South African
National Biodiversity Institute, the Conservatoire et Jardin botaniques de la Ville de Genéve, Tela Botanica
and the Missouri Botanical Garden. Taxa that did not match WCVP or APD were reviewed manually, and any
misspellings or synonyms that had not been automatically detected were corrected. Having standardized
taxonomic names, any records from species and lower taxa that did not meet our working definition of
trees—perennial woody seed plants with a single dominant stem that is self-supporting and undergoes
secondary growth—were manually removed from the database. This included removing all ferns, palms,
lianas, strangler figs, bamboos, pandans, as well as a number of shrub species and lower taxa that rarely
exceed 2 m in height and are generally multi-stemmmed. Finally, the accepted name of each species and
lower taxon was used to check their presence in the Tervuren Wood Collection. The list contains also
introduced species and lower taxa.

The IUCN Red List of Threatened Species (IUCN, 2021) was used to add information on Red List Categories
and population trends. This was done to give an overview of the threatened tree species and lower taxa in
the DRC and give a perspective on the threatened nature of commercial timbers, which are provided by the
indication of the economic value of those species and lower taxa.

Information on the occurrence of those species and lower taxa in different vegetation types was also added
by combining the geographical occurrence data in the RAINBIO database (Dauby et al., 2016) with the
geographical distribution of vegetation types in the Global Land Cover Map 2000 (GLC 2000 map) (“Global
Land Cover 2000 database. European Commission, Joint Research Centre,” 2003). Twenty-seven different
classes are used in the GLC 2000 map to classify African vegetation. These classes were combined into
larger classes based on research by Fritz (Fritz et al., 2003) and consist of closed forests, edaphic forests,
altitudinal forests, woodlands, shrub lands, savannahs, deserts, water bodies and urban areas. An
overview of all classes is given in Table 2.1.

Table 2.1: Summary of Vegetation classes in the Global Land Cover map 2000, merged into broader classes used in
this study.

Merged classes Vegetation class (GLC 2000)
Submontane forest (900 -1500 m)
Montane forest (>1500 m)

Altitudinal forest

Closed evergreen lowland forest

Degraded evergreen lowland forest

Closed forest

Mosaic Forest / Croplands
Mosaic Forest / Savanna
Sandy desert and dunes

Stony desert

Bare rock
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Salt hardpans

Swamp forest

Edaphic forest Mangrove

Swamp bushland and grassland

Closed grassland

Open grassland with sparse shrubs
Open grassland

Sparse grassland

Croplands (>50%)

Deciduous shrubland with sparse trees
Open deciduous shrubland

Croplands with open woody vegetation

Irrigated croplands

Urban areas Tree crops
Cities
Water bodies Water bodies

Closed deciduous forest

Woodland

Deciduous woodland

The GLC 2000 map of Africa (product two, version 5.0) was imported in QGIS 3.24.3 along with the
occurrence data of trees in the RAINBIO database as point vector data and a third layer containing country
borders (Esri, 2022). All layers were reprojected to the same coordinate reference system, EPSG:4326—
WGS 84. Next, the class of every data point in the RAINBIO database was determined. The information on
classes was then added to the SmartWoodID database by counting all occurrences of a species and lower
taxon in the RAINBIO database and counting the occurrence of each class. Finally, the classes were merged
into larger classes, in order to give an easier overview on the occurrence of tree species and lower taxa in
vegetation classes.

2.3.3 Collecting the specimens

The Tervuren Wood Collection of the Royal Museum for Central Africa (RMCA, Belgium) was founded in
1898 to demonstrate the importance of African tropical timber for economic purposes. During the first half
of the 20th century, the economic purpose has been gradually extended with a much broader scientific
interest. Not only tropical species and lower taxa with commercial value but also any tropical African tree
species and lower taxa that could be of interest in comparative wood anatomy or for the study of
ethnographic objects were collected. From the middle of the 20th century and onwards, wood specimens
from other continents were also incorporated in the collection (Beeckman, 2007, 2003; RMCA, 2019).

Today, the wood collection has become the Belgian scientific reference collection for wood, containing ca.
81000 specimens from 13533 species and lower taxa with accompanying microtome sections, ca. 20500
sets of thin sections in the three principal directions (Beeckman, 2007; Deklerck, 2019; RMCA, 2019). Most
of the species and lower taxa are represented by multiple samples, each from a different specimen.

The Tervuren Wood Collection holds 26604 specimens of DRC-tree species and lower taxa, which
encompasses 30% of the total collection, thereby offering the most complete collection of reference
material for wood identification of >2000 woody species and lower taxa from the DRC (timber trees, small
trees, shrubs, dwarf shrubs and lianas). Those aspects of the wood collection create the unique
opportunity to provide the robust reference database needed for building classification keys and CV-based
wood identification tools by valorising a vast collection of tree species and lower taxa with potential use as
timber.
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AlLLDRC tree species and lower taxa, present in the Tervuren Wood Collection, are taken from the collection
with at least four specimens per tree species and lower taxa. This ensures that variability in wood
anatomical features between specimens of the same species and lower taxa is covered by the database.
A typical wood collection sample is rarely intact because of the frequent presence of pin holes, traces of
fungi attacks, cracks and other mechanical damage, making it difficult to produce clean polished surfaces
that show the wood anatomical features without aforementioned anomalies. Specimens in the database
that have such damage are not excluded from the database. They are included on purpose to ensure that
the CV tools can learn to detect and ignore their presence. A lack of such damaged samples in the training
data could cause the machine learning algorithm to explore such anomalies for recognizable and species
and lower taxa defining characteristics.

2.3.4 Sanding

The end-grain surfaces of the samples are sanded before scanning to ensure that all features, necessary
for determination, are visible. The samples are stacked together with clamping screws to facilitate the
process. The parameters of the machinery, more specifically angles and distances between the table, the
sanding surface, and the fulcrum, are set to be equal to ensure that every part of the surface is sanded at
each grit. The samples are first sanded using a belt sander at one hundred grit to flatten the end-grain
surface and subsequently using an eccentric sander. The end-grain of the samples is pressed against the
belt sanding surface with the appropriate amount of force at 1-s intervals, to prevent scorch marks, which
can hinder the visibility of anatomical features. Similarly, the end-grain surface of the samples is pressed
against the eccentric sander while simultaneously performing lateral movements. Samples are sanded
multiple times with gradually finer-grade sanding paper with each consecutive gritremoving scratches from
the previous grit and leaving shallower scratches. The eccentric sanding starts with a fine grade at 100 grit
to remove all scratches of the belt sander and ends with an ultra-fine grade at 4000 grit at which point the
end-grain surface is free of scratches and all macroscopically visible anatomical features are discernible
with the naked eye or a x10 magnifying glass. At the end of sanding, a magnifying glass is used to check
surface quality, and if necessary, both belt and eccentric sanding are repeated if any scratches are still
present.

2.3.5 Scanning

The sanded end-grain surfaces are scanned to visualize all macroscopically visible anatomical features.
The scanning is performed using an Epson Perfection V750 Pro scanner using the SilverFast Ai Studio
Version 9 software package. The scanner is calibrated twice a day with a 10x15 cm reflective Fuji Advanced
Colour Calibration Target to ensure consistent results. A resolution of 2400 dpi or ninety-five pixel/mm was
used in order to find a balance between storage need and a required resolution for observing all
macroscopically visible anatomical features. A bit depth of forty-eight bit was selected to maximize the
quantitative information (RBG values) on the natural colour of the wood. A typical image (TIFF file of 80 MB)
will cover the wood anatomical end-grain structure of a surface of ~7cm long and 1-2cm wide. The digital
images cover more variability compared to sections of the usual size and provide opportunities for building
elaborate classification keys and for performing substantial data augmentation (i.e. increasing image
variability) for Deep learning.

2.3.6 Annotating (updated after publication)

The resulting images are annotated by anatomical descriptions of the samples based on the list of
macroscopic features (NS, 1989; Ruffinatto et al., 2015). Twenty-nine of those standardized features are
visible on a typical high-resolution scan of the end-grain surface. These were summarized, along with the
matching feature number for the microscopic IAWA features for hardwood identification (NS, 1989) as well
as the matching macroscopic feature number (Ruffinatto and Crivellaro, 2019), in Table 2.2.

However, the feature definitions do not translate directly from one system to the other. InsideWood lacks
features such as Solitary and radial multiples of 2-3 vessels, Ray visibility to the naked eye on the
transverse surface. Vessel diameter classes are defined into different ranges, with InsideWood featuring
<50pm, 50-100 pm, 100-200 pm, >200um, and the macroscopic feature definitions using <80um, 80-
130um, and >130pm to be more adept towards the macroscopic resolution. Vessel frequency
classification for the macroscopic features pool InsideWood’s finer resolution-based categories into a
broader state (>20 vessels: 20-40, 40-100, >100). Similarly, vessel arrangements (radial and
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diagonal/echelon) were also pooled into a single feature class for SmartWoodID, as SmartWoodID handles
both as separate features while InsideWood treats them as a single feature. Each image is labelled with a
single state for every anatomical feature. The feature states provide an overall assessment of the frequency
at which the feature in question occurs on the specimen. The following states are used:
Present/Variable/Absent/NA. Present, can be interpreted as the feature being clearly observable on the
end-grain surface. Variable, can be interpreted as the feature being rare, occurring sporadically across the
end-grain surface. The concept of Variable differs between SmartWoodID and InsideWood. In
SmartWoodID, Variable reflects a low feature frequency across a larger specimen surface, while in
InsideWood, Variable indicates feature instability across multiple specimens. This distinction necessitated
cautious interpretation, given the lack of specimen-specific resolution and field-of-view details in
InsideWood. Absent, can be interpreted as the feature being almost entirely unobservable on the end-grain
surface, with too few examples (for example: only 1 or two vessel clusters among all vessels on an area of
at least 1cm?) to count as Variable. Finally, NA, can be interpreted as the feature being unable to discern
with certainty. The state "NA" is used to describe anatomical features when observations are hampered
macroscopic resolution for features that are only a few cells wide, such as thin vasicentric parenchyma or
banded parenchyma heights. The states may vary slightly depending on the human annotator as it is a
qualitative assessment using the microscopic features as defined in the IAWA list of microscopic hardwood
features. Anomalies due to biological or mechanical impact that do not have a diagnostic value are also
coded using the same states because they can hamper the identification process by non-experts or
automated expert systems. It should be noted that the damage must not be too dominant on the specimen.
During the identification process and the process of deriving the anatomical description, we found that
specimens for which the damaged area was over two-third, a proper identification was often hard to obtain.

Table 2.2: Summary of described macroscopic cross-sectional features in the SmartWoodID database, showing the
structures and refined categories (property/character) along with the matching feature number(s) in the IAWA list for
hardwood identification (NS, 1989) and the Macroscopic IAWA feature list defined by Ruffinato et al. (2019) (Ruffinatto
and Crivellaro, 2019).

Structure Refined category Feature IAWA Item Macroscopic feature
Description number IAWA

Growth rings Growth rings distinct 1 1
Growth ring 2 1
boundaries indistinct
or absent

Vessels Porosity Diffuse porous 5 3

Semi-ring porous 4 4
Ring porous 3 5

Arrangement Vessels in tangential 6 8
bands
Vessels in radial 7 9
pattern
Vessels in diagonal 7 10
pattern (echelon)
Vessels in dendritic 8 11
pattern (flame-Llike)

Grouping Solitary and in radial - 12
multiples of 2-3
vessels
Exclusively  solitary 9 13
(90% or more)
Radial multiples of 4 10 14
or more common
Clusters common 11 15

Frequency < 5vessels persquare 46 16
mm
6-20 vessels / square 47 17
mm
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> 20 vessels / square  48/49/50 18
mm
Vessel diameter/ pore  Small (not visible to - 19
visibility the naked eye, less
than 80pm)
Medium (justvisibleto - 20
the naked eye, 80-130
Hm)
Large (commonly - 21
visible to the naked
eye, larger than 130

Hm)

Axial parenchyma Distribution Diffuse-in-aggregates 77 30
Vasicentric 79 31
Lozenge-aliform 81 32
Winged-aliform 82 33
Confluent 83 34
Bands more than 85 35
three cells wide
Narrow bands or lines 86 35
up to three cells wide
Parenchyma in 89 38

marginal or seemingly
marginal bands

Reticulate 87 39
Scalariform 88 40
Visibility Ray visibility to the - 43

naked eye on the
transverse surface

Width Rays per millimetre 114 49
(<=4/mm)
Rays per millimetre 115 49
(4-12 / mm)
Rays per millimetre 116 49
(>=12/mm)

Anomalies visible damage insect holes - -

fungi - -

Mechanical damage - -

The result is a list of 1700 tree species and lower taxa from the DRC, each with a description of the
vegetation classes in which they grow, an indication of their commercial value and their threatened status
in 2022 according to the IUCN Red List (IUCN, 2021), the CITES appendices (UNEP-WCMC (Comps.), 2022)
and the European Union and Trade in Wild Fauna and Flora (Commission Regulation (EU), 2019). Of these
1700 species and lower taxa, 954 species and lower taxa are present in the Tervuren Wood Collection and
are used to create images and annotations on the macroscopic anatomical features with at least four
specimens available for all species and lower taxa, thereby resulting in 3742 surfaces to scan. The pursued
number of four specimens per species and lower taxon was chosen to correspond to the available number
of collection specimens in the Tervuren Wood Collection. In addition, it is common practice in wood
anatomical assessments to base species and lower taxa descriptions on a relatively small number of
specimens.

2.3.7 Quality control

A database with reliable reference material is the backbone of any application to identify a specimenin a
taxonomy system. Afirstimportant aspect of reliability to address is the need for specimens to be correctly
identified. If misidentified, it would cause the interpreter, being either a wood anatomist or a machine
learning model, to focus on different distinguishing characteristics for said species and lower taxa,
potentially resulting in misidentification. The Tervuren Wood Collection contains specimens that were
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collected during field missions. During many field missions, herbarium material was also collected and
stored in the collection of the Meise Botanic Garden (Abeele et al., 2021). Specimens with reliable
herbarium vouchers in the Meise Botanic Garden are primarily selected to ensure the reliability of the
specimens. When specimens with herbarium material are not available, specimens from dependable
collectors are chosen. Next, specimens are compared with descriptions in the InsideWood database to
maximally avoid misidentification during annotation. Because the features checked during annotations are
all macroscopic for hardwood identification listed by the IAWA and visible on the end-grain surface, the
InsideWood database provides the perfect reference tool for checking the occurrence of IAWA features and
the correct identification of wood collection samples. An unknown wood specimen can be a species and
lower taxon not present in the database (Wheeler et al., 2020). The Tervuren Wood Collection contains
multiple samples of most species and lower taxa, and for the image database that we present, four
specimens of each species and lower taxon are selected. In order to ensure a good humber of high-quality
specimens, specimens with a large end-grain surface are preferred as they contain more information. Wide
branches and stem disks are also included, if possible, as they have a large end-grain surface along with
extra information, like pith and differences between heartwood and sapwood. Twigs and branches are only
included if no other specimens are available because the smaller area of the end-grain sur-face consists
of juvenile wood mainly and does not show the diagnostic features used in routine wood identification on
the variability of anatomical features. Some of the different macroscopic features can also differ between
different parts of the tree, for example, the size of vessels will be substantially larger in the stem compared
to branches and especially twigs (Zimmennann and Potter, 1982).

2.3.8 Technical description of the database and functionalities

The specimen-based database with the collected observations is made accessible online by incorporating
itin an llIF environment for presenting and annotating content such as images and audio-visual files (lIIF,
2022a; McAulay, 2017). This framework was selected due to the potential it has for sharing data in a way
that allows viewing, comparing, manipulating and annotating images in an environment that is easily
accessible. The SmartWoodID database within the IlIF contains new high-resolution scans of wood and
accompanying metadata such as geographical origin, accepted taxonomy according to the WCVP,
descriptions of their anatomical features, the mean RGB values of intact wood and the density
measurements.

The IlIF environment is implemented with the Image API and the Presentation API only, with plans to add
the Content Search APl in a later stage. The Image API defines how image servers deliver pixels to a viewer,
and the Presentation APl adds metadata and structures to these images, defining how they appear in llIF-
compliant viewers. This is done through an IlIF Manifest, a JSON file. These JSON files are generated with a
custom Python script that fetches all relevant information from the database.

The Manifest file is presented by an llIF-compliant viewer online. There are several (open source) viewers
available, each with its own use case. Since IlIF is all about interoperability, the Manifest file can be reused
potentially within different viewers. Mirador (llIF, 2022b) was selected as the primary viewer as itis an open-
source, highly configurable and extensible multi-window image viewing platform that allows researchers
toview, zoom, rotate and compare image-based resources, making it both educative and useful for experts
and wood enthusiast alike. The viewer is also not limited to view-able specimens but canview and compare
any llIF-enabled resource available, facilitating research across collections and institutions.

In a later stage, annotations will be added to display the macroscopic wood anatomical characteristics in
ordertovisualize them for educative purposes and to potentially include them in identification applications
such as classification keys and Al using object identification to recognize and quantify wood anatomical
properties.
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2.4 Results

2.4.1 Taxonomic coverage (updated after publication)

The database contains 954 tree species, and lower taxa present in the Tervuren Wood Collection
encompassing 385 genera and 81 families. In total, 3,774 specimens were examined, of which 3,472 were
retained after verification. Among these, 348 specimens had corresponding herbarium vouchers at Meise,
with 335 confirmed as correctly identified—approximately 10% voucher coverage. The family with the
largest number of species and lower taxa in the database is Fabaceae, covering 216 species and lower taxa
and 22.7% of all DRC tree species and lower taxa. The fact that Fabaceae is the most diverse tree family is
not surprising given that Fabaceae or Leguminosae is the third most diverse plant family after the (primarily
herbaceous) families Asteraceae and Orchidaceae (54). The second and third most occurring families are
the Rubiaceae and the Annonaceae, covering significantly less species and lower taxa with 47 and 43
species and lower taxa and 4.9% and 4.5% of all DRC tree species and lower taxa, respectively. The 12 most
occurring families encompass 60% of the 954 species and lower taxa with not <30 species and lower taxa
per family. Diospyros is the genus with the most species and lower taxa at 2.6% of all species and lower
taxa closely followed by Ficus at 2.2% of all species and lower taxa.

2.4.2 Geographical coverage

0 750 1.500 km
[ E—

Figure 2.3: A map of the African continent, indicating the number (indicated in red) of DRC tree species present in each country. A
darker colour represents a higher tree species richness of Congolese trees.

Figure 2.3 shows in which countries on the African continent the tree species and lower taxa from the
SmartWoodID database are growing. The colour intensities represent the number of tropical tree species
and lower taxa of the DRC present in that country according to the RAINBIO database, ranging from 0 to
954. There is a gradient moving away from the equator, as less DRC tree species and lower taxa occur
further north or south of the continent, which is logical given the tropical boundaries. Given that the DRC
is a large country covering a wide spectrum of phytogeographical regions, this obviously results in a large
number of vegetation classes (Table 2.3) also present in neighbouring countries harbouring many of the
same species and lower taxa. The DRC also covers the majority of the Guineo-Congolian regional centre of
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endemism, one of the largest and most biodiverse regions of Central Africa, that encompasses both ‘Moist
Central Africa’ and ‘Wet Central Africa’ (Fayolle et al., 2014; White, 1983). Those facts further support that
the DRC is a relevant geographically delineated area to produce a robust reference database of images and
wood anatomical descriptions for species identification.

Table 2.3: An overview of all general vegetation classes in the DRC defined by Fritz et al. (2003) (Fritz et al., 2003) with
the total number of tree species (available in the SmartWoodID database) in each vegetation class and the percentage
of threatened species present in each vegetation class.

General Percentage of
. Number of tree Percentage of .
Vegetation species at lower

species per class threatened species
Class P P P risk

Closed forest
Altitudinal
forest

Edaphic forest

Percentage of species with deficient
data on threatened status

Woodland

Urban areas

Water bodies

2.4.3 Threatened status

Table 2.4: All tree species in the DRC that are appended to appendix Il of Checklist of CITES Species (UNEP-WCMC
(Comps.), 2022), along with their respective IUCN Red List Category, IUCN population trend and last year they were
assessed (IUCN, 2021).

Speci IUCN Red List Category Population trend Last year assessed by IUCN

vulnerable decreasing 2019
Ieast concern stable 2019
vulnerable unknown 1998
vulnerable unknown 1998
vulnerable decreasing 2019
Ieast concern decreasing 2019

Alsophila camerooniana least concern unknown 2016

least concern stable 2018

Dalb
uph
Euphorbia ingens least concern stable 2018
Euphorbia teke not evaluated unknown -
Guib
(L]
run

ergia nitidula
orbia abyssinica
Khaya anthotheca vulnerable unknown 1998
Khaya grandifoliola vulnerable unknown 1998
us ana

near threatened decreasing 2020

Pterocarpus angolensis least concern decreasing 2018
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Pterocarpus lucens least concern stable 2010
Pterocarpus rotundifolius least concern stable 2018
Pterocarpus soyauxii not evaluated unknown -

Pterocarpus tessmannii near threatened unknown 2020

Pterocarpus tinctorius least concern decreasing 2017

Only 23 of the 1700 DRC tree species and lower taxa are included in the Checklist of CITES (UNEP-WCMC
(Comps.), 2022), which is shown in Table 2.4. All those tree species and lower taxa are listed in appendix Il
of the Checklist of CITES and annex B of the European Union and Trade in Wild Fauna and Flora regulation
(Commission Regulation (EU), 2019) and are therefore considered species and lower taxa not necessarily
threatened with extinction now, but they may become so unless trade is closely controlled. For each
species and lower taxon, the IUCN Red List Category is presented with sometimes remarkable results as
some species and lower taxa are of least concern according to the Red List, while the Checklist of CITES
includes them. One reason for this might be the year of the last assessment by the IUCN. Pterocarpus
tinctorius is a good example of this, as it was last assessed in 2017. It was appended to appendix Il of the
CITES at the Nineteenth meeting of the Conference of the Parties (CoP19) in Panamain 2022 because more
recent assessment showed the heightened risk of extinction due to trade (CITES, 2022a). Outdated
assessments by the IUCN are not the only reason that a species and lower taxon might be appended to
CITES. Afzelia bella, for example, was last assessed in 2019, which showed that the population remains
stable on a global scope and that the species is of least concern. It was however added at the CoP19 due
to being a look-a-like species for threatened species such as Afzelia africana, Afzelia bipindensis, Afzelia
pachyloba and Afzelia quanzensis (CITES, 2022b). Figure 2.4 shows how many of the listed species and
lower taxa belong to each of the nine IUCN Red List Categories. Only 8 of the 10 categories are presentin
the list of DRC timber species and lower taxa as it contains no species and lower taxa that are extinct or
extinct in the wild. Nine per cent of all listed species and lower taxa belong to one of the three threatened
categories (vulnerable, endangered and critically endangered). The list contains 85 vulnerable species and
lower taxa such as Afzelia bipindensis, Baillonella toxisperma and Entandrophragma utile. Thirty-six
species and lower taxa are classified as endangered such as Millettia laurentii, Pericopsis elata and
Autranella congolensis. Only three species are considered critically endangered, Beilschmiedia donisii,
Elaeophorbia drupifera and Warneckea superba. Sixty per cent of all species and lower taxa are of lower
risk, more specifically near threatened, least concern and conservation dependent. About 43 species and
lower taxa are near threatened like Milicia excelsa, Entandrophragma angolense and Dialium pentandrum.
Half of the listed species and lower taxa are of least concern to being threatened. Two species are
conservation dependent, and six species belong to the category data deficient because there are little data
about their distribution and/or abundance. The remaining 35% of the listed species and lower taxa have not
been evaluated yet.
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Figure 2.4: Pie chart showing the percentage of each category (according to the IUCN Red List) present in the list of
trees in the DRC, capable of providing timber.

2.4.4 Economic value

The list of DIAF 2017, summarizing all tree species and lower taxa present in DRC forests, also indicates
their current economic value (DIAF, 2017). The species and lower taxa are divided into four categories: |
(commercially exploited species and lower taxa) consisting of 26 species and lower taxa, Il (species and
lower taxa with potential to be used commercially) consisting of 19 species and lower taxa, lll (species and
lower taxa with potential to be used commercially, but with few knowledge on their material properties)
consisting of 42 species and lower taxa and IV (species and lower taxa with no known economic value)
which is the majority of the database at 1613 species and lower taxa. Categories |, Il and Il are considered
as economically important classes due to the use or potential use of these species and lower taxa. A study
that analysed 31 logging concessions in the five Inter-national Tropical Timber organization member
countries of the Congo Basin was able to determine the 35 timbers from tropical Africa which amount to
94.2% of the total timber volume produced annually in the Congo Basin (Pérez et al., 2005). Of those 35,
only three species do not occur in the DRC according to the database. Those three species,
Distemonanthus benthamianus, Brachystegia cynometroides and Testulea gabonensis, account for <3%
of the total timber volume produced in tropical Africa. This shows that the DRC is rich in commercial
species and lower taxa, although itis important to note that those species and lower taxa do not necessarily
show the same abundance in the DRC compared to other countries. An example of this is Aucoumea
klaineana, the most traded species in the Congo Basin, which is only sparsely present in the DRC because
it mostly grows in West-Central-African countries such as Gabon (Pérez et al., 2005).
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2.5 Discussion

2.5.1 The DRC and its representativeness

The choice of the DRC as a basis for developing the first version of the SmartWoodID database is affirmed
by the large area of the DRC housing a large variety of vegetation types. This ensures that a large part of the
species and lower taxa from the DRC are also present in neighbouring countries, making the database
relevant in an international context. lllegal logging and fraudulent deliveries of timbers are not
geographically limited to DRC. These malpractices with the same species and lower taxa happen in other
African countries, and therefore, wood identification tools for all DRC timber-producing species can help
combat illegal logging across borders.

Total speciesrichnessis however notthe only parameter to select the DRC as the geographic area of choice
for the database. The choice also depends on the type of species, their economic value and threatened
status. Some species are protected by the CITES convention (UNEP-WCMC (Comps.), 2022) and The
European Union and Trade in Wild Fauna and Flora (Commission Regulation (EU), 2019) while also being
highly interesting for commercial use such as Afzelia bipindensis, Khaya anthotheca, Pterocarpus soyauxii
and Pericopsis elata. If such species are logged illegally, it can lead to severe population loss and even
impact species that are not currently threatened or that are of least concern due to the damage to precious
forest stands in search for valuable trees. A reference database for wood recognition should therefore
contain the most prominent exploited timbers, as a wood identification tool will frequently encounter
commercial and threatened timbers. The SmartWoodID database contains 32 of those 35 commercial
timbers, showing that the DRC is host to almost all highly commercialized timbers from the Congo Basin
(Pérez et al., 2005). The large number of commercial species and threatened species makes the
SmartWoodID database and wood identification tools derived from it also usable in importing countries.
This last aspect is particularly important as this is where regulations go in effect and where wood
identification techniques must be applicable on a systematic basis.

2.5.2 Opportunities of the SmartWoodID database

An image database with information on wood anatomical features has clear goals to aid in identifying the
botanical taxon of species, by serving as reference material for distinguishing them. In this regard, an image
reference database with information on wood anatomy must be complete regarding its content. It should
therefore not only aim at encompassing all species that logically can be encountered in trade but must also
maximally cover all possible types of irregularities.

Containing all species is particularly important because the value of identification tools depends on the
completeness of its reference data. Especially for a species-rich country like the DRC, databases should
be as large as possible to reduce the risk that a tool is only developed for a small part of the flora and that
a positive identification is not possible only because many species are not included in the database.
Moreover, it is very unlikely that foreign species are being imported in the DRC, so the database should
purely focus on the maximum of species present in the DRC.

Wood samples most often contain many irregularities visible on a wood surface due to its nature as a
natural product that is subservient to the growing conditions of a tree or post-growth incidences such as
mechanical damage or damage by insects or fungi. Those irregularities hamper a smooth identification
process and are a main reason why expert knowledge is needed to distinguish between diagnhostic
characteristics and other features. This makes this information particularly relevant for anyone performing
wood anatomical assessments in the field. Any tool used to identify wood with anatomy, such as
classification keys or Al, must therefore take the irregularities into account. It is the inclusion of data on
such irregularities that distinguish the image collection of the Tervuren Xylarium compared to other large
image databases that contain high-resolution images of the end-grain surface, such as the database of the
XyloTron system (Ravindran et al., 2020). Another difference between SmartWoodID and other databases
is the large end-grain area scanned. A large end-grain surface contains a maximum of information on
variably occurring macroscopic features. The amount of anatomical information is therefore higher and
available to be used inresearch and development of identification tools. The variability of wood anatomical
characteristics between specimens must also be considered as growth conditions and genetic traits can
lead to varying wood anatomical features. Therefore, databases should contain information on several
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specimens for each species in order to cope with the natural variability of wood between individual trees.
The observed misidentifications, ~10% of the initial 3.774, also underscores the need for systematic cross-
checking the taxonomy, since inconsistencies can propagate into downstream research on automated
identification pipelines if left unresolved. This becomes even more crucial in absence of voucher-linked
herbaceous material, as only ~10% of the specimens could be linked to herbaceous material in the Meise
Herbarium.

The information on variably occurring macroscopic features and the recorded data on irregularities enrich
the SmartWoodID database and ensure its robustness needed to create tools capable of aiding
fieldworkers in accurate identification.
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2.6 Conclusion

The SmartWoodID image database will offer new opportunities for developing identification systems based
on recognition of diagnostic wood anatomical features. This database is unique since it covers a large
number of African tree species and lower taxa of which the macroscopic structure is visualized and
described. The Tervuren Wood Collection provides this thanks to its heritage of collecting reliable reference
material over the span of more than a century. A total of 56% of all DRC tree species and lower taxa, listed
in DIAF (2017) (DIAF, 2017), are currently available within the Tervuren Wood Collection. The first version of
the SmartWoodID image database that is presented here consists of a set of 954 timber species and lower
taxa presentin the DRC forests (Dauby et al., 2016; DIAF, 2017). The database focuses on the macroscopic
anatomical features that can be encountered on a high-resolution scan of end-grain wood surface. The
database accounts for irregularities and natural variability, using multiple specimens with large end-grain
sur-faces. This makes it a robust reference database for research on wood in general and will allow the
development of tools for aiding in law enforcement to combat illegal logging.

2.7 Data availability

De database and all its data will remain publicly available for a minimum of two years starting from the day
of publication. Database URL: https://hdl.handle.net/20.500.12624/SmartWoodID_first_edition
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3.1 Abstract

Macroscopic wood anatomical analysis is a widely applied method for identifying wood taxa based on
features visible to the naked eye or with a hand lens. This is essential for enforcing anti-illegal logging
regulations and promoting sustainable timber trade. The cross section (or end-grain) is particularly
relevant, as its accessibility make it valuable for field applications, requiring little equipment and limited
sample preparation. However, the number of expert-defined diagnostic features observable at this scale is
limited, posing challenges when distinguishing morphologically similar taxa within species-rich groups,
especially in highly diverse tropical regions such as the Congo Basin. Despite the widespread use of this
method, its performance has not been systematically quantified, hampering objective evaluation relative
to microscopic or molecular identification techniques.

Therefore, this chapter assesses the diaghostic potential of expert-defined macroscopic cross-sectional
anatomical features using the SmartWoodID database, the most complete image database of tree species
that grow in the DRC. The evaluated features represent the most accessible anatomical characters for
field-based identification. Classification performance was assessed at the species, genus, and family
levels using a range of analytical approaches, including two-way hierarchical clustering, DTs, and
advanced machine learning algorithms such as RF, CatBoost, and SVMs. Findings reveal that macroscopic
features alone are insufficient for reliable species-level identification across the full taxonomic spectrum,
with correct species predictions in fewer than 25% of cases. The clustering analysis showed that six was
the optimal number of clusters that could be identified by clustering the tree species based on 31
accessible macroscopic cross-sectional features. Although accuracy improves at broader taxonomic
levels, overlapping anatomical features still constrain resolution, with a maximum of approximately one-
third of specimens correctly classified at the genus level, and around half at the family level. Nonetheless,
when applied within narrow taxonomic scopes—such as specific genera or families—macroscopic
features exhibit notable diagnostic value. For example, the study successfully distinguishes African
Pterocarpus species, considered difficult to distinguish without laboratory-based methods according to
the amendment of all African Pterocarpus species to CITES appendix Il. These results underscore both the
limitations and the potential of macroscopic wood anatomical analysis for trade monitoring and forensic
wood identification. In field contexts, where speed, simplicity, and minimal training are critical, CV-based
approaches offer promising solutions. By directly analysing macroscopic cross-sectional images, such
methods can extract additional diaghostic patterns and enhance identification accuracy, supporting
scalable and accessible wood identification systems.

This chapter is not submitted to a peer-reviewed journal on 19/08/2025.
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3.2 Introduction

The ability to rapidly and accurately identify wood species is increasingly critical given the ambitious
international regulations aimed at combating illegal logging (Gasson et al., 2021; Hirschberger, 2008;
Hoare, 2015; Magrath et al., 2009; Piabuo et al., 2021; Van Brusselen et al., 2023). Effective identification
methods must be both accurate and applicable in field conditions (e.g. forests, roadside, warehouse,
container, harbour), where access to laboratory facilities is often limited (Gasson, 2011). Among the
various techniques available, wood anatomical assessment remains one of the most reliable approaches
for species identification. This method involves examining tissues and cells across different planes and
scales to detect diagnostic features characteristic of specific taxa. The IAWA has standardized anatomical
features, providing consistency and reliability across the World (Gasson et al., 2011; NS, 1989; Ruffinatto
et al., 2015; Wheeler, 2011).

Identification keys include digital and offline formats and play a crucial role in simplifying and speeding up
the identification process, especially given the immense diversity of tree species (Barefoot and Hankins,
1982; Gregory, 1980; Ilic, 1993; LaPasha and Wheeler, 1987). These keys are expert-driven and designed
for practical use, guiding users through systematic evaluations of diagnostically valuable features by
determining their presence, absence, or variation (LaPasha and Wheeler, 1987; Vander Mijnsbrugge and
Beeckman, 1992). A broad array of 163 well-defined microscopic features were defined by IAWA and are
today commonly used for precise identifications (NS, 1989). InsideWood is a widely recognized
microscopic identification key using these IAWA features. It combines a comprehensive database of wood
anatomical descriptions with a search engine that queries the descriptions. InsideWood is widely used for
research, teaching, and reference purposes (NS, 1989; Wheeler, 2011; Wheeler et al., 2020). With a global
scope, InsideWood hosts over 9,400 wood anatomical descriptions of both fossil and modern woody
dicotyledons, covering more than 10,000 species and 200 plant families, accompanied by over 50,000
images (Wheeler et al., 2020).

However, comprehensive wood anatomical assessment is constrained by the need for specialized
laboratory equipment and labour-intensive sample preparation techniques, such as microtomy, which
increase both cost and processing time. Therefore, wood identification is most often performed using only
macroscopic features that are quickly observable during in situ wood identification (e.g. in harbours) (Koch
et al., 2018; Wheeler and Baas, 1998). A study by Ruffinato et al. determined which IAWA features can be
observed with the naked eye or with the aid of a simple hand lens. Using only these macroscopic features
for identification significantly reduces the time and resources required for sample preparation and
examination (Ruffinatto et al., 2015). Among the three anatomical planes, the cross section is the most
readily exposed and provides up to 31 distinct macroscopic features that can support rapid identification
(Ruffinatto and Crivellaro, 2019). These features enable wood identification to be performed outside of
laboratory settings by individuals with foundational knowledge in wood anatomy.

Macroscopic identification keys, particularly dichotomous and multi-entry types, are commonly used in
field contexts where time constraints necessitate immediate classification—often within minutes. This
methodology is especially relevant in the context of timber trade enforcement, where rapid screening of
large volumes of wood and wood-derived products is essential to detect fraudulent or illegally traded
specimens, including those from protected species. Notable tools such as the Atlas of Macroscopic Wood
Identification (Ruffinatto and Crivellaro, 2019) and macroHOLZdata (Richter et al., 2017) exemplify the
application of macroscopic features in digital identification systems. The structural simplicity of
dichotomous or multi-entry keys makes them popular, but also limits their capacity to fully leverage the
power of anatomical features and often fails to accommodate intra-specific anatomical variability.
Furthermore, the applied categorical feature states (present, variable, or absent) are inherently subjective,
as the thresholds distinguishing these states are not strictly defined. For example, what qualifies as a
'present’ feature can vary between observers, leading to inconsistent character scoring. In identification
keys, this interpretive variability can significantly influence outcomes. When using a dichotomous key, an
anatomist who codes a feature as 'present’' may be guided to a different result than one who considers the
same feature 'variable, potentially excluding the correct taxon early in the process. While multi-entry keys
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are somewhat more flexible, they can still produce misleading outcomes if the underlying database does
not adequately capture the natural variation of features as they appear across different specimens.

More importantly, the restricted number of diagnostic features limits their discriminatory power in
taxonomically diverse and morphologically convergent groups. The combination of observer bias
(especially when using simple key-based systems) with the sheer scarcity of macroscopic features, might
often lead to partial or full misidentifications. However, despite their widespread use, no systematic effort
has been made to quantitatively assess the identification success of macroscopic features. This lack of
empirical evaluation hampers objective comparisons between identification success of macroscopic
features versus identification success of more advanced, yet resource-intensive laboratory-based
methods such as microscopy.

Therefore, here we evaluate the ability of macroscopic anatomical features to identify wood specimens in
the species-rich SmartWoodID database (De Blaere et al., 2023). To maximise identification success and
valorise the full diagnostic potential of all discernible macroscopic features, we do not use simple
dichotomic keys, but more sophisticated analytical techniques which can significantly increase accuracy
and robustness (Boulesteix et al., 2012; Salman et al., 2024). We specifically use a statistical technique
(two-way species and feature clustering analysis) and four machine learning techniques that were
evaluated for their effectiveness in classifying wood specimens across the three taxonomic levels (species,
genus, and family): DT, SVM, RF, and CatBoost. We assess the accuracy of each of these methods using
Congolese species in the SmartWoodID database. In order to compare the accuracy with other online
resources, the models were trained on a selection of commercial timbers and were used to assess the
ability to predict InsideWood descriptions of the macroscopic cross-sectional IAWA features and to
evaluate the capacity to distinguish high-demand timber species commonly traded in international
markets.
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3.3 Materials and Methods
3.3.1 Dataset Description

This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in
section 1.5 which provides an overview of all data used in each chapter.

The SmartWoodID database contains high-resolution RGB scans of the macroscopic end-grain surfaces of
3,742 wood specimens, representing 954 species native to the DRC. Each specimen was prepared by
scanning the cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization
of macroscopic features essential for wood identification.

Species and lower taxa are represented by multiple specimens, capturing both intra- and interspecific
anatomical variation. This makes the database well-suited for studying wood identification using
macroscopic anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et
al. (2023) (De Blaere et al., 2023), while Supplementary Materials Table 8.1 lists all unique specimen
identifiers and metadata. To enable machine learning analysis, we selected only species represented by at
least two specimens. This set comprises 2,296 digitized specimens across 601 species, 286 genera, and
64 families. Discriminatory power was mainly assessed by training and evaluating classification models on
the specimens. Therefore, specimens were allocated random to training (75%) or test set (25%), while
preserving distribution of species across both sets. Within both sets, a subset of 78 commercially
important species was defined for targeted evaluation. An overview of the chapters, designated datasets
used in each chapter and of which hypothesis they target is provided in section 1.4.

Macroscopic wood anatomical features were described for each end-grain image of the SmartWoodID
specimens (see chapter 2, Table 2.2; and De Blaere et al. (2023) (De Blaere et al., 2023)). Each feature is
assigned a Macroscopic IAWA feature number (Ruffinatto et al., 2015). We did not use descriptions on the
presence of growth rings as the discernability at the used resolution was often not high enough to assess
this feature with certainty. Each feature is annotated with one of four states: Present (clearly visible),
Variable (sporadically observed), Absent (rarely observed, below the threshold for Variable), or NA
(undiscernible due to resolution limits or ambiguous visual cues).

3.3.2 Macroscopic feature annotations

For clustering and classification, the macroscopic anatomical features needed to be encoded in a way that
appropriately reflects their descriptive nature and variability. Grouping features into their overarching
refined categories (see Table 2.2) and treating them as standard categorical variables was not feasible. For
example, the feature "vessel frequency" cannot be simply categorized into fixed bins (e.g., 6-20 vessels /
mm?), because the IAWA guidelines may define the same value range differently across species
(Committee, 2004; NS, 1989). For example, on a specimen, a vessel frequency of < 5 vessels / mm? might
be considered "variable," 6-20 vessels / mm? as "present," and >20 vessels / mm? as "absent." This
complexity means that each feature must be treated individually, and generic binning approaches cannot
be applied. However, the ‘variable’ feature state complicates straightforward analysis further as the
classification or clustering can no longer be regarded as a binary case (a feature is either present or absent).
Treating all feature states as equal categorical levels would obscure important information—particularly
the nuance provided by the "variable" state, which implies a range of occurrence rather than a binary
presence or absence. To preserve this information while enabling quantitative analysis, each state was
transformed into a numerical value representing the observed variability. Specifically, features were
encoded per species as follows: "present" = 1, "variable" = 0.5, "absent" = 0, and "NA" (not assessable due
to resolution or ambiguity) = 0. These values were used as inputs for clustering and classification models,
allowing the analysis to incorporate the graded nature of anatomical trait expression.

To assess the identification potential of macroscopic wood anatomy in a commercial context, the data
were adjusted to align SmartWoodID with InsideWood database standards, addressing differences in
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feature definitions and resolutions to ensure data compatibility while maintaining the integrity of
anatomical descriptions. An overview is presented in Chapter 2.3.6 (Table 2.2) and De Blaere et al. (2023)
(De Blaere et al., 2023).

3.3.3 Clustering analysis

To identify intercorrelated macroscopic features and to visually and statistically explore whether species
in SmartWoodID are significantly different from one another based on the macroscopic annotations, we
performed a two-way hierarchical clustering analysis in R (version 4.4.1) (Borcard et al., 2011).

We then constructed two separate dissimilarity indices to independently assess variation among taxa and
among anatomical features, using the ‘vegdist’ function of the ‘Vegan’ package (version 2.6-8) (Oksanen et
al., 2025). For the clustering of taxa (i.e., botanical species), the Raup-Crick dissimilarity index was applied.
This index is appropriate for binary presence-absence data and emphasizes stochastic differences in
feature composition across taxa. For the clustering of anatomical features, the Bray-Curtis dissimilarity
index was used, as it accounts for relative abundance and is commonly used in ecological studies. Each
dissimilarity matrix was subjected to hierarchical agglomerative clustering using the Ward.D2 linkage
method, which minimizes the total within-cluster variance and is effective for generating compact,
interpretable clusters (Borcard et al., 2011). To determine the optimal number of clusters, we applied the
Mantel test, which assesses the correlation between the original dissimilarity matrix and a binary matrix
representing group membership at various cut-off levels (Borcard et al., 2011). For each value of k (humber
of clusters), a Mantel correlation coefficient was computed, and the k maximizing this correlation was
selected as the optimal number of clusters for both dimensions. A two-way clustered heatmap was
generated using the ‘pheatmap’ package (version 1.0.12), allowing for the simultaneous visualization of
clusters across taxa (rows) and features (columns) (Kolde, 2018). This was accompanied by smaller figures
showing the presence of each anatomical feature in each species cluster through boxplots, based on the
species-specific values in the heatmap.

To evaluate the taxonomic consistency of anatomical clustering, we examined the distribution of species
across clusters with respect to their genus. Genera represented by multiple species were identified, and
we assessed whether their species were grouped within a single cluster or spread across multiple clusters.
This allowed for the quantification of anatomical coherence at the genus level and the identification of
genera with divergent or convergent anatomical patterns relative to their taxonomic classification.

3.3.4 Classification Models

3.3.4.1 Training and testing datasets

Four machine learning techniques were evaluated for their effectiveness in classifying wood specimens
across the three taxonomic levels (species, genus, and family): DT, SVM, RF, and CatBoost. We split the
selected image database in a training (75% of specimens) and a test (25% of specimens) set. To prevent
information leakage and to minimize potential biases, we ensured a balanced distribution of species
across the training and test sets. A summary of specimen distribution across training and test sets is
presentedin Table 10.1. This shows that each species has a minimum of 1 and a maximum of 17 specimens
in the training dataset and a minimum of 1 and a maximum of 6 specimens in the test dataset. We used the
same training and test sets to train each of the four models.

Table 3.1: Summary of specimen distribution between training and test datasets. This table reports the minimum,
maximum and average number of specimens per taxonomic level (family, genus and species level) included in the
training and test datasets.

Training Specimens Testing Specimens

425 24 56 1 221 12 29

Family 1

m 1 56 5 6 1 22 3 3
m 1 17 3 2 1 6 1 1
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3.3.4.2 Classification models

Traditional DTs function akin to identification keys. DTs recursively split datasets based on features that
optimize criteria such as information gain or Gini impurity at each node, unlike identification keys, which
rely on rules derived from the raw data to guide users through sequential feature evaluations without
probabilistic modelling (Murthy et al., 1994; Quinlan, 1987). Due to their interpretability and ability to model
non-linear relationships, DTs are well-suited for analysing wood anatomical datasets, which often include
large numbers of discrete features (Vander Mijnsbrugge and Beeckman, 1992; Wheeler et al., 2020).

RF is an ensemble method that builds multiple DTs and combines their predictions to improve accuracy
and reduce overfitting (Ho, 1998; Pes, 2021). Each tree is trained on a random subset of the data, and at
each split, the algorithm evaluates a random subset of features, selecting the best feature from this subset
to optimize the split. This promotes diversity among the trees in the ensemble. The probabilities of each
class are then obtained by averaging the predictions of all trees. It provides a higher degree of robustness
compared to a single DT and can effectively handle noisy data, which is common in wood anatomical
datasets due to the inherent inter-specific variability of the features (Biau and Scornet, 2016; von Arx et al.,
2016). Additionally, the built-in feature importance metrics can help highlight which anatomical features
are most significant for classification, offering insights into the biological relevance of the features.

CatBoost, a gradient boosting algorithm specifically designed to handle categorical data effectively
(Prokhorenkova et al., 2018). The algorithm works by sequentially training an ensemble of DTs, where each
new tree attempts to correct the errors made by the previous trees (Ibrahim et al., 2020). Unlike traditional
gradient boosting, which may require extensive preprocessing of categorical variables, CatBoost natively
handles categorical features (Bentéjac et al., 2021; Wanga et al., n.d.). Its ability to generalize well on
datasets with uneven representation makes it suitable for biological databases (Jumabek et al., 2021).
Furthermore, CatBoost demonstrates faster training times and better performance compared to other
boosting algorithms, such as XGBoost, making it highly suitable for large-scale wood anatomical datasets
(Bentéjac et al., 2021; Mironov and Khuziev, 2022).

SVMs, which representyet another powerful machine-learning technique for wood identification. SVMs are
designed to identify the optimal hyperplane that best separates different classes by maximizing the margin
between support vectors (Joachims, 2002). For non-linearly separable data, SVMs use kernel functions
(e.g., radial basis functions or polynomial kernels) to map data into higher-dimensional spaces, enabling
better class separation. In wood anatomical datasets, where subtle distinctions between species can be
challenging, SVMs offer high precision in modelling complex relationships between features (Rosa da Silva
etal., 2017).

3.3.4.3 Hyperparameter Optimization

Each model was optimized using a randomized grid search to enhance performance by sampling a
predefined number of parameter combinations from a range of hyperparameter values. This strategy
ensures a scalable and flexible search for the best hyperparameters, especially when dealing with large
parameter spaces (such as for CatBoost). In total, 50 random hyperparameter settings were sampled from
the parameter grid of each technique, consultable Supplementary materials: Table 8.2. During the
randomized search, the models were iteratively trained, with training samples split for training and
validation using an internal 4-fold cross-validation, to ensure robustness. To guarantee consistency and
reproducibility across all experiments, the random number generators were seeded with a fixed value for
all algorithms and folds. Class weights were used to address the inherent class imbalance. As Catboost is
a gradient method, it is sensitive to overfitting with fixed iterations, as such the model was run for 1000
iterations with early stopping after 20 epochs if no improvement in loss. All data processing, classification,
and evaluation tasks were executed using Python 3.9.15, Scikit-learn 1.3.0, Pandas 2.0.3, and Matplotlib
3.7.2.
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3.3.4.4 Evaluating model performance across taxonomic levels

The performance of each classification model was evaluated across taxonomic levels using the species
label with the highest predicted probability for every test specimen. Predicted species labels were mapped
to their genus and family labels to provide insight into a species’ model’s ability to capture hierarchical
taxonomic relationships. To evaluate the accuracy for each model, species predictions were visualized
using horizontal stacked bar charts, illustrating accuracy at progressively higher taxonomic levels (e.g.
species, genus, family) progression across taxonomic levels.

To complement this indirect mapping approach, the models were also trained to predict genus and family
labels directly. The outcomes of these direct predictions were visualized using a Venn diagram, which
showed the proportion of specimens correctly classified at each taxonomic level, as well as the extent of
overlap and mismatch among them. This visualization enabled a comparison between hierarchical
inference (from species predictions) and direct classification, helping to determine whether direct
prediction at higher ranks could improve overall accuracy. Furthermore, it highlighted species that were
frequently misclassified at certain levels, potentially revealing inconsistencies in their alignment with
current botanical taxonomy or indicating taxonomic ambiguity within certain groups.

3.3.4.5 Optimal number of taxa for Reliable identification

To determine the optimal number of output classes needed for a reliable shortlist at each taxonomic level,
predicted classes were ranked based on their assigned probabilities. Accuracy improvements from
including the top k predictions were analysed using two approaches.

First, accuracy was assessed as a function of k, where the accuracy curve gradually approaches a
maximum value of 1, representing perfect identification of all specimens. Because this function is
cumulative, accuracy steadily increases as additional ranked classes (k) are considered. Additionally, the
AUC was computed for each technique’s cumulative curve in function of k, providing a single quantitative
measure of overall classification performance across multiple k levels.

Second, accuracy was assessed as a function of probability cut-off-thresholds, where the accuracy curve
gradually approaches a minimum value of 0, representing complete misidentification across all
specimens. Because this function is reverse cumulative, accuracy steadily decreases as the cut-off
threshold increases, leaving out more predicted classes. A 95% cumulative accuracy threshold was
included for both functions to indicate the smallest k value (conversely the largest cut-off threshold) at
which the model's top-k accuracy reaches 0.95, offering a practical benchmark for classification reliability.

3.3.4.6 Refining species prediction

Direct predictions at higher taxonomic levels (e.g. family level) could refine predictions at lower level (e.g.
species). For example, certain species predictions could be ruled out by a secondary family prediction,
eliminating species that do not belong to those families. The impact of using higher taxonomic-level
predictions to refine lower taxonomic-level classifications was therefore assessed. Specifically, the top-k
predicted families (derived from family-level models) were used to filter out predicted species class that
are not a member of those botanical families, and the resulting improvement in accuracy was analysed.
Initially, the value of k for filtering was determined based on the 95% average threshold value from the
family-level model outputs, ensuring that the selected families were classified with a high degree of
confidence. Next, individual families and genera were singled out for studying the contribution of
anatomical features for refining genus and species predictions, respectively.

3.3.4.7 Assessing Recognition of InsideWood Descriptions for Commercial Species

The models were retrained using only commercial species to evaluate the models' effectiveness in
distinguishing commercially significant timber species in a practical context, such as combatting illegal
logging. This subset contains 537 specimens belonging to 76 commercial species, 56 genera and 22
families.
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For this analysis, we tested evaluations conducted both on SmartWoodID and corresponding descriptions
of the same species from InsideWood (Wheeler, 2011). The performance of each machine-learning
technique was evaluated by selecting the class with the highest predicted probability for each test
specimen. Species predictions were mapped to their corresponding genus and family labels to provide
insight into a species’ model’s ability to capture hierarchical taxonomic relationships. By testing the
models on InsideWood species descriptions, this analysis evaluates their ability to generalize beyond the
SmartWoodID dataset, providing insight into the practical applicability of these techniques for real-world
wood identification. These descriptions, compiled by multiple wood anatomists from diverse image types
(resolution, field-of-view), serve as an external benchmark. The assessment determines whether models
can classify commercial species based on macroscopic features described from different materials (e.g.
thin sections), rather than SmartWoodID standardized scans.
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3.4 Results
3.4.4 Clustering analysis

This analysis aimed to identify which anatomical features co-vary across timber species. Two-way
clustering analysis was applied to provide clear visual representation of shared anatomical features and to
highlight key diagnostic features relevant for wood identification. All features contributed equally to the
distance metric; the method does not assign explicit weights or identify feature importance in a predictive
sense. Instead, the decisive features for each cluster were interpreted post-hoc by examining co-
occurrence patterns and concentrations within the heatmap. For example, cluster 5 is characterized by
wide banded parenchyma, while cluster 3 is strongly associated with diffuse-in-aggregate parenchyma.
Thus, while the clustering model itself does not indicate which feature group was most decisive, the
visualizations allow us to infer which anatomical traits most strongly differentiate clusters. Results are
visualized as a heatmap, where wood species and anatomical features are simultaneously ordered
according to their hierarchical clustering. Figure 3.12345 depicts the relative abundance of 31
macroscopic anatomical features across 954 wood species. Rows represent species, and columns
represent anatomical features, with clustering patterns visualized through dendrograms on the left
(species) and top (features). The heatmap employs a Viridis colour gradient, with higher values indicating
higher relative abundances of anatomical features. The species and features were clustered according to
the mantel statistics, with clustered visualized on the heatmap. The heatmap reveals six broad species
clusters and five feature clusters, reflecting both species-level differentiation and underlying structural
relationships among wood anatomical features.

To facilitate interpretation of the heatmap, boxplots were generated for each macroscopic anatomical
feature, showing how consistently that feature occurs across the six species clusters (Figure 3.2 to Figure
3.8. Species-specific heatmap scores of the heatmap in Figure 3.1 were used to construct boxplots per
cluster, allowing visualization of whether a feature is consistently absent, consistently present, or variable
within clusters. In total, 31 cross-sectional features were examined, grouped into figures according to the
broader feature categories defined in Chapter 2 (Table 2.2).

Some features—such as vessel porosity (ring, semi-ring, and diffuse) (Figure 3.2), ray visibility (Figure 3.3),
and certain vessel arrangements (e.g., tangential bands, diagonal, and dendritic patterns) (figure Figure
3.4)—appear less informative for differentiating species clusters. These features display relatively uniform
distribution across clusters, lacking pronounced cluster-specific concentrations. One exception is radial
vessel arrangement, which tends to be more prevalent in the third cluster (Figure 3.4). Among species
clusters, ray and vessel quantitative features are more informative. Clusters 1 and 2 predominantly exhibit
moderate ray densities (4-12 rays/mm?), while cluster 5 includes species with lower ray densities, and
clusters 3, 4, and 6 tend toward higher ray densities (see Figure 3.3) . Vessel frequency shows
complementary patterns: clusters 1, 4, and 6 primarily comprise species with moderate vessel densities
(5-20 vessels/mm?); clusters 2 and 5 more frequently include species with low frequency (<5/mm?); and
cluster 3 is characterized by high frequency (>2O/mm2) (see Figure 3.7). These vessel frequency patterns
inversely align with vessel diameter. For example, cluster 3 features mostly small vessels (<80 pm), while
clusters 2 and 5 include more large vessels (>130 pm), and the remaining clusters exhibit intermediate
diameters (Figure 3.6). These opposing patterns underscore a physiologically relevant trade-off: species
with high vessel density tend to have smaller vessels, while those with low density often feature larger
vessels. This aligns with known hydraulic strategies in trees, where high-conductivity vessels are fewer and
larger (Carlquist and Hoekman, 1985).
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Figure 3.12345: Two-way clustered heatmap showing clustering of botanical Congolese tree species (rows) and macroscopic cross-sectional
anatomical features (columns). The presence of features is highlighted using viridis colour gradient to ensure perceptual uniformity (Garnier et
al., 2024). Broad clusters are visualized using distinct colours.
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Figure 3.2: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure
shows Vessel porosity features, with individual features printed above each subplot. Cluster numbers are shown on
the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster
(0 = absent for all species, 1 = present for all species).
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Figure 3.3: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure
shows Ray features, with individual features printed above each subplot. Cluster numbers are shown on the x-axis and
color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster (0 = absent
for all species, 1 = present for all species).
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Figure 3.4: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure
shows Vessel arrangement features, with individual features printed above each subplot. Cluster numbers are shown
on the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each
cluster (0 = absent for all species, 1 = present for all species).
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Figure 3.5: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure
shows Vessel grouping features, with individual features printed above each subplot. Cluster numbers are shown on
the x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster
(0 = absent for all species, 1 = present for all species).
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Figure 3.6: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure
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Figure 3.8: Boxplots showing distribution of macroscopic anatomical features across six species clusters. This figure
shows Parenchyma features, with individual features printed above each subplot. Cluster numbers are shown on the
x-axis and color-coded to the same standard as in Figure 3.1. The y-axis indicates feature prevalence in each cluster (0
= absent for all species, 1 = present for all species).

Axial parenchyma characteristics further distinguish species clusters (see Figure 3.8). Cluster 5 is defined
by a predominance of wide banded parenchyma, while cluster 6 is more strongly associated with narrow
bands. Both clusters feature reticulate parenchyma, but scalariform patterns are more frequent in cluster
5. Cluster 2 displays a range of paratracheal parenchyma types, including vasicentric and confluent forms,
along with frequent marginal bands. Cluster 4 represents a transition from paratracheal to banded
parenchyma, frequently featuring winged-aliform, confluent, and marginal bands, though less consistently
than cluster 2. Cluster 3is distinguished by its emphasis on apotracheal parenchyma—particularly diffuse-
in-aggregates—which is largely mutually exclusive from the banded and paratracheal types found in other
clusters. In cluster 1 axial parenchyma is less observed, though some species exhibit marginal bands,
diffuse-in-aggregates, or vasicentric types.

Vessel grouping features are comparatively less diagnostic across clusters (Figure 3.5). Solitary vessels are
broadly distributed but do not dominate any cluster. Radial multiples of four or more are largely absent
from cluster 2 and somewhat more common in clusters 3, 4, 5, and 6. Vessel clusters are especially
frequent in cluster 5, though not universally present.

These species-level observations intersect with five feature clusters that reflect co-occurrence patterns
among anatomical features. Feature cluster 1 groups paratracheal parenchyma types such as confluent,
vasicentric, lozenge-aliform, and winged-aliform, reflecting their structural continuum. These types often
blend into one another morphologically and functionally, co-occurring in species with moderate to high
vessel and ray densities. Feature cluster 2 links semi-ring porosity with vessels arranged in tangential
bands—an association that aligns with the seasonal onset of earlywood vessels, often producing
tangential alignments. Feature cluster 3 brings together ring-porous species and dendritic vessel
arrangements. Both features are largely absent from Congolese species, and their co-location within this
cluster likely reflects mutual absence. The lack of ring porosity can be attributed to the predominantly
tropical and subtropical climates of the DRC, where seasonal growth rhythms are less pronounced.
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Feature cluster 4 represents a structurally divergent group of features, including diffuse-in-aggregate
parenchyma, exclusively solitary vessels, high vessel frequency, and vessel arrangements in radial or
diagonal patterns. These features characterize anatomical strategies that are spatially and functionally
distinct from the vessel-associated (paratracheal) parenchyma types. Diffuse-in-aggregate parenchyma is
particularly removed from other axial types in the dendrogram, underscoring its apotracheal nature: it
consists of loosely clustered cells not associated with vessels. This structural independence contrasts
strongly with the tight vessel-parenchyma associations seen in paratracheal types. As such, apotracheal
and paratracheal parenchyma types appear nearly mutually exclusive in their distribution, with only a few
exceptions such as the genus Afzelia bipindensis (Fabaceae), Balanites wilsoniana (Zygophyllaceae), and
species of Beilschmiedia (Lauraceae) exhibiting both forms. The integration of these patterns across
species and features reinforces the idea that wood anatomical diversity in Congolese species reflects a
continuum of trait syndromes, with certain parenchyma and vessel arrangements marking points of
distinct structural divergence.

Feature cluster 5 groups narrow and wide banded parenchyma together with scalariform and reticulate
patterns. This reflects established structural interdependencies: both reticulate and scalariform
parenchyma require the presence of axial parenchyma bands and are shaped by their spacing relative to
rays. Reticulate parenchyma forms regular, net-like networks where tangential bands align with ray
spacing, whereas scalariform parenchyma consists of narrow, evenly spaced horizontal lines forming
ladder-like patterns, with band intervals narrower than ray spacing. The co-occurrence of these patternsin
species clusters 5 and 6 supports their structural and functional linkage. Observations from this dataset
align with the IAWA list, in which reticulate parenchyma is common in families such as Annonaceae and
Ebenaceae. In contrast, Chrysobalanaceae generally exhibits narrow banded parenchyma, with only
limited occurrences of reticulate or scalariform patterns. Nonetheless, some species within Maranthes
(Chrysobalanaceae) display reticulate parenchyma, notably Maranthes gabunensis (Tw25733) and
Maranthes glabra (Tw103, Tw8219, Tw47797).

The clustering results provide insights into the degree of taxonomic coherence captured by the
macroscopic cross-sectional anatomical patterns. Specifically, examining the taxonomic structure within
each cluster reveals whether species belonging to the same genus or family tend to be grouped together or
scattered across multiple clusters. Inconsistencies between taxonomy and clustering may reflect
anatomical divergence, convergent features, or limitations in the clustering resolution. To assess this, a
ring plot (Figure 3.9) was created to visualize the proportion of genera whose species were assigned to one
or multiple clusters. The results show that approximately 75% of Congolese timber genera have all of their
species assigned to a single cluster, suggesting strong anatomical consistency within these genera.
Notably, several genera within the Fabaceae family—such as Afzelia and Albizia—are entirely assigned to
cluster 2, indicating both taxonomic and anatomical cohesion. In contrast, about 20% of the genera exhibit
inter-cluster species assignments. For example, species within the genus Pterocarpus (Fabaceae) are split
across clusters: P. angolensis, P. rotundifolius, and P. soyauxii are assigned to cluster 2, whereas P.
tinctorius is placed in cluster 4. A small number of genera—specifically nine—have species distributed
across three clusters. For instance, the genus Aningeria includes Aningeria adolfi-friederici (cluster 3),
Aningeria altissima (cluster 4), and Aningeria pierrei (cluster 6). The genus Gambeya shows the broadest
dispersion, with species presentin clusters 1, 3, 4, and 6.
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3.4.5 Classification models

3.4.5.1 Evaluating model performance across taxonomic levels

Taxonomic Level
Species
Genus
Family

Catboost 1 4.19% 8.66% 17.16%

Random Forest - 22.88% 9.96%| 16.09%

Support Vector Machine 4.74%1.36% 11.95%

Decision Tree 16.21 8.19% 16.34

T T T T T

T
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Figure 3.10: Stacked bar chart illustrating the accuracy of four different machine-learning classification techniques
(named on the y-axis) across the full range of predicted Congolese tree species labels (in the SmartWoodID database);
The stacked bar colours represent different taxonomic levels, with printed values representing the individual increase
in accuracy gained at a higher taxonomic level.

The stacked bar chart (Figure 3.10) presents the cumulative classification accuracy achieved by each
species classifier across progressively broader taxonomic levels. The purple bars, along with the printed
values within them, represent the accuracy of species-level predictions. The yellow bars indicate the
additional accuracy gained when species-level predictions are mapped to their corresponding genera,
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resulting in a total genus-level accuracy of purple + yellow. Similarly, the pink bars reflect the further
increase in accuracy when genus-level predictions are mapped to their respective families, yielding a total
family-level accuracy of purple + yellow + pink. Overall, classification accuracy improves as taxonomic
resolution broadens, though the magnitude of this improvement varies across methods, with RF exhibiting
the most pronounced increase across taxonomic levels.

SVM demonstrated the weakest performance among classifiers, achieving the lowest species accuracy
and showing modest gains at broader taxonomic levels, with genus-level accuracy increasing to 9.1% and
family-level accuracy to a final 21.05%. Traditional DT classifiers outperformed SVM showing moderate
results, with gains reaching 24.4% at the genus level and 40.74 % at the family level. Methods leveraging
DTs in gradient frameworks or ensembles yielded nuanced results. CatBoost, a gradient-boosting method
that refines DTs iteratively, showed comparable performance to DT and larger absolute family-level gains,
culminating in 40.01% family-level accuracy. RF, combining multiple DTs as ensembles, effectively
enhanced the performance of traditional DTs, achieving the highest species-level accuracy and
demonstrated consistent improvements at higher taxonomic levels reaching the highest family accuracy
(48.93%).

Species

Incorrectly classified: 41.18

Figure 3.11: Venn diagram representing percentage of specimens correctly identified by three RF models (each trained
directly at Species, Genus, and Family level); Intersected areas between models indicate percentage of specimens
correctly identified by both techniques; Areas are proportionate to their printed percental value; The red printed value
in the lower-left corner, represents the percentage of specimens misclassified across all taxonomic levels.

Machine learning models were also trained directly on genus and family labels. To evaluate the consistency
of taxonomic predictions for the same specimens, an ensemble agreement analysis was conducted,
focusing on the RF model due to its superior performance. The distribution of correctly classified
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specimens across taxonomic levels was visualized using a Venn diagram (Figure 3.11), in which three
overlapping circles represent the number of specimens accurately identified at the species, genus, and
family levels. The relative area and numerical values within each section indicate the proportion of
specimens correctly classified at one or more taxonomic levels. For example, 12.52% of specimens
(highlighted in yellow) were correctly identified at the genus and family levels but misclassified at the
species level. The white square enclosing the Venn diagram represents the total humber of specimens
misclassified at all taxonomic levels, with this subset highlighted in red in the lower-left corner of the figure.

To compare both methods, predicting species labels and mapping higher taxonomic labels according to
known taxonomy, and predicting labels at all taxonomic labels directly, was compared. For RF, the
accuracy for all specimens with correct species predictions, independent of misclassification on the
higher taxonomic levels resulted in 22.88%, matching the accuracy in Figure 3.10. The majority of which
also had correct genus and family predictions (18.55% of all specimens). By directly predicting the genus
label, the genus accuracy rose with a percentile value of 15.21% (2.69% only at the genus level and 12.52%
at genus and family level), while the genus predictions by mapping the species predictions only resulted in
a rise of nearly 9.96%. A similar pattern could be observed for family predictions, where the mapped
species level predictions resulted in an accuracy rise of 16.09% on family predictions, while the direct
family level classification resulted in an accuracy rise of 20.73%. The other 4.33% having mismatches for
both or individual higher taxonomic levels (each between 1-2%). Correct classification, solely at species
level, occurred in 1.01% of cases. Mismatched predictions across taxonomic levels were observed for 144
different species, demonstrating that no species predominantly exhibited mismatched predictions,
suggesting that classification inconsistencies cannot be attributed to specific species, genera, or families
(see Supplementary materials Figure 8.2).

Despite the demonstrated advantages of training models specifically for different taxonomic levels, the
overall accuracy of both approaches—species-derived predictions and direct family or genus
classification—reveals the limitations of the macroscopic features. A significant proportion of specimens
were entirely misidentified across all taxonomic levels, underscoring the challenge of achieving consistent
accuracy. For instance, using the species predictions, the proportion of specimens misclassified at all
levels was substantial: 59.26% for DT, 78.95% for SVM, 51.07% for RF, and 59.99% for CatBoost. Even with
RF, the most effective technique, misclassification persisted for over half of the specimens. When applying
the second approach of directly classifying family and genus levels using RF, the error rate improved but
remained considerable, with 41.18% of specimens still misclassified across all levels.

3.4.5.2 Optimal number of taxa for Reliable identification

To study how the different machine-learning classification techniques rank predicted classes across
taxonomic levels, classes were ranked in descending order based on their predicted probabilities. CDF
plots were generated for each machine-learning technique and aggregated per taxonomic level to illustrate
how accuracy improves as additional top-k predictions are considered. The progression of accuracy was
functioned against two different parameters. First, the value of k which shows how accuracy cumulatively
increased by considering k additional top predicted classes. Second, cut-off thresholds for the predicted
probabilities which shows how sensitive the techniques are by applying increasing thresholds, leaving out
classes with consecutively higher probabilities.

The CDFs against both parameters were visualized in different figures, where each taxonomic level is
represented separately. At each level, the progression of top-k accuracy is depicted using aggregated
coloured curves for each technique, obtained by averaging the values across the four validation folds.
Additionally, a 95% cumulative threshold was computed for each taxonomic level and technique to identify
the rank at which 95% of test specimens were correctly classified. These thresholds are indicated by
vertical dotted lines corresponding to each technique. To assess the consistency of these thresholds
across validation folds, a 95% confidence interval was calculated. This was done by determining the rank
positions where the cumulative distribution curves exceeded 95%, computing the mean threshold rank,
and deriving the standard error of mean (SEM). The SEM is visualized as semi-transparent shaded areas
around each 95% rank threshold, with colours matching the respective techniques. The CDFs in function
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of the value k were visualized in Figure 3.12. The CDFs in function of cut-off thresholds were visualized in
Figure 3.13.

Table 3.2 provides further insight into model performance of the techniques across taxonomic levels
summarizing three key metrics of the CDFs in function of number of classes (k): AUC, the 95% threshold
rank, and the standard error of mean (SEM) around this threshold.

Table 3.2: Summary of metrics of the CDF plots for every Machine-learning technique across taxonomic levels: AUC,
the 95% threshold rank, and standard error of mean (SEM) around this threshold.

Technique DT RF CatBoost SVM
[os% | [ o [ | [Jew | [ @ [e% |
AUC threshold || SEM AUC threshold || SEM AUC threshold || SEM AUC threshold || SEM
rank rank rank rank
| Famiy IR 0.80 0.936 | 21 6.28 0.908 | 22 3.98 0.942 | 17 1.30
[ Genus _ [IEEONIPTA 2.05 0.902 | 197 24.94 0.930 | 92 17.11 0.630 | 279 2
[ species  [INEEANIER 3.01 0.861 || 480 27.88 0.897 | 292 41.77 0.582 || 600 1

Across all models, accuracy improves as k increases (Figure 3.12) and declines as the cut-off probability
threshold increases (Figure 3.13). The rank analysis (Figure 3.12) reveals that the DT classifier follows a
predominantly linear growth pattern across taxonomic levels, with only modest accuracy gains as rank
increases. This pattern suggests that DT extracts features that contribute minimally to class ranking,
reflecting its basic and systematic nature. This is further reinforced by its low AUC values, as AUC values
closerto 0.5indicate alimited ability to effectively rank predicted classes (Table 3.2). The cut-off probability
threshold analysis (Figure 3.13) further underscores this limitation—DT exhibits an immediate accuracy
drop-off, suggesting that it assigns high confidence exclusively to its top predictions while neglecting lower-
ranked classes. This indicates an overconfident classification approach, where all probability mass is
concentrated on the highest-ranked class, resulting in poor ranking robustness.

In contrast, the other machine-learning techniques demonstrate greater ability to rank predicted classes.
The rank analysis (Figure 3.12) shows that they follow a saturating growth pattern, characterized by rapid
initial accuracy gains that gradually plateau as k increases. Among these, RF consistently ranks as one of
the strongest performers, achieving high accuracy (Figure 3.12) and strong AUC values across taxonomic
levels (Table 3.2). CatBoost also demonstrates strong performance, albeit with greater variability across
taxonomic levels. While its top-1 accuracy is initially lower than RF’s, its ranking ability improves as k
increases, surpassing RF in ranking lower-probability classes (Figure 3.12). This is reflected in notably lower
95% threshold rank values, indicating that CatBoost requires fewer ranked predictions to classify 95% of
test specimens correctly (Table 3.2). However, these advantages diminish at the family level, suggesting
that CatBoost loses its edge when handling broader classification tasks with fewer, more general classes.

The cut-off threshold analysis (Figure 3.13) further highlights RF as the most resilient technique. RF exhibits
the most gradual decline in accuracy across taxonomic levels, indicating that it effectively distributes
probability across ranked predictions rather than overemphasizing the top prediction. In contrast,
CatBoost’s cut-off threshold curve (Figure 3.13) displays a sharp decrease in accuracy beyond the top
predicted classes at all taxonomic levels. This suggests that CatBoost assigns a disproportionately large
share of its probability mass to its top predictions, leaving little confidence distributed among lower-ranked
classes.

The SVM exhibits the most pronounced performance gains at higher taxonomic levels. At the family level,
its top-k accuracy curve (Figure 3.12) and AUC values closely align with those of RF, and it achieves a lower
95% threshold rank, indicating strong ranking performance (Table 3.2). However, as classification
specificity increases, SVM’s accuracy and AUC values decline, its 95% threshold rank increases, and its
ranking ability for lower-probability classes deteriorates. A distinctive "tail effect” emerges, where accuracy
stabilizes at high values of k before abruptly increasing at the final ranks. This effect becomes more
pronounced at finer taxonomic levels, highlighting SVM’s difficulty in ranking the least probable classes.
The cut-off threshold analysis (Figure 3.13) confirms that SVM exhibits a more stable probability
distribution across ranked predictions at higher taxonomic levels but also shows the greatest shift in
probability distribution as taxonomic specificity increases.
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Figure 3.12: Cumulative distribution function plots, showing the increase in accuracy by considering k additional predicted classes for the
four machine-learning techniques. The threshold, where each curve reaches 0.95 is indicated by a vertical dotted line with the standard
error of mean around it, determined by aggregating the information across all 4 folds per technique. The top graph shows this for direct
family predictions with x-axis range from 1 till the maximum number of classes (64 families), The central graph for direct genus predictions

(286 genera), The bottom graph for direct species predictions (601 species).
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Figure 3.13: Cumulative distribution function plots, showing the decrease in accuracy by applying higher cut-off threshold values for leaving
out predicted classes for the four machine-learning techniques. The threshold, where each curve reaches 0.95 is indicated by a vertical
dotted line with the standard error of mean around it, determined by aggregating the information across all 4 folds per technique. The top
graph shows this for direct family predictions with x-axis range from 0 till the maximum threshold value of 1, The central graph for direct

genus predictions, The bottom graph for direct species predictions.
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3.4.5.3 Refining species prediction

Taxonomic Level
Species
Genus

Cathoost 4.16% 8.69% 17.16% Family

Random Forest 4 22.88% 9.96% 16.09%

Support Vector Machine —4.74%H.36% 11.95%

Decision Tree 3.94% 10.46% 16.34%
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Figure 3.14: Stacked bar chart illustrates accuracy of four different machine-learning classification techniques (named
on the y-axis) across the full range of predicted Congolese tree species labels (after filtering species predictions on the
25 top predicted families); The stacked bar colours represent different taxonomic levels, with printed values
representing the individual increase in accuracy gained at a higher taxonomic level.

The rank analysis revealed that the top 20-25 directly predicted families allow the 95% accuracy threshold
to be reached (3.4.5.2). These predicted family labels thereby also provide information for predictions at
lower taxonomic levels. For example, predicted species labels (that do not belong to one of those families),
can be ruled out, increasing accuracy. To assess this, species predictions were constrained to belong only
to the top 25 families. Next, the same type of bar chart was produced as Figure 3.10, showing well the
different machine learning techniques perform at genus and family levels, by mapping the filtered species
predictions to their corresponding genus and family labels and re-evaluating performance. The new
accuracy values were visualized in Figure 3.14, mirroring the representation of Figure 3.10. Marginal
differences between both figures indicate that direct family prediction (using a reliable shortlist of 25
families) does not significantly enhance species predictions for any techniques. Only DT (decision tree)
demonstrated different accuracy on species and genus levels, although the cumulative accuracy of the
three taxonomic levels does not improve.
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3.4.5.4 Assessing Recognition of InsideWood Descriptions for Commercial Species

3 Family Level
‘ ‘ ‘ ‘ [ Genus Level

1 Species Level
[ InsideWood
Catboost [ SmartWoodID

33.73% as7% 1732%

Random Forest

a7 a1 1325%

15.38% 63 19.38%

Support Vector Machine

29.82% B28% 17625

Decision Tree

20.79% 7.83 1331
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Figure 3.15: Stacked bar chart illustrates accuracy of four different machine-learning classification techniques (named
on the y-axis) across Commercial Congolese tree species; The stacked bar colours represent different taxonomic
levels, with printed values representing the individual increase in accuracy gained at a higher taxonomic level. The bars
with grey borders show accuracy on the InsideWood descriptions, bars with black borders on SmartWoodID test
specimens.

To evaluate the applicability of macroscopic wood anatomical descriptions for identifying Congolese
timber in trade, species predictions were visualized using horizontal stacked bar charts. These charts
illustrate accuracy progression across taxonomic levels, grouped by machine-learning technique. For each
technique, two stacked bars represent results based on InsideWood descriptions (grey border) and
SmartWoodID descriptions (black border) (see Figure 3.15).

Accuracy values in Figure 3.15 are notably higher than those in Figure 3.10, indicating that all techniques
perform better on the commercial subset than on the full set of Congolese tree species. However, overall
accuracy remains low, highlighting the limitations of macroscopic wood anatomical features for reliable
field identification of commercial species.

A comparison between SmartWoodID and InsideWood descriptions reveals consistently lower accuracy
across all taxonomic levels when using InsideWood data. This discrepancy suggests that models struggle
with descriptions based on other material (thin sections, variations in resolution and field of view). Notably,
the proportional accuracy gain from genus to family level is larger for InsideWood predictions, indicating
that macroscopic wood anatomical descriptions from external sources may be more stable at broader
taxonomic levels.
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3.5 Discussion

The results indicate that macroscopic cross-sectional wood anatomical features do not enable accurate
species predictions across most Congolese tree species. The two-way clustering analysis of macroscopic
anatomical features across species corroborates this (section 3.4.4). Co-varying patterns across botanical
species were observed on the heatmap. Namely, vessel arrangement, density, and diameter, were often
grouped reflecting fundamental hydraulic trade-offs (Carlquist and Hoekman, 1985). Parenchyma types
also clustered into meaningful groups, with banded, reticulate, and scalariform parenchyma forming one
cluster, while lozenge-aliform, winged-aliform, and confluent parenchyma highlighted a structural
continuum. In contrast, diffuse-in-aggregate parenchyma remained distinct, reinforcing the mutual
exclusivity of species featuring either apotracheal or paratracheal parenchyma. Clustering the 601 species
based on those accessible features in the field resulted in an optimal number of six broad clusters
according to Mantel test. This underscores the limited ability to discern Congolese timber with
macroscopic cross-sectional features.

Regarding the classification analysis, mapping species-level predictions to their corresponding genus and
family labels, confirmed improvement at broader taxonomic levels (3.4.5). This reflects the hierarchical
nature of taxonomy and the phylogenetic relationships present in wood anatomy (de Luna et al., 2018;
Kobayashi et al., 2019). Training models directly at the genus and family levels further supports this trend.
Additionally, mismatching classifications (for example: family and species correct, but genus incorrect)
occur across a diverse range of species rather than being concentrated in specific taxa, confirming that
errors stem from general limitations in macroscopic anatomical features rather than model biases. These
findings suggest that models perform more reliably when applied to broader taxonomic categories, where
reduced anatomical variability enhances classification performance. However, it is important to note this
may partly result from the smaller number of classes at broader taxonomic levels, simplifying the
classification problem for the machine-learning models and inherently raising performance (Li et al., 2015;
Sanli et al., 2020). The results on the commercial subset (3.4.5.4), elucidates this further as accuracy is
higher across all machine-learning techniques and taxonomic levels, because of the strong reduction in
look-a-like timbers. Despite these trends, overall accuracy remains low at higher taxonomic levels and
across all machine-learning techniques.

The analysis of top-k rankings and probability cut-off thresholds reveals that all models struggle to rank
predictions effectively, often assigning disproportionate confidence to top-ranked classes (3.4.5.2).
Among them, RF demonstrates the most stable ranking ability and probability distribution. Several studies
have demonstrated the potential of RF as a successful classification technique, suggesting that the dataset
is likely the limiting factor explaining the poor performance (Biau and Scornet, 2016; Salman et al., 2024; J.
Zhao et al., 2024). This highlights the necessity of considering multiple top-ranked predictions to mitigate
misclassification risks in macroscopic timber identification, underscored by De Oliveira et al. (2019) noting
the importance of considering classes beyond solely the best prediction (De Oliveira et al., 2019). The high
number of taxa (families, genera, and species) required to achieve 95% accuracy, illustrates the limitations
of macroscopic cross-sectional features for accurately identifying tree species across the full range of
Congolese tree species. Refining species predictions through filtering on higher-level taxonomic
predictions (e.g. top 25 families to attain 95% accuracy threshold) resulted only in marginal gains,
confirming those limitations (section 3.4.5.3).

The low performance across taxonomic levels emphasizes the constraints of macroscopic cross-sectional
features for differentiating a large and diverse set of timbers. To further elucidate, Figure 3.16 visualizes the
anatomical features of different taxa, using Millettia laurentii (Fabaceae) and Ficus bubu (Moraceae) as a
clear example. When examined side by side, these species are easily distinguishable based on differences
in colour and vessel size. However, their formal macroscopic feature descriptions are nearly identical, with
the only recorded distinction being Millettia laurentii’s tendency toward confluent axial parenchyma.
Vessel diameter of both species is assigned to class (>130 um), while Millettia laurentii exhibits noticeably
larger vessel diameters within this broad range. This underscores that fine-scale differences such as colour
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variation and quantitative features measurements are not adequately captured within the framework of the
standardized macroscopic descriptors.

Figure 3.16: Macroscopic cross-sectional wood anatomy images (2400 dpi / 5.42x5.42mm) displaying
differences between 1. Millettia laurentii (Fabaceae) (a: Tw3894, b: Tw425, c: Tw5227), 2. Ficus bubu
(Moraceae) (a: Tw4824, b: Tw7602, c: Tw990), 3. Antiaris toxicaria (Moraceae) (a: Tw31032, b: Tw7338,
c: Tw7568), and 4. Milicia excelsa (Moraceae) (a: Tw1121, b: Tw1462, c: Tw51741).

However, this does not imply that the macroscopic wood anatomical features contain no diagnostic value.
Applying stricter hierarchical constraints on the classification analysis (e.g. within a single family or genus)
revealed how feature combinations enable classification of species (undistinguishable across the full
range of Congolese tree species). The clustering analysis shows this, as species within the same genus
(e.g. Aningeria) were assigned to different broad clusters, indicating that in limited ranges, these features
can still provide diagnostic value for identification. Visualizing the anatomy elucidates this further, as
demonstrated for the Moraceae family (visualized on Figure 3.16). The genus of Ficus can be distinguished
clearly from other Moraceae genera by differences in axial parenchyma expression: Ficus predominantly
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exhibits axial parenchyma bands wider than three cells {85}, whereas other genera, including Antiaris and
Milicia, primarily display confluent axial parenchyma {83}. Additionally, Ficus tends to have fewer than four
rays per millimetre {114}, while other Moraceae genera typically range between four and twelve {115}. The
results for Milicia excelsa and Antiaris toxicaria underscore the potential for distinguishing species within
a predefined taxonomic range. While identification of these species failed when considering the entire
Congolese timber dataset (see Table 8.3), their anatomical profiles remain distinct within Moraceae. The
combination of vasicentric axial parenchyma {79}, confluent axial parenchyma {83}, and a vessel frequency
of 5-20 vessels per mm? {47} differentiates Milicia excelsa and Antiaris toxicaria from other Moraceae
species. Moreover, Milicia excelsa can be further distinguished from Antiaris toxicaria by the presence of
axial parenchyma in marginal or seemingly marginal bands {89}, a feature predominantly found in Milicia
excelsa but absent in Antiaris toxicaria.

The Lamiaceae species underscores this as vessel porosity enables clear distinction between species
within this family. Tectona grandis displays clear ring-porous patterns on two specimens (Tw3805,
Tw11055) and semi-ring-porous patterns on the others (Tw13935, Tw767). On the other hand, Premna
angolensis and Vitex spp., display only limited semi-ring porosity, and Gmelina arborea consistently
exhibits diffuse porosity. The Boraginaceae family, consisting only of the genus Cordia in Congolese tree
species, mirrors this pattern, with Cordia africana being distinct by semi-ring porosity in three out of the
four specimens (Tw2106, Tw6982, Tw7345). Similarly, in Bignoniaceae, semi-ring porosity is largely
confined to the Markhamia genus, while other genera such as Spathodea, Kigelia, and Stereospermum
exhibit diffuse porosity.

The genus Pterocarpus underscores this further still, indicating how individual species (Pterocarpus
tinctorius, Pterocarpus soyauxii, Pterocarpus rotundifolius, and Pterocarpus angolensis) can be
distinguished (see Figure 3.17). All species within this genus were listed in CITES Appendix Il at CoP19, as
existing literature indicated that reliable field identification was not possible without access to advanced
scientific techniques (CITES, 2022a). To elaborate, previous studies reported Pterocarpus species as
indistinguishable without laboratory-based techniques such as microscopic wood anatomy, DART-TOFMS,
and fluorescence spectrometry (Liu et al., 2023; Price et al., 2021). Pterocarpus rotundifolius and
Pterocarpus angolensis exhibit semi-ring porosity {4} and vessel frequency of 5-12 vessels per mm? {47},
whereas Pterocarpus tinctorius and Pterocarpus soyauxii have fewer than five {46}. Pterocarpus tinctorius
and Pterocarpus soyauxii are more difficult to differentiate but display slight differences in vessel diameter
distributions, varying between medium (80-130 pm) and large (>130 pm), with Pterocarpus soyauxii
displaying a higher prevalence of large vessels (medium: variable / Large: present), while Pterocarpus
tinctorius displays the opposite. The results suggest that readily observable features, such as macroscopic
cross-sectional anatomy (Koch et al., 2018; Ruffinatto et al., 2015), facilitate species differentiation within
visually similar, commercially important timbers, underscoring the potential for refining of international
enforced protection lists for threatened timber species.
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Figure 3.17: Macroscopic cross-sectional wood anatomy images (2400 dpi / 5.42x5.42mm)
displaying differences between 1. Pterocarpus rotundifolius (Tw28123), 2. Pterocarpus
angolensis (Tw768), 3. Pterocarpus soyauxii (Tw7654), 4. Pterocarpus tinctorius (Tw1010).

The ability of SmartWoodID-trained models to identify InsideWood species descriptions illustrates the
advantages of specimen-based databases that incorporate large surface areas, such as SmartWoodID(De
Blaere et al., 2023), providing more comprehensive insights into wood anatomical variation (De Blaere et
al., 2023). Species accuracy is consistently lower on InsideWood descriptions across all models, and
genus accuracy is also reduced, highlighting the difficulty of resolving fine taxonomic distinctions within a
generalized dataset (section 3.4.5.4). However, accuracy at the family level improves significantly for
InsideWood descriptions, suggesting that broader taxonomic classifications mitigate the effects of
overgeneralization and feature variability. Lower accuracy on InsideWood descriptions can be attributed to
the following factors: First, although wood anatomists follow standardized IAWA definitions, subtle
subjective differences in interpretation can arise (Gasson et al., 2011; NS, 1989). Second is the structural
difference between the datasets. InsideWood provides species-level descriptions compiled from multiple
sources rather than direct observations of individual specimens, potentially leading to overgeneralization
and a loss of specimen-specific detail (Wheeler et al., 2020). In contrast, SmartWoodID descriptions are
specimen-based, maintaining a direct link between observed features and physical specimens, and
explaining the observed higher accuracy (De Blaere et al., 2023). Third, field-of-view of specimens can
significantly impact identification. Traditional anatomical descriptions often rely on thin sections covering
only ~1 mm?, whereas SmartWoodID scans encompass a much larger area (~7 cm x 1-2 cm) (De Blaere et
al., 2023). This broader perspective helps reveal structural variability and patterns that could be
misinterpreted or missed entirely when focusing on a small region. For instance, a narrow field might
suggest banded parenchyma, while a wider view could reveal an interrupted pattern indicative of confluent
parenchyma (NS, 1989). The impact of these database differences was observed forimages of Pterocarpus
(see Figure 3.17), as key diagnostic features in the SmartWoodID database—such as the exclusively
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solitary vessel arrangement (290%) {9} distinguishing Pterocarpus angolensis within the genus
Pterocarpus—were absent from the InsideWood database (Wheeler, 2011). Additionally, studying the
anatomy of Pterocarpus (Figure 3.17) revealed previously unrecorded trends in vessel diameter
distribution between Pterocarpus soyauxii and Pterocarpus tinctorius, which were both broadly
categorized as >200 pm in InsideWood (Wheeler, 2011) despite notable differences in observed
distribution patterns, corroborated in the results. These findings underscore the value of expanding
anatomical databases through large-area imaging and multi-specimen analysis to enhance the accuracy
of species differentiation.

However, the findings on differentiating Pterocarpus tinctorius and Pterocarpus soyauxii also underscore
for enhanced feature extraction and alternative approaches to improve accuracy, as the broad
categorization of macroscopic anatomical features (e.g. vessel diameter distributions varying between
medium (80-130 um) and large (>130 um), with Pterocarpus soyauxii displaying a higher prevalence of large
vessels (medium: variable / Large: present), while Pterocarpus tinctorius displays the opposite) and lack
of fine-scale detail due to low resolution may limit classification between closely related taxa. Traditional
methods, relying on expert-defined features, may miss critical information in raw anatomical images
(Knauer et al., 2019). This stems in part not from the anatomy itself but from the subjective interpretation
of most quantitative features within the IAWA framework. This is particularly evident for quantitative
features such as vessel frequency, lumen diameter, and ray width, which are grouped into broad
categorical states (NS, 1989). While these simplified categories (e.g., present, variable, absent) facilitate
practical identification, more precise descriptors—such as means, ranges, and standard deviations—may
better capture the inherent variability of wood samples (Beeckman and Yin, 2024; He et al., 2019; Van den
Bulcke et al., 2025). Extracting such quantitative information presents additional challenges, as it requires
precise measurements that account for the natural variability within and between species. This highlights
the need for robust database construction methods and retrieval algorithms capable of effectively
handling these quantitative features. Addressing this issue necessitates the preparation of large surface
areas for analysis, digitization at a resolution high enough to enable accurate feature measurements (e.g.,
vessel diameter), and the development of advanced computational methods for automated feature
extraction to enable measuring numerous individual features (e.g. vessel, rays). At 2400 dpi (or 10.58
micron), SmartWoodID captures visually interpretable anatomical features but may introduce ambiguities
for finer structures (De Blaere et al., 2023). For example, axial vasicentric parenchyma — parenchyma cells
forming a complete circular to oval sheath around a solitary vessel or vessel multiple (NS, 1989) — may
appear indistinguishable from vessel walls when thin layers are present, causing potential
misclassification. Similarly, banded parenchyma is classified based on band height in cell count (NS,
1989), but variations in cell size within a band can blur distinctions between wide- and narrow-banded
parenchyma. Recent advances in automated digitization of wood anatomical surfaces, through robotics
and neural network-based segmentation, provide a promising avenue for overcoming these limitations
enabling fast and accurate digitization of large cross-sectional surfaces at higher resolution (2.25 micron),
and automating measurement of large number of quantitative features (NS, 1989; Van den Bulcke et al.,
2025).

It is important to recognize, however, that enhancing species-level identification accuracy through
advanced imaging techniques and analysis of large wood surfaces remains difficult to implement under
typical field conditions. In contexts where high volumes of timber must be rapidly assessed, the use of
accessible tools—such as utility knives, sanding blocks, and low-cost imaging devices—does not support
the acquisition of high-resolution data required for such advanced analyses. Nevertheless, research in CV
has demonstrated that deep learning models applied directly to macroscopic cross-sectional images can
effectively differentiate between closely related taxa across diverse timber types, including those
commonly encountered in tropical regions (Ravindran et al., 2021, 2020, 2018). CNNs, in particular, show
promise for extracting taxonomically informative features from end-grain images by leveraging subtle
variations in colour, texture, and anatomical patterning, thereby enabling more accurate and scalable
wood identification (Hwang and Sugiyama, 2021; Knauer et al., 2019).
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3.6 Conclusion

This study highlights the inherent limitations of the 31 expert-defined, accessible macroscopic cross-
sectional features for taxonomic identification across a diverse range of timber species, such as those
found in the Congo Basin. While classification accuracy improves at higher taxonomic ranks, genus- and
family-level predictions remain limited due to overlapping anatomical features among taxa. Nevertheless,
macroscopic cross-sectional features retain diagnostic value when applied within narrower taxonomic
scopes. The successful discrimination of Pterocarpus species—once considered indistinguishable
without laboratory-based methods—demonstrates that readily observable anatomical features can
enable species-level identification in the field. Further improvements in diagnostic accuracy can be
achieved by incorporating high-resolution, large-area imaging and multi-specimen datasets. These
approaches more effectively capture intra-specific anatomical variability than conventional single-sample
methods and enable the extraction of quantitative anatomical information at a finer scale. Integrating such
enhancements offers promising pathways to increase both taxonomic resolution and classification
reliability. However, practical constraints in field environments—such as time pressures and limited
equipment—necessitate alternative strategies for reliable in situ wood identification. Continued progress
will depend on advancing CV-based identification systems, particularly CNNs, which can directly process
macroscopic images to deliver accurate and rapid classification. These models offer strong potential for
scalable, efficient, and field-ready timber verification applications.

3.7 Acknowledgements

This chapterwas realized through the combined efforts of the staff at the service Wood biology of the RMCA
in Tervuren, Belgium, and the staff at the UGent-Woodlab (Department of Environment, Faculty of
Bioscience Engineering) of Ghent University. Describing wood anatomical features was aided by job
students Michael Monnoye, Miro Cnops, Senne Suykerbuyk, and volunteers Tibo Deckers and Michele
Florquin.

3.8 Availability of code and metadata

Scripts and metadata can be requested by contacting the first author:

Contact: ruben.de.blaere@africamuseum.be

78


mailto:ruben.de.blaere@africamuseum.be

Chapter4: Evaluating the effect of anomalous images
on CV-based wood identification models

Authors: Ruben De Blaere?, Kévin Lievens?, Victor Deklerck®, Tom De MilY, Wannes Hubau®®, Hans
Beeckman?, Jan Verwaeren®, Jan Van den Bulcke®

a Service of Wood Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium, b UGent-Woodlab,
Laboratory of Wood Technology, Department of Environment Ghent University, Coupure Links 653, 9000 Gent, Belgium, ¢ UGent-
KERMIT, research unit Knowledge-based, predictive and spatio-temporal modelling, Department of Data Analysis and Mathematical
Modelling, Ghent University, Coupure Links 653, 9000 Gent, Belgium, d TERRA teaching and research center, Gembloux Agro-Bio Tech
(Université de Liege), Passage des Déportés 2, 5030 Gembloux, Belgium, e Meise Botanic Garden Nieuwelaan 38, 1860 Meise,
Belgium

4.1 Abstract

Automating wood identification through CV offers improved objectivity, time-efficiency, and accuracy over
traditional methods, using expert-defined features. Conventional wood anatomical assessments rely on
intact mature tissue, avoiding damage (cracks, fungi deterioration, insect damage) and other anomalies
(pith, bark, traumatic canals). The impact of using images from anomalous surfaces on automated
identification remains underexplored in current research.

This chapter evaluates the performance of CNNs for classifying the presence of anomalies on images, and
studies the impact of anomalies on genus identification by in- or excluding image of anomalous surfaces
in the training data and assessing recall on the test data. The Xception network architecture was used to
train the two types of classification models, on macroscopic cross-sectional images of 26 Congolese
wood genera. The first model was trained for binary classification on the presence or absence of anomalies
on >250.000 images of ~1000 Congolese tree species, demonstrating accuracy, precision, recall and f1-
score of ~93% on 25.000 test images. This shows that CNNs can learn patterns to detect the presence of
anomalies. The second model was trained and evaluated on a subset of those Congolese tree species,
consisting of 26 timber genera with abundant different types of anomalies (cracks, fungi deterioration,
insect damage, pith, bark, traumatic canals). Three different wood identification models were trained and
evaluated on the images featuring a model trained only on all images (regardless of anomalies), a second
model trained only on perfect (anomaly-free) images, and a third model trained only on images with
anomalies. The three models were evaluated on different specimens and demonstrated macro-averaged
recall scores 0f 88.4,90.5%, and 79.1% for the respective models, showing that a model trained on images
from intact end-grain wood/anomaly-free images performed best. Class (genus) specific recall scores
demonstrated for the three models that model performance varies between genera. The class (genus)
specific recall scores of Millettia, Tessmannia, Celtis, Afzelia, Beilschmiedia, and Vitex are highest for the
model a trained on all images (with and without anomalies). Conversely, the recall scores of Cynometra
and Microcos were lower for this model. Grad-CAM analysis was performed to visualizes which regions on
images were more activated for classification (wood identification), and revealed that the model focuses
more on anomaly-free regions for wood identification, underscoring the importance of clear wood
anatomy in training CNNs for wood identification.

This chapter was accepted for publication in the peer-reviewed Journal Wood Science and Technology
(Springer) on 19/08/2025
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4.2 Introduction

Wood identification has gained increasing interest due to rising concerns over sustainable sourcing,
combatingillegal logging, and ensuring product quality and authenticity (Hwang and Sugiyama, 2021; Silva
et al.,, 2022). Traditional manual methods for wood identification can suffer from subjectivity, time
inefficiency, and limited taxonomic accuracy. However, with the emergence and development of Al, there
is a promising avenue for automatizing wood identification and providing additional insight in wood
identification in a fast and accessible way (Andrade et al., 2020; Hwang and Sugiyama, 2021). Deep
learning algorithms, and CNNs in particular, can learn complex patterns and features from large datasets,
leading to more robust and accurate identification outcomes (Alzubaidi et al., 2021; Sarker, 2021; Taye,
2023).

CV-based wood identification, which emerged over the past decades, is a practise that uses images of
wood as a source of diagnostic information (Hwang and Sugiyama, 2021; Silva et al., 2022). Often,
researchers use macroscopic cross-sectional images to develop models that can distinguish timbers on
multiple taxonomic levels (Hwang and Sugiyama, 2021; Silva et al., 2022). Such models have been
achieving remarkable results in several studies in the last decade and often advocate for direct
applicability in the field (Ravindran et al., 2021, 2020, 2019; Tang et al., 2018; Wiedenhoeft, 2020).

Unlike many other CV domains, wood identification presents distinctive challenges. While advancements
in CV have improved model robustness to variations in lighting, resolution, and image quality (e.g., blur)
(Shorten and Khoshgoftaar, 2019), wood often exhibits physical anomalies that obscure key anatomical
features and complicate classification (Goodell and Nielsen, 2023; Niemz et al., 2023a; Schmidt, 2006).
As a biological material, wood is subject to degradation from disease, infestation, and physical stress.
Insects and marine borers can damage wood, by removing wood material, and fungi and bacteria can
cause discoloration and decay (Goodell and Nielsen, 2023; Schmidt, 2006). Furthermore, wood can crack,
especially during drying (Niemz et al., 2023a). These anomalies can obscure diagnostic anatomical
structures, thereby complicating identification.

In comparison, wood anatomists typically prefer anomaly-free mature heartwood tissue for assessment
because identification protocols and image databases such as atlases traditionally avoid juvenile wood
(Burley, 2004). The main reason why juvenile wood is not used, is because its anatomy is highly variable
even within a specimen (e.g. different average vessel diameter compared to mature tissue), making them
less ideal for taxonomic identification. Furthermore, commerce usually targets larger trees for use as
timber, which emphasizes the need for using mature tissue for developing CV-based wood identification
models, which will likely encounter the same mature wood in traded cargo. Sapwood is considered
valuable for wood identification, as it retains some diagnostic anatomical features.

Aforementioned examples of anomalies are known to be often encountered in the field, but official
numbers are seldom published. Similarly, there is little to no public record of anomalous surface area on
collection material in wood collections. An example of a wood collection database that records the
occurrence of anomalies on collection material is SmartWoodID (De Blaere et al., 2023). The overall
presence of aforementioned anomalies on the SmartWoodID collection reveals that the majority of
specimens portray anomalies on more than 50% of their surface area.

However, the impact of these anomalies on CV-based wood identification remains largely unexplored. In
related topics, Ravindran et al. (2023) has demonstrated that suboptimal surface preparation by cutting or
sanding can hamper CV-based wood identification. Furthermore, Owens et al. 2024 has systematically
tested how CNN predictions are affected by digital perturbations mimicking real-world wood degradation.
This underscores the need to study the impact of the aforementioned anomalies on CV-based wood
identification.

Furthermore most other studies on CV-based wood identification have relied exclusively on anomaly-free
specimens (Hwang and Sugiyama, 2021; Ravindran et al., 2021; Silva et al., 2022), overlooking the
imperfections typically encountered in applied contexts. Ravindran et al. 2018, highlighted in their
methodology that anomalies were annotated and excluded from training CNN for wood identification to
rule-out influence caused by anomalies. To ensure reliable field deployment, it is therefore essential to



evaluate how such anomalies influence model predictions—and to develop mitigation strategies that
improve classification resilience under realistic conditions.

While recent studies (Owens et al., 2024; Ravindran et al., 2023) have assessed how models trained on
clean, anomaly-free wood images perform when evaluated on imperfect test images, they have largely
overlooked the potentialimpact of incorporating such anomalous images directly into the training process.
As aresult, the influence of training data quality—particularly the inclusion or exclusion of anomalies—on
model robustness and generalizability remains insufficiently understood.

This study addresses the aforementioned gaps by systematically evaluating how wood anomalies affect
both the prediction performance of CNNs for wood identification under different images training datasets.
Our investigation is structured around two central components. First, we trained a binary classification
model to detect images with anomalies, exploring whether CNNs can reliably detect the diverse types of
wood anomalies—such as cracks, fungal decay, insect damage, bark, pith, traumatic canals—and thereby
enabling automated filtering of anomalous images data from training sets. This contributes to the field, as
a means to automatically clean datasets according to the standards currently and widely used in CV-
based wood identification, e.g. to avoid the use of anomalous images.

Second, we investigated the influence of anomaly inclusion in the training data on wood identification
performance. Using the same CNN architecture, we trained three separate models on differentimage sets:
(1) a balanced mix of anomaly-free and anomalous images, (2) only anomaly-free images, and (3) only
anomalous images. All three models were trained to classify the same 26 Congolese timber genera using
standardized macroscopic cross-sectional image patches. Each model was then evaluated on a test
dataset composed of both anomaly-free and anomalous images, providing insight on how well each of
those three training dataset configurations, perform on images independent test specimens with and
without anomalies. Model performance was assessed using macro-averaged recall, allowing comparison
across trained models and across individual classes (genera). By comparing these trained models and
analysing classification behaviour, this study aims to clarify the role of anomalous image contentin CNN-
based wood identification.

To further enhance interpretability, we employed Grad-CAM, which visualizes the image regions most
influential in the model’s predictions. These visualizations are targeted to deliver insight into whether
models trained on perfect, anomaly-free images rely on diagnostically relevant features (e.g. the clean
anatomy) or are distracted by present anomalies.

4.3 Material and Methods
4.3.2 Dataset Description

This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in
section 1.5 which provides an overview of all data used in each chapter.

The database contains high-resolution RGB scans of the macroscopic end-grain surfaces of 3,742 wood
specimens, representing 954 species native to the DRC. Each specimen was prepared by scanning the
cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization of
macroscopic features essential for wood identification.

Given the large size of the scanned surface, working directly with the full images is computationally
demanding and may lead to overfitting due to the limited number of images. Therefore, full images are
cropped into smaller patches that still contain the required diagnostic features and capture the inherent
variability across different specimens. We opted for patches of 512x512 pixels, which corresponds to a
surface area of 5.42x5.42 mm, providing sufficient detail to effectively distinguish damage such as insect
holes, cracks, and fungal growth, while also preserving the necessary macroscopic features visible on the
end-grain surface for accurate wood identification (see Figure 4.1). Figure 4.1 shows the different types of
anomalies regarded, upper from left to right: a) Traumatic canals (Millettia hockii / Tw28835), b) insect
damage (Prioria gilbertii / Tw3601), c) fungal discoloration (Ficus vallis-choudae / Tw44423). Lower from



left to right, it shows d) cracks (Afzelia bipindensis / Tw26431), e) pith (Brachystegia spiciformis / Tw2002),
f) bark (Diospyros bipindensis / Tw35708).

Figure 4.1: Anomalies on the end grain timber: a-c(upper/left-to-right) traumatic canals, insect damage, fungal discoloration,
d-f(bottom/left-to-right) cracks, pith, bark.

The image patches were labelled on the presence of anomalies. Patches without visible wood anatomy
were excluded from the training and validation data.

All full images with less than four patches were also left out, as their total endgrain surface area would
accumulate to less than one square cm, a normal area size for anatomical assessment by humans.

4.3.3 Model architecture

Xception was used as a backbone due to its balance between required computational power and its
satisfactory performance on classification of the ImageNet database [10] (a visualisation of the Xception
architecture can be consulted in Supplementary materials Figure 8.3). The pre-trained Xception
architecture (on the ImageNet database) was fine-tuned without freezing layers, using a batch size of eight
and RMSprop as optimizer with a learning rate of 1e-4. Class weighting was employed during training to
address class imbalance. Early stopping was implemented to mitigate overfitting by tracking the validation
loss progression during training and preserving the model with the lowest validation loss. Training started
with one hundred epochs, with early stopping triggered if there was no improvement in validation loss for
ten consecutive epochs with less than 0.1.

The following data augmentation techniques were applied to improve model robustness: random rotation
(0-20 degrees), shearing (0-10 degrees), horizontal/vertical flipping, colour shifting (in a single, randomly
selected, channel with -10-10 range) and random gaussian blurring (sigma range 0-4) (Owens et al., 2024).
However, zooming and/or shifting the image along its height or width was avoided as that could
inadvertently obscure anomalies. The CNN was implemented using TensorFlow (version 2.6.0, Python
version 3.9.15). Pandas (version 1.5.3) and Matplotlib (version 3.7.1) were used for analysis and
visualisation of the results.



4.3.4 Classification ofimage patches by presence or absence of anomalies

The CNN was then customised to classify image patches by presence or absence of anomalies. The
presence of anomalies is essentially a binary image classification problem. Patches labelled as
‘containing anomalies’ were assigned to the positive class, patches labelled as anomaly-free to the
negative class.

In summary, the entire SmartWoodID database contains 4740 images cropped to 255712 patches from
which 44.76% are annotated as ‘anomalous’ and 55.24% as ‘anomaly-free’. This ensures a balanced
representation to develop CNN for anomaly verification (De Blaere et al., 2023). All patches were randomly
divided into training (60%), validation (30%), and test sets (10%).

The Xception CNN architecture was implemented as described in section 2.2. The classification head was
replaced with a GlobalAveragePooling layer and a fully connected layer with Sigmoid activation. Binary
cross-entropy was used as the loss function and binary accuracy as the evaluation metric. The
performance was assessed using the Precision, Recall, Accuracy and by visually inspecting individual
misclassifications.

Mislabbeled patches were reported and corrected before training models on genus classification to ensure
labbeling to be correct.

4.3.5 Classification of image patches by genus

Classification is targeted at the genus level due to the high interspecific anatomical resemblance within
most genera, and the limited number of specimens per species in the SmartWoodID database. Twenty-six
botanical genera were selected for training the model architecture. As selection criterion, the humber of
specimens per genus was considered, prioritizing genera with a balanced representation of anomalous
and anomaly-free specimens. For further comprehensive details regarding the species used in this study,
see Table 8.4 in Supplementary materials.

The specimens were allocated exclusively into either the training/validation or the test set to ensure fair
evaluation. The specimens were grouped by species, before allocation into training and test sets, to
preserve a balanced representation of species, ensuring the model's ability to manage anatomical
differences across all species in a genus. This resulted in two datasets with approximately 80% of the
patches as material for training and 20% as test data. After the initial split, the image patches for training
were grouped, by the presence of anomalies, and consecutively divided into training (80%) and validation
(20%) using a stratified sampling approach. This preserved proportional representation of specimens and
anomalies in both datasets, and aims to minimize class imbalance.

Due to the large variability in specimen size, the number of patches per specimen is very different, leading
to a strong imbalance in the training set. Therefore, oversampling was implemented by randomly selecting
additional patches from smaller specimens. Specifically, for each genus, the average number of patches
was computed in the training data. Smaller specimens, with fewer patches than the genus-level mean,
were then oversampled by randomly selecting additional patches until the number of patches matched
the genus-level mean. Each new patch was evaluated by the binary anomaly classifier, ensuring balanced
representation of anomalous and anomaly-free patches in the training data. For validation, patches were
randomly sampled without replacement from specimens that were not oversampled, until the desired
number of validation patches was obtained. This prevented data leakage to the validation data. For further
comprehensive details regarding the specimen distribution in the training and test sets, see Table 8.5 in
Supplementary materials.

The CNN architecture was implemented as described in section 2.2. The classification head was replaced
with a global average pooling layer and a fully connected layer with SoftMax activation. Categorical cross-
entropy was used as the loss function and accuracy as the evaluation metric on the training and validation
data. Three training dataset configurations were investigated. The first model featured the entire training
set with both anomaly-free and anomalous images. The second model and third model use exclusively
anomaly-free patches and anomalous patches, respectively. The performance across models was
evaluated by monitoring the evolution of accuracy and loss during training (for more information see
Supplementary materials: 8.2) and comparing the recall scores on the test data. Recall with Macro
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Averaging was selected as the evaluation metric on the test data to offer comprehensive assessment of
CNN performance across and within the trained models. Recall measures the proportion of true positive
predictions (correctly identified patches) out of all actual positive patches. Macro-Averaged Recall is a
metric that computes the arithmetic mean of recall scores across different classes (here timber genera).
For each model, the recall scores were used to compare, when discerning either anomaly-free patches or
anomalous patches. To ascertain the model ability at correctly identifying the genus of entire specimens,
the most frequently classified class was determined for every specimen. If the resulting majority vote
differed from the true genus, the specimen was regarded as misidentified (False). The Boolean scores per
specimen were then aggregated to Recall values par class and were further averaged across classes to
obtain a “Specimen Recall score”. In addition, differences in recall scores for individual classes were
studied. By averaging the recall values for each class, Macro Averaging accounts for class imbalances and
variations in dataset characteristics, ensuring a fair comparison of model performance and offering
insights into the model’s behaviour on individual classes in different training dataset configurations (three
different models). Finally, Grad-CAM was used to elucidate patterns in the extracted features to classify
anomalous timber images. Anomalous images were classified by the model trained only anomaly-free
images. The generated heatmaps, represented as red-blue gradients, were overlaid onto those patches to
pinpoint critical classification areas (Selvaraju et al., 2020; Wang and Zhang, 2023). The final convolutional
layer’s output was selected for Grad-CAM generation due to its ability to capture essential hierarchical
features for the classification.



4.4 Results

4.4.1 Classification of patches by anomalies

The test set consisted of 32,493 image patches, comprising 16,217 anomaly-free patches and 16,276
anomalous patches. Each patch was classified by the model as either anomaly-free or anomalous, yielding
four possible classification outcomes: true positive (anomaly-free patches correctly classified as anomaly-
free), true negative (anomalous patches correctly classified as anomalous), false positive (anomalous
patches incorrectly classified as anomaly-free), and false negative (anomaly-free patches incorrectly
classified as anomalous), as illustrated in Figure 4.2. The resulting performance metrics derived from the
confusion matrix are as follows: accuracy of 93.1%, precision of 91.7%, recall of 94.8%, and an F1-score
of 93.2%.

At the centre of each quadrant of the confusion matrix, representative image patches are shown with
overlayed Grad-CAM heatmaps. These visualizations, rendered in a blue-to-red colour gradient, indicate
the regions within each image patch that contributed most strongly to the model’s classification decision.
In the true negative category, the model consistently focuses on visually prominent anomalous features
such as cracks (Figure 4.2.s), fungal hyphae (Figure 4.2.t), insect boreholes (Figure 4.2.u), pith (Figure 4.2.x),
bark (Figure 4.2.v), and traumatic canals (Figure 4.2.w). In contrast, the heatmaps corresponding to true
positives display broader regions of activation, often spanning substantial portions of the patch (Figure
4.2a-f).

False negatives offer an opportunity to examine whether anomaly-free patches exhibited latent
characteristics that may have led the model to misclassify them. Upon visual inspection, 270 of the 840
false negative patches were found to contain overlooked anomalies, suggesting mislabelling in the ground
truth data. Heatmaps of these mislabelled patches, also shown in Figure 4.2, exhibit strong activation in
areas corresponding to these hidden anomalies. For instance, Figure 4.2.g highlights insect damage, while
Figure 4.2.h, I, and k show activation over traumatic canals, cracks, and bark tissue, respectively—
indicating that the model detected the anomalies.
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Figure 4.2: Confusion matrix showing the number of True positives (upper-left quadrant), False positives (lower-left
quadrant), False negatives (upper-right quadrant), True positives (lower-right quadrant) of the binary anomaly detector
model. The quadrants are coloured by a linear transparent blue colour gradient (shown on the left), in relation to the
number of image patches (printed at the bottom of each quadrant). Each quadrant shows exemplary images overlayed
with Grad-CAM to provide interpretation output in each quadrant. The level of activation of the Grad-CAM is shown on
the right with a multi-colour gradient from blue to red. Pixel that have no colour overlay were not activated by the model
during feature extraction. Letters (green) serve as unique identifiers for corroboration in text.

The remaining 570 false negative patches were confirmed as correctly labelled (i.e., truly anomaly-free). In
these cases, the heatmaps generally lacked consistent activation patterns. Figure 4.2.j provides an
example where the model appears to have responded to colour contrast between heartwood and
sapwood, which may have been mistakenly interpreted as indicative of fungal discoloration. Figure 4.2.1
exemplifies the majority of patches in this group, where no systematic visual features were consistently
highlighted, suggesting uncertainty or over-sensitivity in the model's anomaly detection in these contexts.
As framed in Section 2: Material and methods, the 270 mislabelled patches were relabelled to avoid
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including this into the datasets for the genus classification models studied next. These mislabelled patches
represent less than 1% of all test patches and thereby affirm that the labelling errors were rare. After
updating the labels, this resulted in accuracy, precision, recall, and F1-score of 94.1%, 92.0%, 96.4%, and
94.2% respectively.

These observations highlight the importance of rigorous dataset validation. They also demonstrate the
model’s capacity to localize anomalies, even in the presence of possible label noise in the training data.

Further insights were gained from examining the false positive predictions. In these cases, the model
identified anomalous features, but the corresponding patches were labeled as anomaly-free.
Representative examples are presented in Figure 4.2. In Figure 4.2.m, o, and p, the model clearly activated
onvisible cracks. Figure 4.2.q shows the model responding to the boundary between wood and bark tissue,
while Figure 4.2.r highlights areas affected by fungal degradation. Figure 4.2.n presents a patch where pith
tissue was activated, in addition to other regions lacking visible anomalies.



4.4.2 Classification of patches by genus

4.4.2.1 Model performance on test data

Table 4.1 summarizes the macro-averaged recall scores for three training configurations (rows) evaluated
on three filtered test sets (columns). For each configuration, recallis reported at the patch level (Recall (%))
and at the specimen level (Specimen Recall (%)), where the latter is based on majority voting across
patches belonging to the same specimen.

Table 4.1: Overview of recall scores across training configuration (Rows represent different models trained with either
both anomaly-free images and anomalous images, only anomaly-free images, and only anomalous images)and across
filtered test data (columns represent the test patches, with the first column (from-the-left) showing the result on all
patches, the centre column showing the recall based only on anomaly-free test patches, and the third column (from-
the-left) showing the recall based only on anomalous test patches.

All test patches (1) Only anomaly-free test patches (2) Only anomalous test patches (3)
Specimen Specimen Specimen
0, 0, 0,
Recall(%) | pecall (96) Recall (%) Recall (%) Recall (%) Recall (%)
Model trained on
anomalous and 86.8 92.7 88.4 92.9 80.0 91.9
anomaly-free patches
(1)
Model trained only on
anomaly-free patches 87.0 95.8 90.5 95.6 771 95.1
(2)
Modeltrained only on 78.4 89.1 79.1 90.3 73.2 88.1
anomalous patches (3)

The highest recall on anomaly-free test patches (column 2) was obtained by the model trained exclusively
on anomaly-free training patches (row 2), exceeding the recall of the same model on anomalous patches
(column 3) by 13.4 percentage points. This disparity indicates reduced generalization of the anomaly-free-
trained model to unseen anomalous samples. Despite this, the same model (row 2) achieved the highest
specimen-level recall overall (column 1) (95.8%), with minimal variance between specimen recall scores
on anomaly-free (column 2) and anomalous (column 3) test subsets (95.6% and 95.1%, respectively),
suggesting stable genus prediction of entire specimens despite variability at the patch level.

The model trained on both anomaly-free and anomalous patches (row 1) exhibited the most balanced
recall between test subsets, with a difference of 8.4 percentage points between recall on anomaly-free
(column 2) and anomalous test patches (column 3). Its recall on all patches (column 1) was comparable
to the model trained only on anomaly-free patches (row 2), differing by only 0.2 percentage points. The
specimen recall was higher across the test data (all columns) by ~3.0 percentage points if anomalous
images were excluded from the training set (row 1 to row 2).

The model trained only on anomalous patches (row 3), yielded the lowest recall across all conditions.
Compared to the model trained on all patches (row 1), overall recall (column1) was 8.4 percentage points
lower (78.4% vs. 86.8%), with reductions of 9.3 and 6.8 percentage points on anomaly-free (column 2) and
anomalous (column 3) test subsets, respectively. Specimen recall was also lower to the other models (row
1 and 2), with an average of 89.2% and a higher variance (1.21%).

Across all three configurations, specimen recall consistently exceeded per-patch recall, with an average
improvement of 10.1 percentage points and reduced variability across test conditions. This emphasizes
the limited effect of adding or leaving out anomalous images of wood from the training data, on classifying
test specimens based on the available surface (anomaly-free or anomalous).
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Figure 4.3: Confusion matrices showing the percentual recall scores for the 26 classes (genera) on the test patches, evaluated by the model trained
on both anomaly-free and anomalous images. For each confusion matrix, the actual genus label is presented as rows, and the predicted label is
presented as columns. The cells of the confusion matrix are coloured by a linear colour gradient shown on the right of every confusion matrix. The
three matrices each represent the result on a different part of the test data. The blue confusion matrix (left) represents the results on all test patches.
The green confusion matrix (upper-right) represents the results only on the anomaly-free test patches. The red confusion matrix (lower-right) represents
the results only on the anomalous test patches.
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Figure 4.4: Confusion matrices showing the percentual recall scores for the 26 classes (genera) on the test patches, evaluated by the model trained on
only anomaly-free images. For each confusion matrix, the actual genus label is presented as rows, and the predicted label is presented as columns.
The cells of the confusion matrix are coloured by a linear colour gradient shown on the right of every confusion matrix. The three matrices each represent
the result on a different part of the test data. The blue confusion matrix (left) represents the results on all test patches. The green confusion matrix (upper-
right) represents the results only on the anomaly-free test patches. The red confusion matrix (lower-right) represents the results only on the anomalous
test patches.
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Figure 4.5: Confusion matrices showing the percentual recall scores for the 26 classes (genera) on the test patches, evaluated by the model trained
only on anomalous images. For each confusion matrix, the actual genus label is presented as rows, and the predicted label is presented as columns.
The cells of the confusion matrix are coloured by a linear colour gradient shown on the right of every confusion matrix. The three matrices each represent
the result on a different part of the test data. The blue confusion matrix (left) represents the results on all test patches. The green confusion matrix
(upper-right) represents the results only on the anomaly-free test patches. The red confusion matrix (lower-right) represents the results only on the
anomalous test patches.
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The confusion matrices illustrates the class (genus)-specific performance of wood image classification
models in the three training configurations using confusion matrixes with recall scores: Figure 4.3: model
trained on balanced dataset of anomaly-free and anomalous images; Figure 4.4: model trained only on
anomaly-free images; and Figure 4.5: model trained only on anomalous images. The confusion matrices
on all test patches (blue (left) matrices) revealed that the recall scores on most genera were well over 70%
recallin Figure 4.3, except for Cynometra (61.7%) and Tessmannia (60.2%). Transitioning to Figure 4.4, the
recall were higher for Brachystegia (12.5 percentages points), Alstonia (13.9 percentages points), Millettia
(14.6 percentages points), Leplaea (19.8 percentages points), and Microcos (26.1 percentages points),
while recall was observed lower for Cynometra (12.9 percentages points) and Beilschmiedia (19.0
percentages points). For the model only trained on anomalous patches (Figure 4.5), a decrease in recall
was observed for Ficus (12.0 percentages points), Dialium (12.0 percentages points), Irvingia (13.2
percentages points), Leplaea (16.9 percentages points), Gambeya (18.3 percentages points), Prioria (22.4
percentages points), Diospyros (23.4 percentages points), Beilschmiedia (24.3 percentages points),
Alstonia (25.4 percentages points), and Tessmannia (51.1 percentages points). However, recall improved
for Cynometra (25.9 percentages points) and Microcos (21.1 percentages points).

For anomaly-free test patches (green (upper-right) matrices), the recall change between Figure 4.3 and
Figure 4.4 was limited for most genera (<10%), except for improvements in Alstonia (14.7 percentages
points), Leplaea (21.6 percentages points), and Microcos (38.6 percentages points). Limiting the dataset
to only anomalous images in the training data (from Figure 4.3 to Figure 4.5) resulted in recall decreases
for anomaly-free test patches (column 2) in Diospyros (57.8 percentages points), Tessmannia (57.1
percentages points), Prioria (29.9 percentages points), Alstonia (25.5 percentages points), Gambeya (17.1
percentages points), Beilschmiedia (17.1 percentages points), Leplaea (14.7 percentages points), Irvingia
(14.7 percentages points), Ficus (13.2 percentages points), and Dialium (12.0 percentages points).

Decrease in recall on anomalous test patches (red (lower right) matrices) was observed for Beilschmiedia
(from 85.3% Figure 4.3 to 42.9% on Figure 4.4), Tessmannia (16.0 percentages points), Prioria (15.3
percentages points), Gambeya (15.0 percentages points), and Dialium (13.8 percentages points).
Conversely, improvements were observed for Leplaea (12.4 percentages points), Brachystegia (13.9
percentages points), Microcos (15.5 percentages points), and Millettia (23.7 percentages points).
Transitioning from Figure 4.3 to Figure 4.5, recall on anomalous patches (red (lower-right) matrices)
decreased further for Beilschmiedia (36.5%), Tessmannia (29.3%), Leplaea (25.8%), Alstonia (24.5%),
Gambeya (19.7%), Vitex (17.6%), Dialium (12.0%), Ficus (11.3%), Diospyros (11.2%), and Irvingia (11.1%),
while an increase (from 70.1% to 84.2%) was observed for Microcos. Milicia did not feature in any analysis
of anomalous test data due to the absence of anomalous specimens.

The class-specific performance also differed within the three models between anomaly-free and
anomalous patches. The effects are shown on the violin plots in Figure 4.6 and described underneath.

Each subplot represents a different trained model: (left/blue) model trained on both anomaly-free and
anomalous patches, (middle/green) model trained only on anomaly-free patches, and (right/red) model
trained only on anomalous patches. The y-axis depicts the difference in recall percentage between the two
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Figure 4.6: Violin plots showing recall variation between anomaly-free and anomalous patches across the three training
configurations (left/blue) model trained on both anomaly-free and anomalous patches, (middle/green) model trained only on
anomaly-free patches, and (right/red) model trained only on anomalous patches.

12



test image types, providing insights into how different training data impact the model's performance on
classifying wood images in varying conditions.

For the (blue) model trained on both anomaly-free and anomalous patches, recall scores for anomaly-free
test patches were generally higher than for anomalous patches in genera such as Millettia (85.8% vs.
48.7%), Tessmannia (58.2% vs. 33.3%), Celtis (95.2% vs. 76.6%), Afzelia (93.2% vs. 78.3%), Beilschmiedia
(97.2% vs. 85.3%), and Vitex (96.6% vs. 85.0%). Conversely, higher recall scores were observed on
anomalous patches for Microcos (48.4% vs. 70.1%) and Cynometra (53.4% vs. 87.0%).

Similar observations were made for the (green) model trained only on anomaly-free patches, with Millettia
(95.2% vs. 72.3%), Tessmannia (57.5% vs. 17.3%), Celtis (97.4% vs. 76.5%), Afzelia (99.7% vs. 78.3%),
Beilschmiedia (92.2% vs. 42.9%), Vitex (97.6% vs. 80.7%), Gambeya (93.9% vs. 80.9%), Pterocarpus
(97.2% vs. 85.1%), Nauclea (100% vs. 87.9%), Leplaea (80.8% vs. 70.0%), and Alstonia (92.9% vs. 82.2%)
all demonstrating improved identification on anomaly-free images. Once more, the reverse effect was
observed for the recall value on Cynometra (39.1% vs. 78.3%), while Microcos showed smaller difference
(87.0% vs. 85.6%).

For the (red) model trained only on anomalous patches, higher recall was observed on anomaly-free
patches for Beilschmiedia (80.1% vs. 48.8%), Millettia (87.6% vs. 59.4%), Afzelia (92.7% vs. 80.7%), Vitex
(94.9% vs. 67.4%), Celtis (98.0% vs. 86.6%), Leplaea (44.5% vs. 31.8%), Pterocarpus (96.5% vs. 86.3%),
and Brachystegia (88.2% vs. 77.7%). There was no recall difference obversed for Microcos, Cynometra, or
Tessmannia, while patches of Diospyros (92.9% vs. 82.2%) and Prioria (92.9% vs. 82.2%) were more often
predicted correctly when displaying anomalies.

4.4.2.2 Class activation maps

Figure 4.7 shows the Grad-CAMs derived from the neural network that classifies the wood at the genus level
(for the model trained only on anomaly-free patches). The colour scale ranging from red to blue represents
the relative intensity or importance of each pixelin the heatmap, relative to others within the same image.
As such, although the same colormap is used, the specific colour intensities applied are unique to each
image and cannot be directly compared across different images. These Grad-CAMs distinctly reveal that

Figure 4.7: Grad-CAM heatmaps on image patches (originally shown in Figure ) highlighting natural timber damage: a-
c(upper/left-to-right) traumatic canals, insect damage, fungal discoloration, d-f(bottom/left-to-right) cracks, pith, bark.
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areas exhibiting anomalies typically demonstrate comparatively lower activation levels. However, as
illustrated in Figure 4.7, even anomaly-free wood anatomy regions do not consistently exhibit high
activation levels. This behaviour can be attributed to the CNN's selective feature extraction process. The
network focuses on specific image areas that are most indicative of the genus-level classification, rather
than uniformly activating all clear anatomical structures. This selective activation ensures that the CNN
prioritizes the most relevant and informative features for accurate classification.
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4.5 Discussion

The Xception architecture has demonstrated good performance on classifying the labelled ImageNet
database, (Chollet, 2017). This study suggests that the architecture also successfully extracts features
form the wood anatomical image patches to distinguishing between anomaly-free patches and
anomalous patches (featuring multiple types of anomalies), and identifying specific timber genera.

The binary anomaly verification model (section 3.1) can effectively discern between anomalous and
anomaly-free patches and effectively localize regions on correctly classified test patches with anomalies.
False negatives (Figure 4.2) demonstrate difficulty classification, which could be cause by particular wood
anatomical patterns e.g. heartwood to sapwood transition possibly mistaken as fungal staining. Regarding
the false positives, we could not provide definitive explanations. One possible contributing factor may be
ambiguity in the labelling protocol. The binary classification of patches as either anomaly-free or
anomalous was based on the presence or absence of any visually identifiable anomaly. However, the
threshold for what constitutes sufficient anomaly to warrant labelling was not absolute and may have
varied across annotations. For example, the presence of a minor crack—whether centrally located or at the
edge of the patch—may or may not have warranted a label of "anomalous," depending on the annotator’s
subjective interpretation. Consequently, the model may have learned to detect such features but failed to
align perfectly with the annotation heuristic, particularly when those features were subtle or limited in
spatial extent. These findings underscore both the sensitivity of the model to complex visual patterns
associated with anomalies, and the inherent challenges in curating high-quality labelled datasets for
supervised learning in visual classification tasks. It is also important to note that the heatmaps on Figure
4.2 show that activation is more pronounced on anomalies, though not all pixels that make up an anomaly
are perfectly segmented. This is fundamental aspect also described in other previous literature in adjacent
CV based classification domains (Jia and Shen, 2017; Liao et al., 2023; Yang et al., 2019). CNNs primarily
activates regions it finds useful for classification, as demonstrated by class activation maps. These maps
highlight specific areas contributing to predictions, indicating that not all image areas are utilized, but
rather those deemed significant for the task at hand (Yang et al., 2019).

The model architecture could also successfully extract patterns to classify the 26 Congolese timbers onto
genus level, as apparent by the obtained recall scores on the training, validation, and test data. Filtering
the training data on the presence of anomalies, has a nuanced effect on the recall. The recall scores across
classes, increasing marginally from 88.4% (trained on both anomaly-free and anomalous patches) to
90.5% (trained only on anomaly-free patches) and decreasing from 88.4% (trained on both anomaly-free
and anomalous patches ) to 79.1% (trained only on anomalous patches), on all test patches, . This
suggests a balanced trade-off in performance when removing anomalous patches, albeit with a high recall
score for the model with lowest recall (e.g. trained only on anomalous patches: 79.1%).

The overall recall score on specimens is further testimony that anomalies neither significantly improves
nor decreases the model’s ability to classify them correctly. Additional findings on individual genera,
however, suggest that while the overall performance change between training models was limited,
individual genera exhibited varied responses to the presence of anomalies. Genera like Leplaea, Alstonia,
Brachystegia, and Millettia demonstrated higher recall on the test data if the model was trained on
anomaly-free images, whereas higher recall was observed for Cynometra when evaluated with models
trained on anomalous patches. Other genera, including Diospyros, Tessmannia, and Ficus, were
negatively affected by anomalies in training and did not improve when anomalous images were filtered out,
indicating a preference for a balanced dataset. The peculiar case of Microcos, which showed higher recall
regardless of anomalies for the model trained only on anomalous patches , suggests the need for further
investigation. The performance of certain genera remained unaffected by altering the training data based
on damage. The performance of Afzelia, Albizia, Entandrophragma, Pterocarpus, Xylopia, Uapaca,
Gilbertiodendron, Nauclea, Vitex, Milicia were generally unaffected by altering the training data based on
anomalies. Possible correlations between these findings and genus-specific statistics of the training data
(See Supplementary materials Table 8.5) were difficult to pinpoint as the applied sampling approach in this
study, implies that the specimen balance across models was constant and could not have contributed to
differences in genus-specific performances. Our findings on this are added in Supplementary materials
8.4 for further information. Our analysis, therefore, suggests that CNNs, like Xception, demonstrate higher
recall in timber classification, when trained on anomaly-free images.
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Overall, anomaly-free patches consistently yielded higher recall scores across all model evaluations than
anomalous patches. Additionally, identical patterns can be observed concerning performance for the
individual genera. In general, Millettia, Tessmannia, Celtis, Afzelia, Beilschmiedia, Vitex and other genera
are more correctly identified (10-40% better using anomaly-free patches than anomalous patches). An
exception to this is the genus Cynometra, for which the recall score was between 20-40% higher on
anomalous test images in models trained with anomaly-free training images present (either only anomaly-
free or both anomaly-free and anomalous), though not for the model trained only on anomalous images.
Our analysis, therefore, suggests that CNNs, like Xception, demonstrate the overall highest proficiency in
general timber classification, when testing anomaly-free image patches.

The Grad-CAM analysis adds further insight, revealing that the model prioritizes regions on patches without
anomalies. This provides elucidation on the higher observed recall for models trained on anomaly-free
patches. If the model predominantly focuses on anomaly-free regions for its classification, it follows
logically that cleaner training images enhance its ability to capture diagnostic patterns, leading to
improved discrimination between timbers. This also underscores the effectiveness of the model's
convolutions in extracting diagnostically valuable patterns and applying it on anomalous wood specimen
in the field. In addition, these findings affirm the reliability of employing Grad-CAMs as a way to provide
valuable insights into the model's interpretability (Wang and Zhang, 2023) and its approach to handling
anomalies on endgrain timber images.

Still, other research also emphasizes the importance of data augmentation to improve model robustness.
Owens et al. (2024) conducted a review that explored the impact of various digital perturbations on test
images to assess the robustness of a macroscopic CV wood identification model, to classify 24 Peruvian
timbers. To compare for instance, cracks can be likened to the introduction of scratches in the study. On
the other hand, fungi, and/or bacterial damage, leading to wood deterioration or discoloration, pose a
slightly greater challenge for direct comparison with the studied perturbations. The combination of colour
shifts in the blue channel (mimicking the effects of blue staining fungi), digital scratches (similar to hyphae
on wood), and blurring (impairing the visibility of diagnostic features) can approximate these effects. In
their study, the 24-class model performance showed sensitivity to blue channel shifts and blurring with
the percentage of correctly classified images dropping along with the magnitude of the colour shift/blur.
Digital scratches seemed to have only mild impact on model performance. Other anomalies like large
cracks or insect holes are more difficult to link to but can be compared to other frequently used
augmentation techniques such as random erasing, where random patches of pixels on images are
replaced by either set or random values—an approach inspired by dropout regularization (Zhong et al.,
2020). Similar parallels exist for images taken at the sides of specimens due to human error. The study by
Owens et al. (2024) concludes by suggesting that the introduction of such digital perturbations on the
training data could improve model robustness. Another study by Shorten and Khoshgoftaar (2019)
conducted a review that explored various data augmentation techniques on CNN in general and their
impacts on model performance. This study also suggests that applying such techniques or a combination
can improve generalization on training images. This could have influenced the small differences between
the recall scores of the different models, as the applied augmentation techniques during training (e.g.
colour scaling and gaussian blurring (for more information see section 2.2)) could have improved the
robustness of the models to better handle anomalous patches. However, Shorten and Khoshgoftaar (2019)
also emphasizes the need for careful consideration in the design of data augmentation to align with the
classification and not remove crucial diagnostic features. This is especially relevant for shallow datasets
where excessive removal might lead to overfitting. This insight elucidates the observed tendency toward
overfitting and the suboptimal evaluation of test specimens in models trained on image datasets lacking
anomaly-free images in the training data.

Closer examination of Grad-CAMs revealed no discernible correlation between the type of wood
anomalies and misclassification, although severely deteriorated images with little to no clear wood
anatomy were prone to misidentification due to the absence of diagnostic features. This finding aligns with
findings of Owens et al. (2024) that their model became progressively less robust as the area of medium-
to-severe blur increases, suggesting that a CNN for macroscopic cross sectional wood identification
requires intact regions of wood anatomy for correct classification. A peculiar pattern was also observed
where severely deteriorated images were consistently misclassified as Diospyros, indicating that CNN
classifiers might uniformly categorize such images without additional training classes. This suggests the
need for including an unknown class to handle such anomalies. Supporting these findings, Ravindran et
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al. (2023) demonstrated that the occlusion of wood anatomy negatively affects CNN performance, with
multiple trained CNN architectures performing poorly on specimens sanded at low grits (80, 180) due to
severe occlusion. Performance stabilized at higher grits (240 and onwards), underscoring the need for
clear anatomical features for accurate classification, a requirement shared by both human observers and
CNNs.

4.6 Conclusion

The results show that CNN, such as the applied Xception architecture, can successfully extract features
for classifying image patches of sanded cross-sectional images to classify different timbers at the genus
level, and distinguishing between anomaly-free and anomalous wood. The performance on the test data
varied for individual genera, with some benefiting from training on anomaly-free images, while for other
genera, like Cynometra, higher recall was observed for the model trained on anomalous images. However,
the overall recall scores were higher for anomaly-free patches. Grad-CAM analysis revealed the model's
preference for regions on patches showing unobscured wood anatomical tissue, underscoring the
importance of clear wood anatomy in training CNNs for wood identification. This could enable CNNs to
capture diagnostic patterns more effectively, which in turn would lead to better discrimination between
timbers, even when applied to anomalous specimens in the field. The inclusion of anomalous patches had
alimited impact, but subtly enhanced performance on anomalous patches. The findings therefore suggest
that CNNs (like Xception) demonstrate the highest proficiency in timber classification when trained on
anomaly-free images, making this approach highly effective for developing CV-based wood identification
models for deployment in the field.
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5.1 Abstract

CNNs show strong potential for automated timber identification, yet most prior studies have relied solely
on closed-world multiclass classification, which assumes that all species encountered during deployment
are present in the training data. This assumption limits applicability in real-world contexts, where
previously unseen species are common—a significant challenge given the global diversity of traded
timbers.

This chapter compares closed- and open-world genus-level identification methods using macroscopic
cross-sectional wood anatomy. Four approaches were evaluated: (i) closed-world multiclass RF trained on
expert-defined anatomical features (Chapter 3); (ii) closed-world multiclass CNN with CCE loss trained on
5.42 x 5.42 mm image patches (Chapter 4); (iii) open-world embedding-based CNN with triplet loss; and
(iv) open-world binary verification CNN using composite images and BCE loss. Allmodels were trained and
tested on the SmartWoodID dataset, with performance assessed across all Congolese species and a
subset of commercially important Congolese timbers.

For commercial Congolese timbers, the multiclass CNN achieved the highest metrics (accuracy = 0.86,
precision =0.87, recall = 0.85, F1 = 0.84), followed by binary verification (accuracy = 0.75, precision =0.73,
recall=0.71, F1=0.69) and RF (accuracy = 0.58, precision =0.56, recall =0.54, F1 =0.53). The embedding-
based CNN performed substantially worse (accuracy = 0.28, precision =0.21, recall=0.24, F1=0.21), likely
due to the sensitivity of the triplet loss function.

Top-k analysis confirmed the superior ranking ability of CNN-based models: for all Congolese species, 95%
correct identification was reached by considering the top 16% of genera for the multiclass CNN and top
7% for commercial species, compared to 72% and 64%, respectively, for RF. Binary verification required
slightly larger k values than the multiclass CNN but outperformed RF. In contrast, the embedding-based
CNN required k values of 84% (all species) and 71% (commercial species) to reach the same accuracy
threshold.

Open-world performance was further tested on an independent dataset of non-Congolese timbers. The
binary verification approach successfully identified unseen genera, achieving 95% correct identification
when considering the top 30% of genera. These findings demonstrate that CNN-based methods—
particularly multiclass classification and binary verification—substantially outperform feature-based RF
models. Moreover, binary verification offers flexibility for identifying previously unseen timbers, supporting
forensic and enforcement applications by enabling rapid screening and flagging of potentially suspicious
shipments.

Embedding-based methods offer a powerful framework for open-world recognition with strong advantages
regarding computational efficiency. However, observed performance in this chapter was poor, suggesting
the need for more robust training strategies, improved loss formulations, and potentially the integration of
complementary data sources (e.g., microscopic anatomy, chemical signatures) to reach their full potential
for scalable, generalizable timber identification.

This chapter is not submitted to a peer-reviewed journal on 19/08/2025.
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5.2 Introduction

Illegal logging remains a significant driver of deforestation, biodiversity loss, and environmental
degradation, requiring the development of rapid and reliable wood identification techniques to enforce
regulations and international conventions (Dormontt et al., 2015; Tacconi, 2012; Thompson and Magrath,
2021). Recent advancements in wood forensics have leveraged deep learning techniques to classify timber
species, with the analysis of macroscopic cross-sectional images of wood anatomy emerging as a popular
approach (Silva et al.,, 2022; Wheeler and Baas, 1998). Cross-sectional images are particularly
advantageous due to their distinct structural patterns and accessibility, enabling non-experts to locate the
appropriate cross-section for evaluation with relative ease (Chen et al., 2022; Hwang and Sugiyama, 2021;
Wu et al., 2021).

Traditional deep learning approaches, such as multiclass classification, have been widely applied to wood
classification tasks (Silva et al., 2022). However, a multiclass approach faces inherent limitations when
applied to biological data (McCarthy and Hayes, 1981; Yoshihashi et al., 2019). First, they operate under a
closed-set assumption, meaning the model is trained only on a predefined set of classes and struggles
with unknown species encountered during inference (Stnderhauf et al., 2018; Wilber et al., 2013). While
opt-out mechanisms or "other" classes can partially mitigate this limitation, they remain imperfect
solutions (Entezari and Saukh, 2020; Geifman and El-Yaniv, 2019). Second, these approaches generally rely
on balanced class distributions, with minor imbalances managed using class weight dictionaries. This
requirement places a burden on projects aiming to classify a broad range of timbers, as it demands
extensive and rigorous data collection. Reliable specimens often originate from fieldwork guided by
experienced botanists or from curated wood collections. While wood collections are advantageous due to
their pre-processed samples with clear anatomical planes and reliable metadata, they typically offer
limited replicates per species. This scarcity makes it challenging to ensure sufficient variability for robust
model generalization (Ravindran et al., 2018; Silva et al., 2022).

To address the limitations of multiclass classification, deep learning research has increasingly focused on
open-world recognition, with object re-identification emerging as a powerful open-world alternative for
image classification(Geng et al., 2020; Scheirer et al., 2012; Yoshihashi et al., 2019). In contrast to
multiclass models that produce discrete class labels, object re-identification networks are trained to
compute image similarities, enabling the identification of the most corresponding reference image(s) (Ye
et al., 2021). Object re-identification networks have achieved significant success in fields like facial
recognition, relying on prominent methods such as binary verification and triplet learning (Schroff et al.,
2015). Binary verification determines whether two given samples belong to the same class by learning an
optimal decision threshold for similarity scores (Chen et al., 2017). In contrast, triplet learning maps
images into an embedding space. In this space, each image is represented by an embedding vector. These
vectors encode distinctive features, with smaller distances between vectors indicating greater similarity.
This essentially creates a "digital fingerprint" for each class, enabling comparisons against a reference
database of embeddings. A smaller distance between the embeddings of a sample and the embeddings of
areference sample indicates a stronger match (Ghosh et al., 2023; Ye et al., 2021). While these techniques
enhance generalization, they also introduce new challenges, such as the need for hard example mining to
maximize learning efficiency (Bai et al., 2018; Chen et al.,, 2017; Hermans et al., 2017). Additionally,
balancing and generating appropriate sample pairs are crucial for effective training, requiring careful
attention to loss function design and data preparation (Hermans et al., 2017). At present, applying object
re-identification for wood identification is underexplored in literature (Hwang and Sugiyama, 2021; Silva et
al., 2022).

This study provides a comprehensive evaluation of CNN-based classification strategies for timber
identification, comparing traditional multiclass classification with object re-identification approaches,
providing insights into the trade-offs between closed-world and open-world approaches for timber
identification, and ultimately guiding the development of more robust forensic wood identification
methods for field deployment. A high-performing CNN architecture was trained to classify wood at the
genus level using the SmartWoodID dataset (De Blaere et al., 2023). Three distinct CNN-based
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classification approaches were developed and evaluated: 1) traditional multiclass classification, where a
CNN was trained as a conventional closed-world multiclass classifier; 2) object re-identification, where an
embedding-CNN was trained, which subsequently allows to differentiate between specimens based on
learned feature embeddings; 3) object re-identification, with binary verification using composite twin
images, where each input pair was labelled as either belonging to the same genus or different genera.

To systematically assess and compare the performance of these models, we conducted a series of
experiments using the same scenarios as Chapter 3. The first scenario features 601 Congolese species
from SmartWoodID to validate the use of macroscopic anatomical features for classifying taxa within the
Congo Basin’s biodiverse ecosystem, thereby in supporting biodiversity research and conservation efforts.
The second scenario features a subset of 78 Congolese commercial species to evaluate the models’
capacity to classify high-demand timber species commonly traded in international markets, supporting
legal compliance and sustainable timber trade practices.

To test the hypothesis that deep learning models trained on raw wood images outperform traditional
classifiers based on expert-defined anatomical features, we conducted a series of comparative
experiments using the SmartWoodID dataset. These experiments build on the scenarios presented in
Chapter 3, enabling direct comparison of model performance across consistent taxonomic and ecological
contexts. Next, we compared the traditional multiclass CNN with object re-identification approaches—
triplet learning and binary verification—to test the hypothesis that open-world frameworks offer greater
classification flexibility and better accommodate intra-species variability. Model evaluation was extended
using top-k accuracy metrics, quantifying the likelihood that the correct class appears among the model’s
top predictions. Finally, to test generalization capacity beyond the training domain, object re-identification
models were applied to a separate dataset of non-Congolese timber species digitized using the same
protocol. This experiment examines the hypothesis that open-world strategies provide scalable, region-
independent solutions to wood identification, even under increasing classification complexity and the
presence of unseen taxa.
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5.3 Material and methods
5.3.2 Dataset Description

This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in
section 1.5 which provides an overview of all data used in each chapter.

The database contains high-resolution RGB scans of the macroscopic end-grain surfaces of 3,742 wood
specimens, representing 954 species native to the DRC. Each specimen was prepared by scanning the
cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization of
macroscopic features essential for wood identification.

Species and lower taxa are represented by multiple specimens, capturing both intra- and interspecific
anatomical variation. This makes the database well-suited for studying wood identification using
macroscopic anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et
al. (2023) (De Blaere et al., 2023), while Supplementary Materials Table 8.1 all unique specimen identifiers
and metadata. To enable machine learning analysis, we selected only species represented by at least two
specimens. This set comprises 2,296 digitized specimens across 601 species, 286 genera, and 64 families.
Discriminatory power was mainly assessed by training and evaluating classification models on the
specimens. Therefore, specimens were allocated random to training (75%) or test set (25%), while
preserving distribution of species across both sets. Within both sets, a subset of 78 commercially
important species was defined for targeted evaluation. An overview of the chapters, designated datasets
used in each chapter and of which hypothesis they target is provided in section 1.4.

Given the large size of the scanned end-grain surfaces, directly processing full images is computationally
expensive and may lead to overfitting due to the limited number of images. To address this, the fullimages
were cropped into smaller, non-overlapping patches that retained diagnostic features while capturing
anatomical variability. We selected patch dimensions of 512x512 pixels, corresponding to a physical area
of approximately 5.42x5.42 mm, ensuring sufficient detail for anatomical analysis without obscuring
critical features. Fullimages yielding fewer than four patches (i.e., totalend-grain surface area below 1 sz)
were excluded to maintain consistency and relevance for anatomical assessment.

Patches were allocated random to training (75%) or validation set (25%), while preserving distribution of
specimens across both sets, using different regions of the same specimens for training and validating.
Furthermore, any full image yielding fewer than four usable patches was removed, as these would cover
less than one square centimetre—below the typical area assessed by a human expert during wood
anatomical identification.

5.3.3 CNN Backbone Architecture

The Xception architecture was chosen as the CNN backbone due to its balance between computational
efficiency and strong classification performance on large-scale datasets such asImageNet (Chollet, 2017).
The model was pretrained on ImageNet and fine-tuned on the SmartWoodID patches using a batch size of
8 and RMSprop as the optimizer with a learning rate of 1x10™*. Early stopping was implemented to prevent
overfitting, with validation loss monitored during training. Training was capped at 100 epochs, with early
stopping triggered after 10 consecutive epochs of no improvement in validation loss (<0.1).

5.3.4 Classification Techniques

Four different approaches were used to develop CNNs for wood genus identification, ranging from
multiclass and multilabel classification to representation learning via embedding networks and binary
classification. The output layers and loss functions were customized to suit the unique requirements of
each classification task.
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5.3.4.1 Multiclass Classification

The multiclass classification model aims to assign each image patch to one of the available classes. The
CNN backbone was extended with a global average pooling layer and a classification head. The
classification head consisted of a fully-connected layer with a SoftMax activation to output probabilities
across all genera. The model was compiled using the categorical cross-entropy loss function (Lcce: see
Equation 1) quantifying the difference between the predicted class probabilities and the actual class
labels across all samples. Specifically, for a total of N samples and C classes (in this case, genera), the loss
is calculated based on the binary indicator yi,j, which equals 1 if sample i belongs to class j, and 0
otherwise. The predicted probability for class j for sample i is denoted as Vi,j.

N C
Z Z yi;jlog(¥: ;)
i=1 1

j=

Lecg = —

=

Equation 1: CCE Loss function

5.3.4.2 Object Re-Identification Network with Triplet Learning

To explore open-world recognition, we implemented an object re-identification network trained with triplet
loss. This approach maps input image patches into a lower-dimensional embedding space where
embeddings from the same genus are closer together, and those from different genera are further apart.
This enables comparison of the test images to reference images based on the learned feature embeddings.
A triplet loss function was employed to train the model to minimize the distance between embeddings of
images belonging to the same genus (anchor-positive pairs) while maximizing the distance from images
belonging to different genera (anchor-negative pairs). Figure 5.1 shows how triplet loss operates on the
embedded versions of these image patches. Figure 5.2 shows an example of a triplet of image patches.
The Xception backbone was trained to map the images to into fixed-length feature embeddings. The model
outputs the concatenated embedding vectors of the anchor, positive, and negative image patches for triplet
loss computation. The triplet loss function (Luiper: S€€ Equation 2) calculated the distance between anchor-
positive pairs and anchor-negative pairs, optimizing the network to maximize inter-class separation while
minimizing intra-class variation. For each triplet of samples—consisting of an anchor (x%), a positive
sample from the same class (x?), and a negative sample from a different class (x")—the loss is computed
based on the squared Euclidean distances (||.||22) between the embedded representations f(x) of these
samples. Formally, the loss ensures that the distance between the anchor and the positive embedding is
smaller than the distance between the anchor and the negative embedding by at least a predefined margin
a(e.g., a=0.2). This is achieved through the hinge function ([.]), which returns the value if positive, or zero
otherwise, thus preventing negative loss values. The total number of triplets is denoted as N, and the loss
encourages the condition:

The loss measured the margin between the positive and negative distances, penalizing configurations
where the negative distance was not sufficiently larger than the positive distance. Key hyperparameters,
such as the margin (a = 0.2) and learning rate (1x107%), were fine-tuned for optimal performance.

1 = 2
Loripec= 37 D [IFG = FED = G = FGDIE + o
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Equation 2: Triplet Loss function

Feature 2

f(P)

f(A)

Feature 1

Figure 5.1: Visualisation of the concept of triplet loss optimization in an exemplary 2D feature space. The generated
embeddings of the triplet model are converted into points in the feature space. The different colours (red, yellow, blue,
green) represent different classes. Triplet learning aims to learn representations where the distance between anchor(A)
and positive(P) is smaller than the difference between anchor(A) and negative(N).

Figure 5.2: Example of hard triplet consisting of an anchor (left: Afzelia; Tw11081), positive (centre: Afzelia; Tw47200),
and negative image (right: Anthonotha; Tw95) for Object Re-Identification network training with triplet loss.

5.3.4.3 Object Re-Identification Network with Binary Verification

This approach serves as an intermediate method between an embedding network for object re-
identification and a binary classification network. The added layers closely resemble those used in binary
classification, where the extracted features are passed through a Global Average Pooling layer followed by
a fully connected layer. The fully connected layer contains a single output neuron with a sigmoid activation
function, designed to perform binary classification. The model was compiled using binary cross-entropy
loss (Lsce: see Equation 3) with one class, a suitable choice for binary tasks as it quantifies the error
between the predicted probabilities and the true labels for each genus. For a total of N samples, each with
a true label y; (where 1 indicates the positive class and 0 the negative), and a predicted probability Vi, the
binary cross-entropy loss penalizes the model based on how far off each prediction is from its
corresponding true label.

Lgcp =

=2l r

N
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Equation 3: BCE Loss function

The images themselves encode the anchor-positive-negative relationship. For each anchor image, two
composite images are created, each consisting of two halves: (anchor-positive) labelled as 1 and another
(anchor-negative) labelled as 0 (an example is presented in Figure 5.3). This design allows the model to
learn to distinguish between images from the same genus and those from different genera. Class balance
is inherently maintained, as for each anchor, both composite images are always generated. This ensures
the model does not inadvertently focus more on one class over the other, promoting equitable learning
across both categories.

Figure 5.3: An example of two composite images representing on the left the

anchor (Afzelia; Tw11081)-positive (Afzelia; Tw47200), and on the right anchor

(Afzelia; Tw11081)-negative (Anthonotha; Tw95) image relationship for Object

Re-Identification network training with Binary Cross Entropy.
As previously discussed in 4.5, restricting the training dataset to include only undamaged image patches
is crucial for this method. This is because the patches are reduced to half their original area to form
composite images. Including damaged patches could result in the removal of areas containing key
diagnostic information during this reduction process.

5.3.5 Balancing the dataset

The dataset's inherent imbalance—arising from some genera containing more specimens and producing
more image patches due to larger cross-sections—was addressed using a sampling strategy at the start of
every epoch. To ensure fairness, each genus was limited to a predefined number of three specimens by
randomly sampling unique specimen identifiers. For each specimen, a fixed number of four image patches
was selected, with replacement applied for specimens with fewer available patches. By exposing the
model to a diverse set of images in each epoch, this approach balanced representation across genera and
allowed the model to capitalize on all data during the whole training process without biasing the model
towards more prolific genera. The samples were also shuffled to prevent the memorization of image
sequences, prior to being loaded into the CNN.

To ensure a robust evaluation and facilitate direct comparison with the machine learning classification
techniques in Chapter 3, specimens are allocated into the same subsets (training and testing) as described
in that chapter. An additional stratified split was applied on the training dataset, allocating 75% of the
patches for actualtraining and 25% for periodic validation after each epoch. This approach guaranteed that
every specimen was represented in both training and validation while maintaining distinct patches to
prevent data leakage.

5.3.6 Data augmentation

Data augmentation involves artificially inflating the training dataset to prevent overfitting by warping
available data (Shorten and Khoshgoftaar, 2019). This is achieved by applying transformations to the
images to increase variability, improve model generalisation, and simulate the diversity of real-world
conditions—such as changes in orientation, scale, lighting, or background—without the need for
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additional manual data collection. All data augmentation techniques were applied uniformly across the
experiments to maintain consistency in training conditions while adapting the CNN architecture to specific
classification tasks. The augmentation was only applied to the training data to ensure that the validation
and test datasets remained representative of the original data distribution, reflecting its ability to
generalize. These techniques were applied using custom built data generators to leverage the images
though the model.

To enhance the robustness and generalization of the CNN, an advanced data augmentation pipeline was
implemented. The pipeline combines traditional augmentation techniques with custom filters and random
erasing to introduce variability while preserving key diagnostic features of wood anatomy. Standard
augmentations were applied, including random rotations up to 45°, horizontal and vertical shifts up to 20%
of the image dimensions, random brightness scaling within a range of 0.5-1.0, shearing up to 30°, horizontal
and vertical flipping, and normalizing the pixel intensities. To further increase variability and simulate
realistic imperfections, the pipeline included custom filtering and random erasing. A randomly selected
filter from the following poolwas applied to each image; Gaussian blur: Random o-values between 0.0 and
3.0; Median filtering: Random kernel sizes between 1x1 and 5x5; Minimum, maximum, and uniform filters:
Kernel sizes randomly chosen between 1x1 and 5x5; Percentile filtering: Random percentiles between 1
and 99 with a 3x3 kernel; Colour channel manipulation: Random scaling of pixel intensities in red, green,
or blue channels within a range of £20

Each filter was applied with a randomly selected mode (reflect or nearest) to further diversify the outputs.
Next, random erasing was applied replacing random small rectangular regions of the image with random
colour noise. The number and size of these erased regions were determined by a random sampling of the
image area (0.1-1.0% per region).

This augmentation strategy not only ensured variability in training data but also introduced robustness
against noise and potential artifacts in real-world applications, such as damage to wood surfaces or
inconsistencies in imaging conditions. The range of each augmentation step was constrained to avoid
excessive damage to diagnostic features. This was assessed by generating augmented patches and
enhancing specific augmentation steps, verifying if the anatomical features were still recognizable through
trial-and-error.

5.3.7 Hard mining for Object Re-Identification approaches

Training object re-identification networks with triplet learning effectively requires guiding the model
towards learning from challenging examples (Hermans et al., 2017). This logic is also applicable to the
binary verification approach, as binary classification problems are known to prioritize minimizing
classification error through optimal threshold selection rather than optimizing ranking accuracy.
Consequently, while binary verification may achieve low misclassification rates, it risks ranking errors in
closely related genera, potentially leading to incorrect top-1 predictions (Chen et al., 2017). Challenging
triplets or pairs, where the positive sample is visually similar to the anchor but still belongs to the same
class, or where the negative sample is visually similar to the anchor but belongs to a different class, are
critical for maximizing the network's ability to discern fine-grained differences (Ghosh et al., 2023;
Hermans et al., 2017). These challenging examples force the network to focus on subtle and discriminative
features rather than relying on easy-to-learn patterns, thereby enhancing its robustness and generalization
capability.

To effectively guide the model toward learning from challenging triplets and pairs, three key aspects were
addressed. First, a structured understanding of inter-class similarity was necessary. To facilitate this,
domain knowledge of macroscopic cross-sectional anatomical features was integrated into the selection
process for both object re-identification approaches. Integrating domain knowledge can improve the
selection of informative training samples by ensuring that the model learns from biologically meaningful
variations rather than relying solely on data-driven feature extraction (Guo and Lovell, 2024). Specifically,
macroscopic features (Table 2.2) were numerically encoded to construct a similarity matrix for all
specimens. Each feature was assigned a numerical value: present = 1, variable = 0.5, absent =0, and NA =
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0. Pairwise Euclidean distances were then computed between the average feature vectors of each
specimen group, and these distances were transformed into similarity scores using a reciprocal
transformation to emphasize smaller distances.

Second, the performance of object re-identification models benefits from diversity in triplet and pairwise
combinations, as repeated exposure to the same combinations may lead to overfitting (Chen et al., 2023;
Ying, 2019). To enhance diversity, new triplet and pair selections were generated at the start of each training
epoch, preventing the model from memorizing specific relationships and improving generalization (Kumar
et al., 2020).

Finally, while prioritizing the most challenging positive and negative examples, i.e., selecting within-genus
specimens that are most dissimilar to the anchor and between-genus specimens that are most similar to
the anchor, is crucial for fine-grained discrimination, exclusively sampling the hardest cases can hinder
generalization (Schroff et al., 2015; Shi et al., 2016). Overexposure to outliers may cause the model to focus
disproportionately on rare cases rather than learning broader inter-class relationships (Hermans et al.,
2017). To mitigate this, the similarity scores were used as weights during sampling of positive and negative
examples. This ensured that challenging pairs and triplets were more likely to be sampled while still
allowing occasional exposure to easier combinations. By maintaining a balanced representation of difficult
and diverse training examples, this approach enhanced the robustness of the object re-identification
models to subtle anatomical variations.

5.3.8 Standardizing CNN output for model comparison

To ensure comparability across classification models, the output of all three CNN approaches is
transformed to align with the output format of the RF model. This ensures a standardized probability range
for each test specimen.

For the multiclass CNN, the model generates a probability distribution across all classes for each image
patch. These probabilities are averaged per specimen across patches and subsequently normalized across
classes to ensure consistency with the RF model. Two different models are trained for each set of timber
genera: one for all Congolese tree species and one using only the subset of commercial timbers.

The evaluation of object re-identification models differs due to their reliance on a reference database for
comparison. In this study, training and validation specimens serve as reference samples. To evaluate the
object re-identification models' performance across the full timber dataset, encompassing all tree
species, and the commercially relevant subset, non-commercial species were excluded from the
reference dataset when assessing the subset. This approach is valid because object re-identification,
unlike multiclass classification, does not necessitate training distinct models for varying class ranges.

For object re-identification using Triplet Learning, the CNN generates an embedding vector for each image
patch. These vectors are aggregated at the specimen level by averaging. The resulting embeddings from the
training and validation specimens are then used to train a separate RF model, following the methodology
outlined in Chapter 3. To optimize classification performance, randomized grid search is employed,
systematically sampling parameter combinations from a predefined hyperparameter grid (see Chapter 3,
Table 8.2). Class weights are incorporated to mitigate class imbalance, and 4-fold cross-validation ensures
robustness across different data splits. To maintain consistency and reproducibility, all random number
generators were seeded with a fixed value. Consequently, the output of this RF model on the embedded
vectors aligns with the output of the RF model trained on wood anatomical descriptions.

The binary verification approach requires generating a large set of composite image pairs, where each test
image patchis matched against reference patches to produce a similarity score between 0 and 1, reflecting
the likelihood of a genus match. Given the dataset's size—37,577 test patches, 18,136 validation patches,
and 54,405 training patches—an exhaustive comparison using all training and validation patches as
references would result in 2,725,873,157 image pairs. With an estimated computation time of 0.05
seconds per image for the applied workstation (single standard GPU (NVIDIA GeForce RTX 3080 Ti)), this
approach would require approximately >1500 days, rendering it computationally infeasible.
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To address this, a sampling strategy was implemented; Thirty percent of the patches were retained for each
test specimen. Four reference patches were sampled per reference specimen. And finally, one reference
specimen per genus was selected from the training/validation set. This down-sampling resulted in 1,144
reference patches and 12,525 test patches, leading to 14,329,362 comparisons and a significantly reduced
computation time of approximately 9 days. After generating similarity scores, the results were aggregated
in two stages : first, per reference and test specimen by averaging the output scores; second, per reference
genus yielding a probability distribution (0-1) for each test specimen across all genera; and finally
normalization, ensuring that the output probabilities of this model align with those of the multiclass CNN
and the RF model, allowing for direct comparison.

5.3.9 Model evaluation

The performance of all classification models was evaluated using Accuracy, Precision, Recall, and F1-
Score, calculated from standardized test predictions for both the full set of Congolese timbers and the
commercially relevant subset (Definitions of those metrics are provided in supplementary materials
section 8.2.). The experiments include model comparisons on African timber genera and the generalization
of the object re-identification approach to a distinct group of different timber genera for which the model
was not trained. Model comparisons were conducted in three distinct scenarios:

1. Comparison of multiclass Classification Models — The performance of the multiclass CNN
classifier was compared with that of a RF model, previously trained on manually extracted wood
anatomical features (see Chapter 3). This analysis assessed the relative effectiveness of deep
learning-based feature extraction versus human-engineered anatomical descriptors for wood
classification.

2. Comparison of CNN-Based Models - The traditional multiclass CNN was evaluated against both
object re-identification models to examine the differences between direct class prediction and
similarity-based classification.

3. Top-k Accuracy Analysis — To better understand the reliability of each model, we extended the
evaluation beyond top-1 accuracy by assessing the classification accuracy of all four models
(RF/multiclass-CNN/object re-identification-CNN (Triplet learning)/object re-identification-CNN
(binary verification)), when considering the top-k predictions. This analysis offers deeper insight
into the reliability of model predictions, particularly in highly biodiverse settings where multiple
timber species may exhibit similar macroscopic characteristics.

To systematically compare classification behaviour across techniques, four complementary analyses were
conducted on the first two scenarios:

1. Performance Metrics Summary —Accuracy, Precision, Recall, and F1-Score were computed across
classes. Macro-averaging was applied to Precision, Recall, and F1-Score to ensure that each class
contributed equally to the overall evaluation, mitigating the impact of class imbalances.

2. Matrix Comparison — The relationship between model predictions was assessed by constructing
matrices. These matrices captured the number of specimens correctly classified by both models,
only one, or neither, providing insight into classification overlap and discrepancies.

3. Genus-Level Performance Analysis — To assess classification performance across taxa, F1-scores
were calculated per genus for each model. These values were plotted in scatter plots, with one
model's performance on the x-axis and the other on the y-axis. The F1-score was selected as the
primary evaluation metric due to its balanced consideration of precision and recall, ensuring that
both false positives and false negatives were accounted for.

To compare classification performance beyond the top-ranked prediction between all models (scenario 3),
we evaluated each model’s ability to correctly identify the true class within the top-k predicted classes.
CDF plots were generated to show classification accuracy improvement with increase of k. A 95%
cumulative accuracy threshold was included to indicate the smallest k value at which the model's top-k
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accuracy surpasses 95%, offering a practical benchmark for classification reliability. Additionally, the AUC
was computed for each model's CDF curve, providing a single quantitative measure of overall classification
performance across multiple k levels.

To study the generalization capabilities of the object re-identification approach, another image dataset was
created of non-Congolese timber genera, through the same methodology as the SmartWoodID database.
The end-grain surfaces of the specimens were also sanded to a fine grit of 4000 and digitized as high-
resolution RGB images using a flatbed scanner at 2400 dpi. Each species or lower taxon in the database is
represented by multiple specimens from different trees, providing coverage of both intra- and inter-species
anatomical variability. This diversity makes the dataset a robust resource for applying to the trained object
re-identification models in this study. A summary of the taxonomic range of the included timbers is
provided in supplementary materials Table 8.8. The dataset covers 58 families, 135 genera, and 234
species. The "Training and Testing Specimens" section provides statistical measures of specimen
distribution per class. Specifically, the minimum indicates the number of specimens in the smallest class,
the maximum represents the number in the largest class, the average reflects the mean number of
specimens across all classes, and the standard deviation quantifies the variability in specimen
distribution.

Table 5.1: Summary of the taxonomic range and specimen distribution in the datasets of non-Congolese timbers (for
full list see Table 8.8). The "Training and Testing Specimens" section provides statistical measures of specimen
distribution per class, including the minimum, maximum, average, and standard deviation.

Training Specimens Testing Specimens

88 18 23 1 39 8 10

Family 1

m1 83 8 10 1 28 3 4
= s s : 2 o

As stated earlier, a reference database is required to assess an object re-identification model. Therefore,
the dataset was partitioned into a reference set (75%) and a test set (25%), ensuring that images from the
same specimen were allocated exclusively to one set to prevent data leakage.

To evaluate the model’s generalization performance, a simulation framework was employed in which N
classes were randomly sampled and the evaluation repeated m times per value of N. As N increased,
performance trends at higher class counts were examined. To maintain computational efficiency while
ensuring statistical reliability, the number of repetitions m was reduced for larger N. All simulations were
conducted using predefined random seeds to ensure reproducibility. Full simulation details, including
values of N and m, are provided in Supplementary materials Table 8.9.

For this experiment the binary verification model, using composite images, was evaluated by predicting a
similarity score for paired images, composed of reference and test specimens. The model's output scores
were processed using the same aggregation approach applied to African timbers, converting them into a
probabilistic distribution across genera for each specimen. For each class size, key performance metrics
were computed, including accuracy, macro-averaged precision, macro-averaged recall, macro-averaged
F1-score, and the area under the CDF of ranked genus predictions. Performance trends across different
class sizes were visualized using metric curves, with confidence intervals estimated via the standard error
of multiple simulation results.
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5.4 Results

5.4.2 Comparison of multiclass classification models

Two subsets of the dataset were used: all Congolese tree species (Blue) and the commercially traded
Congolese timber species (Green). Table 5.2 presents the performance metrics for multiclass
Classification (RF model trained on the described macroscopic cross-sectional anatomical features VS
CNN trained on the macroscopic cross sectional image patches).

Table 5.2: A summary of the general metrics across classes (genera) for both sets of timbers and for both multiclass
classification techniques (RF and CNN).

Subset
Techniques
Accuracy
Precision
Recall
F1-Score
Across both subsets, the CNN consistently outperforms the RF model in terms of accuracy, precision,
recall, and F1-score. The performance metrics of the subset of commercial timbers are significantly higher
than the full set of Congolese tree species.

All tested specimens were accounted in matrices to study the correlation between both techniques. The
matrices indicate the number of specimens correctly or incorrectly classified by both or either technique,
with a colour gradient indicating a higher number of specimens (see Figure 5.4).

All Congolese tree species Commercial Congolese Timbers
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Figure 5.4: Matrices showing the number of specimens classified correctly by both, either, or none of the multiclass
classification techniques (for both sets of timbers). The number of each case is indicated by the intensity of the colour
gradient.

The matrices reveal a strong positive correlation between the predictions of both classifiers. When RF
correctly classifies a sample, CNN is also correctin 82.2% of those cases for all Congolese tree genera and
92.7% for the commercial subset. Likewise, when CNN is correct, RF is also correct 46.4% of those cases
inthe fulldataset and 62.2% in the commercial subset. Notably, the correlation between the two classifiers
is stronger within the commercial subset (higher conditional probabilities). The asymmetry in the matrices
further reveals that CNN correctly classifies a substantial number of test specimens where RF fails, but the
reverse is less common. For the commercially important subset, both classifiers improve in performance.
However, the CNN approach still has fewer misclassifications and a stronger ability to differentiate closely
related genera.
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Individual genera may exhibit varying classification performance. To account for these differences, F1-
scores were computed for each genus across both classification techniques. These values were visualized
in a scatter plot, with the x-axis representing RF performance and the y-axis representing CNN performance
(see Figure 5.5). To better illustrate the distribution of genera according to classification performance, the
scatter plot is divided into four quadrants. Genera positioned in the upper and right quadrants achieved an
F1-score = 0.5 for the respective models. To facilitate interpretation, the number of genera in each quadrant
is displayed at its centre. These counts provide a balanced representation of model performance across
taxa compared to the matrices (Figure 5.4), which is inherently skewed by class distribution and absolute
specimen counts.
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Figure 5.5: Scatterplots visualizing the F1-scores of individual genera with the Random forest model F1-score on the x-
axis and the multiclass CNN model F1-score on the y-axis. The plots are divided into four quadrants of equal size to
indicate performance. The number of genera in each quadrant is printed centrally in each quadrant.

Genera such as Triplochiton and Piptadeniastrum exhibit an F1-score of 1 for the CNN in the full dataset of
Congolese tree genera, while the RF model fails to recognize them (F1-score = 0). This suggests that
macroscopic cross-sectional IAWA features alone are insufficient for distinguishing these genera among
all Congolese tree genera, whereas the CNN’s extracted features enable recognition. Similarly, genera like
Alstonia, Morus, Pycnanthus, Klainedoxa, Amphimas, and Canarium achieve F1-scores of 1 with both
techniques, indicating their clear distinction from all other genera in the dataset. On the other hand, certain
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genera, including Aningeria, Antiaris, Antrocaryon, and Erythrophleum, are poorly recognized by both
methods, highlighting their morphological similarity to other genera based on macroscopic features. A
distinct group of genera, such as Baillonella, display a clear contrast in recognition performance between
the two techniques, with CNN failing to extract distinguishing features while RF succeeds.

When models are trained exclusively on the commercial subset, shifts in performance are expected,
reflecting improvement in F1-scores due to a reduced complexity (e.g. taxonomic scope). Notably,
Triplochiton and Piptadeniastrum transition from the upper left quadrant (misclassified by RF) to the upper
right quadrant (perfect recognition by both models), suggesting that the presence of hon-commercial
lookalike genera in the full dataset previously impeded their classification. Additionally, Antrocaryon moves
from the lower left quadrant to the upper left, indicating that while macroscopic features and RF do not
enable accurate classification, the CNN successfully differentiates it within the commercial subset.
Certain genera show improved recognition by both techniques in the commercial subset, including
Maesopsis, Ongokea, Tieghemella, and Lovoa. However, some genera, such as Pycnanthus, Pericopsis,
Klainedoxa, Canarium, Baillonella, Amphimas, and Aningeria, do not experience enhanced recognition
despite the reduced taxonomic scope. Some commercial genera demonstrate a decrease in F1-score
when restricting training to only commercial genera. For instance, the RF model's performance significantly
drops for Alstonia, Morus, Millettia, Pachylobus, Gambeya, and Tessmannia. A similar but less pronounced
effect is observed with the CNN, where performance decreases only for Irvingia, Albizia, and
Beilschmiedia.
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5.4.3 Comparison of CNN-based approaches

Table 5.3 presents the performance metrics for three different CNN classification approaches—
multiclass classification, Object Re-ldentification (trained with either triplet learning or binary
verification)—evaluated on two subsets of the dataset: all tree genera found in the DRC (Blue) and the
commercially traded timber species (Green).

Table 5.3: A summary of the general metrics across classes (genera) for both sets of timbers and for all CNNs
techniques (multiclass classification, Object re-identification (Triplet learning), and Object re-identification (binary
verification).

Subset

Technique

Accuracy 0.13 0.46 0.28
Precision 0.48 0.07 0.32 0.21
Recall 0.54 0.08 0.34 0.24
F1-Score 0.49 0.07 0.30 0.21

Across both subsets, the traditional multiclass classification approach consistently outperforms the
object re-identification techniques in terms of accuracy, precision, recall, and F1-score. The performance
gap is particularly pronounced for object re-identification trained with Triplet learning, which has low
values for the metrics. However, the binary verification approach demonstrates considerably better
performance than triplet loss, achieving scores much closer to those of the traditional multiclass CNN. The
performance metrics of the subset of commercial timbers are significantly higher than the full set of
Congolese tree species.

All tested specimens were accounted in matrices to study the correlation between the multiclass CNN on
the one hand and the object re-identification techniques on the other. The matrices indicate the number of
specimens correctly or incorrectly classified by both or either technique, with a colour gradient indicating
a higher number of specimens (see Figure 5.6). The relationship between multiclass - object re-
identification (Triplet learning) is shown in the upper matrices, The relationship between multiclass - binary
verification is shown in the lower matrices.

The matrices for the multiclass vs. object re-identification (Triplet learning) models demonstrate a strong
skew in favour of the multiclass CNN, indicating that misclassifications tend to occur in either both models
or that only the multiclass CNN can correctly identify. Specifically, when the multiclass CNN correctly
classifies a specimen, the object re-identification CNN (Triplet learning) is also correct in only 18.5% of
cases for the full set of Congolese tree genera and 30.1% for the commercial subset. On the other hand,
when the Triplet Loss CNN correctly classifies a specimen, the multiclass CNN is also correct in 89.3% of
cases for the full dataset and 93.5% for the commercial subset. The binary verification CNN shows a
stronger alignment with the multiclass CNN. When the multiclass CNN correctly classifies a specimen,
the binary verification CNN is also correct in 60.0% of cases for the full dataset and 82.5% for the
commercial subset. In contrast, when the binary verification CNN correctly classifies a specimen, the
multiclass CNN is also correct in 82.8% of cases for the full dataset and 95.2% for the commercial subset.

Similar with the comparison of multiclass classification models, F1-scores were computed for each genus
across both classification techniques to address differences between individual genera. These values were
visualized as scatter plots using the same principles (quadrant counts), with the x-axis representing the
multiclass CNN performance and the y-axis representing either object re-identification performance (See
Figure 5.7).
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Figure 5.6: Matrices showing the number of specimens classified correctly by both, either, or none of the multiclass
classification techniques (for both sets of timbers). The number of each case is indicated by the intensity of the colour
gradient. The top matrices show the correlation between the multiclass CNN on the x-axis and the Object reidentification
model (Triplet learning) on the y-axis; The bottom matrices show the correlation between the multiclass CNN on the x-
axis and the Binary verification model on the y-axis.
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Figure 5.7: Scatterplots visualizing the F1-scores of individual genera with the multiclass CNN model F1-score
on the x-axis and the object reidentification model F1-score on the y-axis. The top plots visualize the correlation
with the triplet loss object reidentification model, the bottom plots with the Binary Cross Entropy loss object
reidentification model. The blue plots on the left show the results for the full set of Congolese tree species, the
green plots on the right for the subset of commercial timbers. The plots are divided into four quadrants of equal
size to indicate performance. The number of genera in each quadrant is given in the centre of each quadrant.
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Figure 5.7 shows that specific genera have markedly higher associated F1-scores for the multiclass CNN
compared to the object re-identification model trained with triplet learning (top graphs), as the majority of
the points (genera) are in the lowest quadrants indicating either a low F1-score according to both models
or only high score for the multiclass model (bottom right quadrant). This is different for the relation between
the multiclass model and the binary verification model (bottom graphs), where for all Congolese tree
species (bottom left graph), the genera are more evenly distributed across quadrants. For the commercial
subset, this shifts to nearly all genera having high F1-scores with both approaches.
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5.4.4 Top-k classification accuracy analysis

The classification performance of the different models, assessed beyond the top-ranked prediction, is
visualized in Figure 5.8 using CDF plots. The plots demonstrate the increase in accuracy as the number of
considered classes (k) expands. The coloured values on the y-axis represent the accuracy for k=1, which
corresponds to the accuracy (see Table 5.2 and Table 5.3). A key reference point in the plot is the 95%
cumulative accuracy threshold, marked by a vertical dotted line, which represents the minimum k value at
which each model achieves at least 95% top k accuracy. Furthermore, the AUC values are displayed for
each model, providing an aggregated metric that encapsulates overall classification performance across
varying k levels.
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Figure 5.8: Cumulative distribution function plots, showing the progression of top k accuracy with increasing numbers
oof k ranked predictions for multiclass models (Random Forest, CNN (Categorical Cross Entropy (CCE)) and Object
Reidentification models (Triplet loss and Binary Cross Entropy loss). The vertical dotted lines represent the value k
where the top k accuracy exceeds 0.95. The coloured values on the y-axis represent the top-1 accuracy (normal
accuracy). The text box on the left displays the Area Under Curve for the CDF of each model. The top plot (blue) shows
the results for all Congolese tree species, the bottom plot (green) shows this for the subset of commercial timbers.



Top-1 accuracy serves as a reference point for evaluating model performance, providing insight into initial
classification effectiveness. Across all models, accuracy improves with increasing values of k, following a
characteristic saturating pattern—where initial gains are pronounced but progressively diminish as k
increases.

Across both the full dataset and the commercial timber subset, the RF model consistently underperforms
compared to the multiclass CNN and the object re-identification CNN trained for binary verification. RF
exhibits lower top-1 accuracy, a slower rate of accuracy improvement, and lower AUC values, indicating
weaker overall classification performance. Notably, RF requires a substantially higher k value to exceed
95% accuracy, suggesting that its predictions stabilize at a slower rate compared to the CNN-based
approaches.

When tested on the full dataset, the multiclass CNN outperforms the binary verification CNN, achieving
higher top-k accuracy across k = 1 to 40. However, a different pattern emerges for the commercial timber
subset. While the multiclass CNN initially surpasses the binary verification CNN at k=1, this trend reverses
beyond k = 2, where the binary verification model achieves superior accuracy. By k=10, both models reach
similar top-k performance, with accuracy approaching 1. These findings are further contextualized by the
95% cumulative accuracy threshold. For the full dataset, the multiclass CNN maintains superior
classification performance. However, for the commercial subset, the binary verification CNN
demonstrates stronger performance at lower k values. In contrast, the object re-identification CNN trained
with Triplet Loss demonstrates the weakest performance across all k values. It exhibits the lowest top-1
accuracy, the slowest rate of accuracy improvement, and the lowest AUC values. Furthermore, it requires
a substantially higher k value to exceed 95% accuracy, indicating a slower stabilization of predictions.

5.4.5 Generalization to unseen taxa

Open-world recognition through the binary verification model, trained on Congolese timber genera, was
assessed on unseen non-Congolese timber genera through the implementation of a structured simulation
framework. The evaluation involved partitioning non-Congolese timber specimens into a test set and a
reference set to facilitate genus similarity assessment. A subset of N genera was sampled, and all
corresponding specimens from both sets were selected. Composite images were generated by pairing
each test specimen with each reference specimen, enabling the binary verification model to produce
similarity scores that indicate the likelihood of genus correspondence between the two images. These
similarity scores were then transformed into a normalized probability vector of length N, where each
probability represented the likelihood of the test specimen belonging to a particular genus in the sample.
This transformation followed the methodology detailed in Section 5.3.8 of the Materials and Methods.

To assess the model’s performance under increasing classification difficulty, the evaluation was repeated
across seven values of N, representing the number of genera sampled (see Table 8.2). As N increased, the
classification task became more challenging due to a larger verification set. For each value of N, the
sampling process was repeated m times (e.g., N = 10 with m = 50 repetitions) to ensure result robustness.
In each repetition, key performance metrics were calculated, including accuracy, macro-averaged
precision, recall, and F1-score. Additionally, top-k accuracy was analysed by computing the area under the
cumulative distribution of ranked genus predictions and identifying the smallest k required to achieve 95%
accuracy. Results are summarized in Figure 5.9, which includes six subplots—one for each metric—
showing performance trends as a function of N. Each data point reflects the average metric across
repetitions, with error bars indicating the standard error of the mean (SEM), and numerical values of mean
= SEM displayed above.
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Figure 5.9: Performance evaluation of a binary verification model on unseen non-Congolese timbers, showing accuracy (top left,
green), precision (top right, red), recall (centre left, blue), F1-score (centre right, purple), AUC for top K accuracy (bottom left, yellow),
and 95% rank for top K accuracy (bottom right, pink) across different numbers of genera (x-axis). Metrics for each number of genera
are visualized as points with metric value (y-value) printed on the right of each point. Each point demonstrates error bars representing
the 95% confidence interval around every metric value, based on the metric values of each simulation for that point.

The accuracy, precision, recall, and F1-score, in Figure 5.9 curves exhibit matching decreasing patterns
across all tested values of numbers of genera (N). For each N, the average values of these metrics are close
to one another, and their associated standard errors of the mean are consistently between 0.01 and 0.02,
indicating a high degree of stability in the model’s predictions across all X simulation runs for each N. As
the number of considered genera (N) increases, the accuracy, precision, recall, and F1-score decrease, as
the curves stabilize. The AUC of the top-k CDF remains relatively stable across all values of N, suggesting
that the model consistently maintains its ability to rank the correct genus among the top predictions across
numbers of considered genera (N). AUC values closer to 1 indicate ideal model ranking performance and
values near 0.5 suggest random guessing. The observed values between 0.90-0.94 suggest that the model
is generally successful in prioritizing the correct genus in its ranked predictions. The 95% rank for top-k
accuracy further supports this interpretation. As N increases, a larger number of top predicted classes
must be considered to capture 95% of the correct predictions. For example, when classifying among 100
unknown genera, the correct genus falls within the top 23 predictions in 95% of cases. However, the
proportion of genera remains stable across different values of N, with the average proportion and standard
mean of error being 0.29 = 0.02, indicating that approximately the top 30% predicted genera must be
considered to be correct in 95% of the cases.
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5.5 Discussion

The results indicate that, despite methodological differences, all models capture similar underlying
patterns, as evidenced by the positive correlation between their predictions in the matrices. This is further
demonstrated by the fact that the probability of a model with a correct classification, given that another
model is correct, consistently exceeds the model’s overall accuracy—an observation that holds for all
models. This suggests that models tend to classify the same specimens correctly more frequently than
expected by chance. Correlations between human and CNN-based classification have been explored in
other research domains, where studies have examined that both extract similar patterns and achieve
comparable accuracies (Thoidis et al., 2023). Despite this shared capacity for pattern recognition, CNNs
consistently outperform the RF model, likely due to their ability to directly extract discriminative features
from images rather than relying on predefined expert-defined features. This is evident in the skewed
matrices, where CNNs correctly classify test specimens that RF misclassifies more frequently than the
reverse. This aligns with the expectation that CNNs, by learning image representations, capture finer-
grained details that RF models cannot access. These findings are corroborated by literature, such as the
study by Knauer et al. (2019), which demonstrated that CNNs surpassed machine-learning approaches like
RF and SVMs in tree species identification based on hyperspectral image data (Knauer et al., 2019). The
CNN model in that study was able to intrinsically integrate spectral and spatial information, achieving
superior performance levels comparable to RF and SVM models that relied on handcrafted features,
reinforcing the broader advantage of CNNs in feature extraction.

In commercial timber classification, the good performance metrics are primarily attributed to the reduced
taxonomic scope, which simplifies the classification task and generally leads to higher accuracy (Ali et al.,
2024). However, this trend does not apply uniformly across all genera. Certain genera exhibit lower F1-
scores when trained exclusively on a restricted dataset of commercial timbers. This phenomenon could be
attributed to CNNs trained on the full dataset learning more generalized, texture-based features, whereas
models trained on commercial genera only can be overfit to superficial differences, thereby reducing their
capacity for generalization.

The top-k accuracy findings further underscore the effectiveness of deep learning in timber genus
identification across both ecological and commercial contexts. In high-diversity environments (such as the
broad range of tree species in the Congo basin), CNN-based models achieve a 95% probability of correct
genus classification when considering the top 40-50 ranked predictions of the 286 genera (approximately
top 16% of all genera), whereas for commercial timber classification, this confidence threshold is reached
with only the top 4-6 predicted genera for the 56 commercial genera (approximately top 7% of all genera).
These results quantify the practical utility of CNN-based classification pipelines for large-scale timber
identification with only the macroscopic cross-sectional wood anatomy. They also emphasize the
importance of considering not only the timber class with this highest probability. Research by De Oliveira
et al. (2019) confirms that CNNs trained for wood classification can frequently assign the correct timber
label as the second or third most probable prediction, highlighting the importance of considering
predictions beyond the top-ranked classification (De Oliveira et al., 2019). However, these outcomes do
not represent the upper limit of what can be achieved using macroscopic cross-sectional data. Increasing
the number of specimens in the training dataset has the potential to further enhance model performance.
This is supported by findings from a study published as part of conference proceedings at the 26" [IUFROO
world congress (Stockholm, Sweden 2024), demonstrating that multiclass classification of the same
Congolese commercial genera, using five-fold cross-validation, achieved stable accuracies of 0.95 across
folds (De Blaere et al., 2024). Their dataset, which comprised 1,519 specimens digitized similarly as the
SmartWoodID specimens, featured a broader range of cross-sections, contributing to improved
classification robustness.

Object re-identification offers expanded opportunities for automated wood identification beyond
traditional multiclass classification. The binary verification approach achieved performance comparable
to the multiclass CNN. This method presents a viable and accessible alternative for developing wood
identification models, with the added advantage of successfully verifying timbers it had never encountered
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during training. Although performance on the non-Congolese timber genera decreases when verifying to a
higher number of considered classes, the proportion of considered classes to reach 95% probability
remains stable at approximately the top 30% of predicted genera. This indicates that the identification
probability of unseen timbers is lower, compared to the Congolese timber genera the model was trained
on. Object re-identification offers additional advantages for wood identification, particularly in terms of
scalability and adaptability. Unlike traditional multiclass classification models, which require training on a
fixed set of timbers and must be retrained whenever new timbers are introduced, an object re-identification
model can operate flexibly across diverse datasets. This eliminates the need for maintaining numerous
separate multiclass models, reducing the burden of data collection and enhancing deployment efficiency.
Additionally, running multiple independent classification models can lead to inconsistencies, reduced
interpretability, and challenges in maintaining model stability. In contrast, a re-identification approach
allows a single model to generalize across different timber datasets, facilitating seamless updates and
broader applicability. Forensic research also benefits from object re-identification, as it not only classifies
specimens but also retrieves the most closely matching reference samples. This enhances interpretability
by providing direct comparisons to vouchered specimens, strengthening the reliability of forensic
conclusions. Furthermore, a single re-identification model can integrate digitized specimens from multiple
institutional collections worldwide, allowing forensic cases to be examined against a far more extensive
and diverse set of reference materials. This level of global collaboration significantly improves
identification accuracy, as the model can match with the most well-documented and vouchered
specimens across various collections, rather than relying on a single institutional dataset. A key limitation
of the binary verification approach is its reduced ability to rank multiple class predictions effectively, as it
prioritizes minimizing classification error through optimal threshold selection rather than optimizing
ranking accuracy (Chen et al., 2017). Unlike multiclass classification, which assigns probabilities to all
possible classes and facilitates ranking based on confidence scores, binary verification generates only a
similarity score for each pairwise comparison, necessitating post-classification processing to derive a
ranked list. Consequently, the binary verification model is more prone to misranking closely related timber
genera, increasing the likelihood of incorrect top-1 predictions. This limitation is reflected in the lower top-
1 accuracy observed in the top-k accuracy analysis for both the full set of Congolese tree species and the
commercial subset. Furthermore, the 95% cumulative threshold analysis confirms this discrepancy, as the
binary verification approach requires eight additional predicted classes (ranks k) to reach this threshold
compared to the multiclass model for the full Congolese dataset. However, results also indicate that
reducing the taxonomic scope can mitigate this issue. For the commercial subset, the binary verification
model achieves the 95% cumulative threshold with fewer additional ranks than the multiclass CNN. The
assessment of performance on unseen non-Congolese timbers underscores this, as a lower nhumber of
possible genera resulted in higher accuracy, precision, recall, and F1 score. Chen et al. (2017) suggests
that integrating a ranking-based loss function could enhance the model’s ability to distinguish between
highly similar genera while preserving classification performance (Chen et al., 2017). Performance could
also potentially be improved by changing the backbone architecture, loss functions or hyperparameters
(e.g. batch size, learning rate, ...). Another key limitation of the binary verification approach is its reliance
on generating large numbers of image pairs between test and reference specimens, which significantly
increases computational demands (Chen et al., 2017; Hermans et al., 2017). We note that this could have
influenced the results by limiting the scope of the reference database and the number of available patches
per test specimen to accommodate evaluation in this study. Still the results provide clear indication of this
techniques’ potential for field application and for further accuracy improvement. In addition, while the
computational demands pose challenges for large-scale applications—where processing times may
become prohibitively long (see 0)—it remains a practical solution for forensic casework. For example,
comparing a single unknown specimen (1x1 cm or four 0.5%0.5 cm patches) against a reference set of 600
commercial genera would take approximately six minutes using the computational resources available in
this study. Processing time could be further reduced by optimizing hardware, using a smaller reference set,
or implementing a multi-step approach. One such approach could involve an initial stage that narrows
down the verification to a limited set of reference specimens per genus. This refined selection could then
be verified against multiple specimens and multiple image patches per specimen, ensuring a reliable
identification while maintaining efficiency. The binary verification approach also provides promising
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perspectives for ruling out certain timbers. Wood verification is a crucial process in tiered approaches to
highlight suspicious cargo for further forensic in-depth analysis. The binary verification methodology aligns
with the desired output for wood verification, producing a single independent score representing possible
matches to a selection of timbers. For example, the binary verification model can reference expertise
samples to a limited number of internationally protected timbers, providing a direct similarity score and
enabling a fast and accurate screening of cargo.

In contrast, the embedding-based object re-identification approach using triplet loss provides less doubt
in ranking classes and is more computationally efficient (Chen et al., 2017; Hermans et al., 2017; Schroff
et al., 2015). By transforming reference images into embedding vectors, the reference database can be
stored in tabular form, requiring minimal memory while enabling rapid predictions using machine-learning
methods such as RF or K Nearest Neighbours with cosine similarity. However, in this study, embedding-
based object re-identification consistently underperformed across all evaluation metrics—including
accuracy, precision, recall, F1-score, matrices, scatterplots, and top-k accuracy—indicating poor
generalisation. This contrasts with the performance of the binary verification approach, despite both
methods utilizing the same backbone CNN architecture, augmentation strategies, dataset balancing
techniques, and an identical mining strategy that selected hard anchor-positive-negative examples based
onh macroscopic wood anatomical descriptions to optimize learning for look-alike genera. Existing literature
suggests that embedding-based performance can be improved by incorporating more advanced mining
strategies, such as online learning, where the model dynamically selects the most challenging triplet
combinations based on its own performance rather than relying on predefined macroscopic wood
anatomical features (Hermans et al., 2017; Schroff et al., 2015). This approach enhances training efficiency
by prioritizing samples where the model struggles most. While these techniques have been successfully
implemented in frameworks like PyTorch, their integration within TensorFlow proved challenging in this
study. Further improvements may be achievable using more advanced loss functions, such as histogram
loss, which can optimize the distribution of embeddings in feature space more effectively (Ustinova and
Lempitsky, 2016). Additionally, integrating classification-reconstruction learning approaches, such as the
CROSR framework, could enhance open-world classification performance (Yoshihashi et al., 2019).

Despite the suboptimal performance observed in this study, embedding-based object re-identification
remains a promising avenue for advancing CV-based wood identification, given its success in other
domains (Bai et al., 2018; Chen et al., 2023; Ghosh et al., 2023; Hermans et al., 2017; Kumar et al., 2020;
Schroff et al., 2015; Shen et al., n.d.; Ye et al., 2024). Beyond its computational efficiency, this approach
holds significant potential for integration with other diagnostic information within a unified framework. The
embeddings generated by the CNN function as numerical fingerprints of macroscopic wood anatomy,
encoding diagnostic features as fixed-length vectors. This data format aligns well with other established
methods, such as microscopic wood anatomical assessment and DART-TOFMS. Microscopic wood
anatomy, the most traditional wood identification approach, encodes diagnostic traits from all three
anatomical planes into a structured vector based on qualitative observations (Committee, 2004; NS, 1989;
Wheeler, 2011). DART-TOFMS generates chemical fingerprints by ionizing wood compounds and analysing
their mass-to-charge ratios (Deklerck, 2022, 2019; Deklerck et al., 2020). Since all three techniques
produce structured numerical representations of wood characteristics, they offer the potential for
integration into machine-learning or deep learning models. By combining macroscopic, microscopic, and
chemical data, future models could substantially enhance diagnostic accuracy, potentially enabling fine-
grained identification at the species, subspecies, or populations. This is also suggested by Knauer et al.
(2019) demonstrating that combining different models for tree identification can yield improved results
(Knauer et al., 2019).
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5.6 Conclusion

This study demonstrates the potential of deep learning for automated timber genus identification. The
results highlight that while all classification models capture similar underlying patterns, CNNs outperform
RF models on IAWA anatomical features due to their ability to extract discriminative image features without
relying on predefined descriptors. Performance trends across different taxonomic scopes emphasize the
importance of training data diversity, as models trained on broader datasets exhibit greater generalization
capabilities compared to those trained exclusively on commercial timbers.

Beyond standard multiclass classification, object re-identification approaches provide valuable
alternatives, particularly in forensic contexts where identification may be less critical than ruling out
certain timbers. The binary verification approach demonstrates strong performance in this regard, though
effectiveness is constrained by ranking limitations and computational demands. Embedding-based re-
identification, while computationally efficient, underperforms in this study, suggesting that improved
mining strategies and loss functions could enhance its reliability. Additionally, object re-identification
produces information on similarity to specific reference specimens, rather than producing a direct
prediction of classes (e.g. genera in this study), providing valuable information for forensic researchers.

Future research should address the limitations of embedding-based models using the current state-of-the-
art to offer a powerful approach for automated wood identification. These models should be explored in
hybrid studies that integrate multiple diagnostic data modalities—macroscopic images, microscopic
wood anatomy, and chemical fingerprinting—to improve classification accuracy and enable identification
at sharper taxonomic resolution. As global efforts to combat illegal logging and enforce sustainable trade
regulations intensify, advancing Al-driven timber identification will be essential for strengthening forensic
capabilities and ensuring responsible resource management.
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6.1 Abstract

As reported in Chapter 3, using expert-defined anatomical features for classifying commercial timbers
results in limited accuracy, with genus-level identification reaching only around 53%. However, these
features were effective for distinguishing closely related taxa, such as different species of Pterocarpus. In
contrast, Chapter 5 demonstrated that CNNs perform well across broad taxonomic ranges (e.g. all
Congolese tree species and commercial species). The binary verification approach, in particular, showed
strong generalization with high accuracy, precision, recall, and F1-score on both trained (Congolese) and
untrained timbers—including the correct genus in 95% of the specimens when considering the top 7% of
predicted genera for Congolese timbers and up to 30% for non-Congolese timbers. Still, CNNs do not
necessarily rely on the diagnostic patterns used by wood anatomists for classification. Therefore, expert-
defined anatomical features may offer complementary information that can help refine or validate the top
predicted taxa generated by a CNN.

This chapter evaluates a re-ranking framework where expert-defined features are used in RF models to
refine CNN genus predictions. This chapter explores the tiering of computer-extracted CNN and expert-
defined macroscopic cross-sectional wood anatomy to improve the accuracy, precision, and sensitivity
(recall) of genus identification. Results show that while CNNs extract diagnostic patterns, targeted re-
ranking—especially within the top three to five predictions—yields modest but consistent performance
gains. Beyond this range, refinement leads to general performance becoming lower than without re-
ranking, particularly in genera with overlapping or ambiguous anatomical traits. Moreover, re-ranking is not
always beneficial: around one-third of the 56 evaluated genera showed decreased performance, most
notably in sensitivity (recall). This decline in recall is especially concerning in regulatory applications,
where speed, accessibility, and high sensitivity are essential—such as verifying timber species noted in
trade documentation and identifying protected taxa. Misclassifying CITES-listed species, such as within
the genus Khaya, would be problematic. These findings underscore the value of integrating CNNs with
expert knowledge but emphasize the need for targeted, genus-specific refining to enhance diagnostic
accuracy without compromising the reliability or practicality of field-based timber verification systems.

This chapter is not submitted to a peer-reviewed journal on 19/08/2025.
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6.2 Introduction

Macroscopic cross-sectional wood anatomy has been studied thoroughly for wood identification in field
settings, due to the ease with which diagnostic features can be observed (Ravindran et al., 2021; Ruffinatto
et al., 2015). Identification is typically performed by examining the endgrain surface of a cut or sanded
specimen, using the naked eye or a hand lens to assess anatomical features such as vessel arrangement,
ray width, and parenchyma patterns (Koch et al., 2018; Naturalis Biodiversity center, 2025; Ruffinatto et al.,
2015). These observations are then entered with identification keys, which are available online for different
geographic or taxonomic groups of timbers (Malaysian Timber Council, 2018; Richter et al., 2017;
Ruffinatto and Crivellaro, 2019). In CV-based wood identification, an image of the endgrain surface is
captured and processed directly by an Al model (Hwang and Sugiyama, 2021; Silva et al., 2022). One
example is the Xylotron, which uses a purpose-built imaging device (the ‘xyloscope’) to standardize image
acquisition, ensuring compatibility with the data used to train the model (Ravindran et al., 2020, 2019).
Other tools, such as the Xylorix smartphone app, rely on integrated smartphone cameras, requiring careful
image augmentation to minimize decrease in performance due to differences in camera hardware and
settings (Artemoy, 2025; Tang and Tay, 2019).

In Chapter 3 of this dissertation the classification performance of expert-defined anatomical features was
investigated, while in Chapter 4 and 5 features were extracted automatically through CV (specifically
CNNSs). Expert-defined macroscopic features yielded limited accuracy—achieving a maximum of 52.86%
accuracy across Congolese commercial timber genera using a RF classifier. However, within narrow
taxonomic groups, such as species within the genus Pterocarpus, these features proved more effective. By
contrast, CNNs demonstrated significantly higher classification performance across broader taxonomic
ranges. In particular, the binary verification approach studied in Chapter 5 produced high accuracy,
precision, recall, and F1-score not only on timbers from the training set (Congolese species) but also on
unseen timbers from other regions. Nevertheless, for accurate genus-level classification, it was necessary
to consider the top 7% of predicted genera for Congolese timbers and up to 30% for non-Congolese
specimens to include the correct genus in 95% of cases. For practical applications, this translates to
reviewing the top 4-6 predictions for the 56 Congolese commercial genera (see section 5.4.4).

These findings highlight the potentially complementary strengths of both approaches. While expert-
defined features are effective at distinguishing among similar-looking timbers within a narrow range, CNNs
are better suited for broader classification tasks. The integration of both methods leverages their
complementary strengths, enhancing both the accuracy and precision of timber identification. Combining
methodologies that rely on different diagnostic patterns has proven to increase the performance of wood
identification (Dormontt et al., 2015; Knauer et al., 2019). Chapter 4 further supports this integration,
showing that CNNs activate regions on images with clear anatomy for classification, as visualized through
gradient-weighted class activation maps. However, the features used by CNNs do not align directly with
traditional anatomical descriptors, suggesting that expert-defined features could add complementary
value.

This study investigates whether integrating expert-defined macroscopic wood anatomical features can
improve genus-level timber identification by refining the predictions of a CNN binary verification model.
Using specimens of Congolese commercial timber from the SmartWoodID database, we evaluate a tiered
re-ranking approach that applies anatomical features to the CNN’s top-k predicted genera (from top-2 to
top-10). The aim is to assess the extent to which expert knowledge can enhance classification accuracy,
precision, recall, and F1-score—both overall and at the genus level—for the forensic identification of traded
timber products.
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6.3 Material and methods
6.3.1 Dataset Description

This chapter is based on the SmartWoodID database, serving as a valuable resource for examining the
relationship between macroscopic cross-sectional wood anatomy and the botanical diversity of
Congolese tree taxa (De Blaere et al., 2023). The following information in this section, re-uses the text in
section 1.5 which provides an overview of all data used in each chapter.

The database contains high-resolution RGB scans of the macroscopic end-grain surfaces of 3,742 wood
specimens, representing 954 species native to the DRC. Each specimen was prepared by scanning the
cross-section at 2400 dpi using a flatbed scanner. This resolution allows for the visualization of
macroscopic features essential for wood identification.

Species and lower taxa are represented by multiple specimens, capturing both intra- and interspecific
anatomical variation. This makes the database well-suited for studying wood identification using
macroscopic anatomy. A complete overview of the database is provided in Chapter 2 and in De Blaere et
al. (2023) (De Blaere et al., 2023), while Supplementary Materials Table 8.1 all unique specimen identifiers
and metadata. To enable machine learning analysis, we selected only species represented by at least two
specimens. This set comprises 2,296 digitized specimens across 601 species, 286 genera, and 64 families.
Discriminatory power was mainly assessed by training and evaluating classification models on the
specimens. Therefore, specimens were allocated random to training (75%) or test set (25%), while
preserving distribution of species across both sets. Within both sets, a subset of 78 commercially
important species was defined for targeted evaluation. An overview of the chapters, designated datasets
used in each chapter and of which hypothesis they target is provided in section 1.4.

Macroscopic wood anatomical features were described for each end-grain image of the SmartWoodID
specimens (see chapter 2, Table 2.2; and De Blaere et al. (2023) (De Blaere et al., 2023)). Each feature is
assigned a Macroscopic IAWA feature number (Ruffinatto et al., 2015). We did not use descriptions on the
presence of growth rings as the discernability at the used resolution was often not high enough to assess
this feature with certainty. Each feature is annotated with one of four states: Present (clearly visible),
Variable (sporadically observed), Absent (rarely observed, below the threshold for Variable), or NA
(undiscernible due to resolution limits or ambiguous visual cues).

Given the large size of the scanned end-grain surfaces, directly processing full images is computationally
expensive and may lead to overfitting due to the limited number of images. To address this, the fullimages
were cropped into smaller, non-overlapping patches that retained diagnostic features while capturing
anatomical variability. We selected patch dimensions of 512x512 pixels, corresponding to a physical area
of approximately 5.42x5.42 mm, ensuring sufficient detail for anatomical analysis without obscuring
critical features. Fullimages yielding fewer than four patches (i.e., total end-grain surface area below 1 sz)
were excluded to maintain consistency and relevance for anatomical assessment.

Patches were allocated random to training (75%) or validation set (25%), while preserving distribution of
specimens across both sets, using different regions of the same specimens for training and validating.
Furthermore, any full image yielding fewer than four usable patches was removed, as these would cover
less than one square centimetre—below the typical area assessed by a human expert during wood
anatomical identification.

This chapter only applied images and annotations of the subset of commercial timbers. First, the binary
verification CNN (chapter 5) was applied to each test specimen to generate a normalized vector of class
probabilities across 56 commercial timber genera. For further details regarding the image data, data pre-
processing, CNN architecture, training procedures, model selection, and hyperparameter optimization,
see section 5.3.

The second component of the tiered approach involves re-ranking the CNN'’s top predictions—genera with
the highest assigned probability—by using expert-defined macroscopic anatomical features to refine the
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initial ranking. These features are described in detail in section 2.3.6. For each test specimen, a custom
machine-learning classifier was trained using the anatomical annotations of training specimens belonging
to the top-k predicted genera. The re-ranking process was structured incrementally: starting with the top
two predicted genera per specimen, then increasing to the top three, and so on up to the top ten. In Chapter
5 it was shown that for the commercial genera subset, the correct genus is present within the top four
predictionsin 95% of test cases and within the top ten in approximately 99%, justifying the choice to restrict
re-ranking to a range of k from two to ten. RF was selected as the classification technique based on its
consistently strong performance across taxonomic levels. The RF technique was then applied to the same
test specimen to produce a refined probability distribution over the top-k genera. These RF models were
trained using the optimal hyperparameters of the hyperparameter grid (see Table 8.2), which consisted of
200 DTs, a maximum DT depth of 20 nodes, a minimum of two samples to split and a minimum of 1 sample
per leaf. Class weighting was applied to prevent overfitting to genera with more training specimens.

Overall, this integration framework provides a structured means to assess the added value of expert-
defined anatomical features in refining CNN-based genus predictions within a commercially relevant
timber dataset.

A flowchart of the tiered approach is shown in Figure 6.1.
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Figure 6.1: Flowchart showing the re-ranking approach



6.4 Results

The overall performance trends of the tiered approach are presented in Figure 6.2, which plots accuracy
(green), recall (blue), precision (red), and F1-score (purple) as a function of the number of top predicted
genera included for re-ranking. Definitions of those metrics are provided in supplementary materials
section 8.2. The first x-value corresponds to the metric values obtained from the binary verification
approach without any re-ranking. Subsequent points reflect metric values when only the top n predicted
genera (e.g., top 2, top 3, etc.) were re-ranked using a RF classifier trained on macroscopic wood
anatomical features. In the recall, precision, and F1-score plots, each x-value also includes a boxplot
representing the distribution of class-specific (i.e., genus-level) scores, with the grey bar representing the
interquartile range, the points being the macro-average and the coloured line representing the median.
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Figure 6.2: Performance metrics plotted against the number of top predicted genera included in the random
forest re-ranking step using macroscopic wood anatomical features. Accuracy (green), recall (blue), precision
(red), and F1-score (purple) are shown as macro-averaged values across all genera. For recall, precision, and
F1-score, boxplots display the distribution of class-specific values at each level of re-ranking. The first point
represents performance without re-ranking (CNN-only output), while subsequent points reflect increasing
numbers of top predicted genera included in the re-ranking process.

Figure 6.2 demonstrates that refining CNN genus predictions with expert-defined anatomical features
results in moderate but meaningful improvements in classification performance, particularly within the
top-4 predicted genera. Across all considered top-k levels, the averaged metrics (points) remain relatively
stable, with overall means and standard errors of mean (0.741 + 0.012), Recall (0.700 + 0.015), Precision
(0.711 £ 0.018), and F1-score (0.677 £ 0.017), suggesting only minor changes in performance. The median
values of the recall and precision remain 1 for re-ranking in the top four genera, suggesting that most genera
are well classified regardless of re-ranking. In fact, including more top predicted classes allows median
recall and median precision to decrease, indicating that most genera perform worse, likely due to
misclassifications with the macroscopic features. The median values of the F1 score elucidates the
discrepancy between genera with likely different genera having high precision and high recall. The highest
median F1 score is observed when re-ranking the top 2 predicted classes.
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The points (macro-averaged values) and interquartile ranges (boxes on the boxplots) provide further detail
on re-ranking within the top 4 predicted genera by the CNN. All metrics experience an increase in average
value by re-ranking the top predicted genera, with the highest values ranging in re-ranking within the top 4
predicted genera by the CNN. Accuracy peaks when the top two predicted genera are re-ranked using
expert-defined anatomical features. Extending the re-ranking to the top three or four predictions results in
only marginal changes, after which accuracy gradually decreases. Macro-averaged recall improves with re-
ranking up to the top three genera. The stability of the interquartile range suggests that little variability is
introduced in the recall by re-ranking. Precision follows a similar trend, with the highest values observed at
ranks four and five. The interquartile range decreases most notably at rank four, from Q1=0.78 to Q3=1.00,
indicating greater consistency and less genus-specific variability in precision at this point. A narrow Q1-Q3
range in this context implies that the refinement process yields uniformly higher precision across most
genera. F1-score, which balances recall and precision, is also highest for re-ranking up to the top four
predictions. The median values of F1 are consistently lower than those of recall and precision, starting at
0.8 forthe CNN output, peaking at 0.85 for re-ranking the top three predictions, and returning to 0.8 through
rank four before declining after rank 5. This discrepancy suggests that individual genera can exhibit uneven
gains in recall versus precision. The interquartile range for F1 decreases most at rank three/four, indicating
a convergence of genus-specific F1 scores toward higher values and greater uniformity.

To evaluate the impact of re-ranking for each genus individually across different re-ranking depths, recall,
precision, and F1-score were assessed and summarized in Table 6.1,Table 6.2, and Table 6.3. These tables
use a Viridis colour gradient—ranging from yellow (high) to green (intermediate) to blue (low)—to facilitate
visual interpretation of performance changes from no re-ranking (column 1) to re-ranking the top ten
predicted classes. Across these tables, five distinct patterns emerge. The first represents a clear
improvement in metric values due to re-ranking, where the values in column 1 are lower than in subsequent
columns. The second pattern is a decrease in performance, where values decrease relative to the initial
CNN output. The third pattern indicates no substantial change across all re-ranking depths. The fourth
captures genera that show a temporary increase in performance, which then returns to the original (non-
re-ranked) value. Conversely, the fifth scenario involves an initial decrease followed by a return to the
original value. Fourteen genera increase (pattern 1) and sixteen decrease (pattern 2) in recall with re-
ranking, fourteen increase and twenty-two decrease in precision, and sixteen increase and twenty-five
decrease in F1-score. Most remaining genera fall into pattern three, with little to no change observed: 18
for recall, 10 for precision, and 7 for F1-score. Only a small number of genera belong to patterns four and
five. For recall, four genera increase and stabilize, and four other genera show a temporary decrease; for
precision, three genera increase then return to baseline, while seven show the opposite; and for F1-score,
five genera increase then return to baseline, while three show the opposite.

Importantly, the effect of re-ranking is not consistent across genera. Certain genera, such as Antiaris,
Berlinia, Copaifera, Gilbertiodendron, Khaya, Leplaea, Milicia, Terminalia, and Zanthoxylum, show a
decrease in both precision and recall following re-ranking. In contrast, genera including Aningeria,
Autranella, Baillonella, Canarium, Celtis, Klainedoxa, Pachylobus, Staudtia, and Tessmannia show
concurrent improvements in both metrics. Some genera, such as Alstonia, Morus, Ricinodendron, and
Triplochiton were already classified correctly by the CNN and thus remained unaffected by re-ranking.
Others, like Antrocaryon and Beilschmiedia, were consistently misclassified and did not benefit from
refinement. In several cases, re-ranking decreased or increased recall and increased or decreased
precision respectively. For example, genera such as Entandrophragma, Guibourtia, Irvingia, and
Turraeanthus show an increase in one metric and a decrease in the other. Additional genera showed
stability in one metric with either a decrease orincrease in the other, further illustrating the lack of a uniform
effect of re-ranking. Despite general improvements when re-ranking is limited to the top four predictions,
the results clearly demonstrate that refinement using macroscopic anatomical features does not benefit
all genera equally. Approximately 30% of the genera suffer notable decreasesinrecall and 40% in precision
due to re-ranking. Genera such as Antiaris, Gilbertiodendron, Zanthoxylum, Nauclea, Khaya, and Irvingia
consistently decrease in recall across all re-ranking depths. For Guibourtia, Lovoa, and Terminalia, recall
performance decreases notably when re-ranking beyond the top four CNN predictions.
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Table 6.1: Genus-specific recall values across different numbers of top predicted genera included in the re-ranking step
using macroscopic wood anatomical features. Column "1" represents recall values from the original binary verification
model without re-ranking (CNN-only output). Columns "2" through "10" represent increasing numbers of top predicted
genera (e.g., top 2, top 3, etc.) included in the re-ranking step. Recall values range from 0 to 1, with a colour gradient
applied to highlight trends (yellow = high recall, green = intermediate, blue = low recall).

Genus

Number of top predicted genera reshuffled

1

2

3

4 5 6 7 8 9 10

Afzelia

1,00

1,00

1,00

1,00 1,00 1,00 1,00 1,00 1,00 1,00

Albizia

1,00

1,00

1,00

1,00 1,00 1,00 1,00 1,00 1,00 1,00

Alstonia

1,00

1,00

1,00

1,00 1,00 1,00 1,00 1,00 1,00 1,00

Amphimas

1,00

Aningeria

Antiaris

Antrocaryon

Autranella

Baillonella

Beilschmiedia

Berlinia

Bobgunnia

Brachystegia

Canarium

Celtis

Copaifera

Cynometra

Daniellia

Diospyros

Entandrophragma

Erythrophleum

Gambeya

Gilbertiodendron

Guibourtia

Holoptelea

Irvingia

Julbernardia

Khaya

Klainedoxa

Leplaea

1,00

1,00
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1,00

Lophira

Lovoa

Maesopsis

Milicia

Millettia

1,00 1,00 1,00 1,00 1,00 1,00 1,00

Mitragyna

1,00 1,00 1,00 1,00 1,00 1,00 1,00

Morus

Nauclea

Nesogordonia

Ongokea

Pachylobus

Pericopsis

Petersianthus

Piptadeniastrum

Prioria

Pterocarpus

Pterygota

Pycnanthus

Ricinodendron

Staudtia

Terminalia

Tessmannia

Tieghemella

Triplochiton

Turraeanthus

Zanthoxylum
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Table 6.2: Genus-specific precision values across different numbers of top predicted genera included in the re-ranking
step using macroscopic wood anatomical features. Column "1" represents precision values from the original binary
verification model without re-ranking (CNN-only output). Columns "2" through "10" represent increasing numbers of
top predicted genera (e.g., top 2, top 3, etc.) included in the re-ranking step. Precision values range from 0 to 1, with a
colour gradient applied to highlight trends (yellow = high precision, green = intermediate, blue = low precision).

Genus Number of top predicted genera reshuffled

1 2 3 4 5 6 7 8 9
Afzelia 1,00 1,00 1,00 1,00 0,75
Albizia 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Alstonia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Amphimas 1,00 1,00 1,00 1,00 1,00 1,00
Aningeria
Antiaris
Antrocaryon
Autranella
Baillonella 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Beilschmiedia
Berlinia 1,00 0,75 0,75
Bobgunnia 1,00 1,00 1,00 1,00 1,00 1,00
Brachystegia 1,00 1,00 1,00 1,00 1,00
Canarium
Celtis 1,00 1,00 1,00 1,00 1,00
Copaifera 1,00
Cynometra 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Daniellia 1,00 1,00 1,00 1,00 1,00 1,00
Diospyros 1,00
Entandrophragma 0,93 0,80 0,82 0,79 0,79 0,78 0,75 0,75 0,75 0,78
Erythrophleum 1,00 1,00 1,00 1,00
Gambeya 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Gilbertiodendron 1,00 1,00 1,00 1,00 1,00
Guibourtia 0,75 1,00 1,00 1,00 0,75 0,75 0,75 0,75 0,75
Holoptelea 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Irvingia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Julbernardia 1,00 1,00
Khaya
Klainedoxa 1,00 1,00
Leplaea 1,00 0,80 1,00 0,89 0,80 0,80 0,80 0,80 0,89
Lophira 1,00 1,00 1,00
Lovoa 1,00 1,00 1,00 1,00 0,80 1,00 0,80 1,00 1,00
Maesopsis 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Milicia 1,00 1,00 1,00 0,75
Millettia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Mitragyna 1,00 1,00 0,75 0,75
Morus 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Nauclea 1,00 1,00 1,00
Nesogordonia 0,75 0,75 0,75
Ongokea
Pachylobus 1,00 1,00
Pericopsis 1,00 1,00
Petersianthus 1,00 1,00
Piptadeniastrum 1,00
Prioria 1,00 1,00
Pterocarpus 1,00
Pterygota 1,00 1,00 1,00 1,00
Pycnanthus 1,00 1,00 1,00
Ricinodendron 1,00 1,00 1,00 1,00 1,00
Staudtia 1,00 1,00 1,00 1,00 1,00
Terminalia
Tessmannia 1,00 1,00 1,00 1,00
Tieghemella 1,00 1,00 0,80 0,75 0,75 0,75
Triplochiton 1,00 1,00 1,00 1,00 1,00
Turraeanthus
Zanthoxylum
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Table 6.3: Genus-specific F1-scores across different numbers of top predicted genera included in the re-ranking step
using macroscopic wood anatomical features. Column "1" represents F1-scores from the original binary verification
model without re-ranking (CNN-only output). Columns "2" through "10" represent increasing numbers of top predicted
genera (e.g., top 2, top 3, etc.) included in the re-ranking step. F1-scores range from 0 to 1, with a colour gradient applied
to highlight trends (yellow = high F1-score, green = intermediate, blue = low F1-score).

Genus Number of top predicted genera reshuffled

1 2 3 4 5 6 7 8 9
Afzelia 1,00 0,80 1,00 1,00 1,00 0,86 0,80 0,80 0,75 0,80
Albizia 1,00 0,80 1,00 1,00 1,00 1,00 1,00 0,80 1,00 0,80
Alstonia 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Amphimas 1,00 0,80 1,00 1,00 0,80 0,80 0,80 1,00 1,00 1,00
Aningeria
Antiaris
Antrocaryon
Autranella
Baillonella 1,00 1,00 0,80 1,00 1,00 1,00 1,00
Beilschmiedia
Berlinia 1,00 0,86 0,86
Bobgunnia 0,80 1,00 1,00 0,80
Brachystegia 1,00
Canarium 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80
Celtis 1,00
Copaifera 1,00 0,80
Cynometra 0,80 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Daniellia 1,00 1,00 1,00 1,00 1,00 1,00
Diospyros
Entandrophragma 0,87 0,86 0,82 0,83 0,83 0,80 0,81 0,81 0,81 0,80
Erythrophleum 0,80 0,80
Gambeya
Gilbertiodendron 1,00
Guibourtia 0,80 0,75 1,00 1,00 0,86 0,75 0,75 0,75 0,75 0,75
Holoptelea 1,00 1,00 1,00 1,00
Irvingia
Julbernardia 1,00 1,00
Khaya 0,77
Klainedoxa 1,00 0,80 0,80 0,80 0,80 0,80 1,00 0,80
Leplaea 1,00 0,84 1,00 0,89 0,84 0,84 0,84 0,84 0,89 0,80
Lophira 1,00 1,00 1,00 0,80 0,80 0,80 0,80 0,80
Lovoa 1,00 1,00 1,00 0,91 0,91 0,91 0,91
Maesopsis 1,00 1,00 1,00 1,00 0,80 1,00 1,00 1,00 1,00
Milicia 1,00 1,00 1,00 0,86
Millettia 1,00 0,80 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Mitragyna 1,00 0,75 1,00 0,86 0,86 0,75 0,75 0,75 0,75
Morus 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Nauclea 1,00
Nesogordonia 0,86 0,75 0,75 0,75 0,75
Ongokea 1,00 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80
Pachylobus 1,00 1,00 1,00 1,00 1,00
Pericopsis 1,00 0,80 1,00 1,00 0,80 0,80
Petersianthus 1,00
Piptadeniastrum 0,80 1,00 1,00 1,00 1,00 0,80 1,00 0,80 0,80
Prioria 1,00 0,86 0,86 0,86 0,86 0,86 0,86 1,00 0,86
Pterocarpus 1,00 0,80 1,00 0,89 0,84 0,89 0,84 0,80 0,84 0,80
Pterygota 1,00 1,00 0,80
Pycnanthus 1,00 1,00 1,00 1,00 1,00
Ricinodendron 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Staudtia 1,00 1,00
Terminalia
Tessmannia 0,86 0,89 0,80 1,00 0,86 0,86 1,00 1,00
Tieghemella 0,86 0,75 1,00 0,89 0,75 0,75 0,75
Triplochiton 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Turraeanthus 0,86 0,86 0,75 0,75 0,75 0,75
Zanthoxylum
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6.5 Discussion

Previous research has emphasized the value of combining multiple techniques to enhance wood
identification. Dormontt et al. (2015) proposed that integrating several methods is essential for improving
diagnostic accuracy and narrowing the taxonomic resolution in forensic wood investigations (Dormontt et
al., 2015). Research by Knauer et al. (2019), also demonstrated that refining CNN predictions with RF
classifiers (of different size and operating in different feature spaces) for tree species identification using
hyperspectral image information can significantly improve tree species identification (Knauer et al., 2019).
These studies all indicate that leveraging diverse diagnostic features—such as microscopic anatomical
characteristics, wood chemical composition, or DNA—can offer complementary information, thereby
improving both the accuracy and the taxonomic specificity of wood identification systems.

The results of our approach on the accessible macroscopic cross-section, which combines CV with expert-
defined anatomical features, highlight the nuanced effects of re-ranking CNN genus predictions using
expert-defined macroscopic wood anatomical features on the endgrain. While the integration of expert-
defined features through RF models can lead to modest improvements in performance (accuracy, recall,
and precision), the benefits are not uniform across all genera. Median values of recall and precision remain
stable up to the top 4 re-ranked predictions, indicating that most genera are well classified by the CNN
output alone. This is underscored by the analysis on individual genera, with no change in recall observed
for 18 out of the 56 genera and no change in precision observed for 10 out of 56 genera. This suggests that
the CNN approach already captures valuable taxonomic signals from the images, and in many cases, re-
ranking may offer limited or no added benefit.

This limited improvement in performance following re-ranking may be attributed to the hard mining strategy
employed during training of the binary verification CNN (for additional details see section 5.3.7). In object
re-identification tasks—such as binary verification—model robustness is enhanced by selectively training
on the most challenging specimen pairs rather than on easy (highly dissimilar) examples (Ghosh et al.,
2023; Hermans et al., 2017). For this model, hard negatives were systematically generated based on the
same expert-defined macroscopic anatomical features, prioritizing specimen pairs that shared similar
standardized anatomical patterns in endgrain sections. As a result, the binary verification CNN was
implicitly encouraged to learn discriminative features that extend beyond those defined by traditional
anatomical descriptors. This training strategy likely enabled the CNN to extract subtle diagnostic signals
from the wood images that are not easily captured by predefined macroscopic features alone, thereby
explaining the limited gains observed through subsequent re-ranking using RF models.

Nonetheless, improvements can be observed when re-ranking is applied judiciously. Across various
metrics, re-ranking within the top two to four CNN predictions resulted inincreased performance (averaged
across genera). Specifically, the top 3 yields the most consistent gains across accuracy, recall, precision,
and F1-score, with the narrowest interquartile range in precision and F1-score occurring at this number of
genera. Beyond the top four predictions, classification performance begins to decrease, indicating that
incorporating macroscopic features for lower-ranked genera may introduce noise. This is likely due to the
RF model assigning proportionally larger probabilities to incorrect genera suggesting that re-ranking with
lower-ranked genera introduces noise, and thereby misguiding the re-ranking process. This underscores
the limitations of macroscopic wood anatomical features observed in chapter 3 and provides perspective
on the limited range where these anatomical features can provide compelling value at refining CNN-based
predictions.

The analysis on individual genera further supports this interpretation. While recall improvement is
observed in 25% of the genera (for example for Aningeria, Canarium, and Tessmannia) across all three
metrics (recall, precision, and F1-score) due to re-ranking, 29% of genera shows a decrease. This
divergence highlights that re-ranking with expert-defined anatomical features is not uniformly
advantageous and may be taxon-dependent. A key explanation could lie in differences in field-of-view.
Whereas the CNN operates on fixed-size cropped patches, the expert-defined features were annotated
across entire scans, reflecting a broader context. Certain diagnostic traits—such as banded or confluent
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parenchyma, orirregular vessel groupings—are not uniformly distributed across the wood surface and may
only become apparent at larger scales or through multi-scale assessment. Consequently, the CNN may
miss features that experts can reliably recognize by zooming in and out or scanning across surfaces,
enhancing the synergy between the two approaches. This underscores the importance of future research
on how FOV, image resolution, and multi-scale anatomical integration affect CV-based wood identification.
Developing strategies that explicitly incorporate scale-adaptive representations could help bridge the gap
between patch-based cv-based models and anatomical assessment.

The diverging results on the individual genera also underscores that re-ranking is not a universally beneficial
strategy, and application in forensic cases should be targeted at specific cases (genera) and not be
performed blindly. This awareness raises the difficulty of applying such approaches in the field. Moreover,
the results show that recall and precision do not always move in the same direction. Several genera
experience increased precision but reduced recall, or vice versa. This asymmetry carries important
implications in the context of timber verification for detecting illegal logging of protected timbers. From a
regulatory screening standpoint, a decrease in recall is more problematic than in precision. Failing to
identify a true positive (e.g. a protected timber species) is a more critical error than generating a false
positive. This trade-off is particularly evident for high-priority genera such as Khaya, listed under CITES
Appendix I (CITES, 2022¢c; UNEP-WCMC (Comps.), 2022). Applying the re-ranking approach on specimens
of threatened timber genera resulted in an immediate and consistent decrease in recall. This outcome
poses a tangible risk in real-world applications, as it may lead to under-detection of protected species,
potentially facilitating illegal trade. Therefore, caution must be exercised when applying refinement
methods that rely on macroscopic cross-sectional features. Additional diagnostic information, such as
microscopic anatomical features or visual assessment using visual keys (Leggett and Kirchoff, 2011), may
provide the necessary detail to improve identification accuracy without compromising recall. Incorporating
such features, albeit easy to observe in field conditions (e.g. warehouse, forest, roadside), could help
capture taxonomically relevant traits, enabling more reliable refinement of CNN predictions in forensic
timber identification in field conditions.

An additional factor influencing the effectiveness of re-ranking could be the presence of taxonomic look-
alikes. Many timber genera share macroscopic in cross-sectional features as evident from the observed
clusters in section 3.1.6 such as similar vessel arrangements or parenchyma patterns. When such genera
co-occur in the top k CNN predictions, re-ranking has the potential to refine the ordering by leveraging
complementary anatomical descriptors. However, in cases where the CNN has already implicitly learned
to discriminate these subtle traits—partly due to the hard negative mining strategy employed during
training—the added value of re-ranking diminishes.

The critical challenge then lies in defining what constitutes a look-alike. Both CV-based extracted features
and expert-defined features are derived from the same underlying visual information, but the effective field-
of-view may shift the balance. A CNN restricted to cropped patches may fail to capture diagnostic traits
visible only at larger scales, while expert annotations operate across the full cross-section, potentially
recognizing features outside the CNN'’s receptive field. This raises the question of whether look-alike
relationships should be determined primarily by CNN similarity metrics, anatomical descriptors, or a
hybrid strategy. Multi-scale approaches offer a promising way forward, as they could align the CNN’s
representational scope more closely with expert assessment, enabling more robust differentiation of
visually similar genera and a better understanding of when re-ranking adds diagnostic value.
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6.6 Conclusion

This study demonstrates that while integrating expert-defined macroscopic anatomical features can yield
moderate improvements in CNN-based genus predictions, these benefits are highly dependent on both
the specific genera and the depth of re-ranking applied. The overall results affirm that CNN models alone
already encode substantial taxonomic information, likely due to their training on challenging diagnostic
comparisons that extend beyond traditional anatomical descriptors. Crucially, re-ranking within the top
two to five CNN predictions offers the most consistent performance gains across accuracy, precision, and
recall—especially at the top three threshold. Beyond this range, performance diminishes due to
misclassifications introduced by overemphasizing weak or misleading anatomical features. This finding
underscores the limited but strategic utility of macroscopic cross-sectional wood anatomy for refining
identifications. From a field application perspective, particularly in the context of frontline timber
verification, the implications are twofold. First, the CNN model offers a rapid and accessible method for
genus-level identification that already performs well in most cases. Second, refinement methods such as
re-ranking must be applied selectively, as indiscriminate use—especially on protected taxa—can reduce
recall, increasing the risk of overlooking high-priority timbers such as Khaya. Future research on field
implementations should aim for using different diagnostic information that provides complementary value
for refining wood identifications.
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7 General discussion

7.1 Evaluating expert-defined macroscopic cross-sectional features
for identification of Congolese tree species

The need for rapid and accessible wood identification remains pressing, particularly in the context of
regulating timber trade and enforcing regulations to halt illegal logging (Gasson et al., 2021; Hirschberger,
2008; Hoare, 2015; Magrath et al., 2009; Piabuo et al., 2021; Van Brusselen et al., 2023). Given the volume
of timber shipments and the limited movement space often encountered in warehouses and containers,
speed and practicality are essential (Dormontt et al., 2015; Tacconi, 2012; Thompson and Magrath, 2021).
Therefore, field officers currently rely primarily on manual macroscopic assessment using simple, low-
cost tools such as a sharp cutter, a 10x or 15% hand lens, and a field guide (Koch et al., 2018; Wheeler and
Baas, 1998). Typically, cross-sectional wood anatomy is exposed, and the specimen is compared against
standardized anatomical descriptors or reference images of expected timber species (Leggett and
Kirchoff, 2011; Tardif and Conciatori, 2015; Wheeler and Baas, 1998). The objective of this study was to
assess the feasibility of authenticating the botanical identity of timbers in species-rich contexts, where
many morphologically similar taxa coexist, using the most accessible diagnostic information in the field:
macroscopic cross-sectional wood anatomy. Chapter 3 assessed the diagnostic potential of expert-
defined macroscopic features using the SmartWoodID dataset (hypothesis 2). While practical for field use,
these features had not been systematically evaluated. However, as demonstrated in Chapter 3, the
discriminatory power of those accessible and frequently used expert-defined anatomical features is
limited when applied across the diverse range of timbers in the DRC. Two-way clustering of 601 species
suggested an optimal partitioning into six groups based on Mantel test (Borcard et al., 2011), indicating a
broad anatomical overlap. Predictive modelling (classification) using these features achieved
approximately 50% accuracy at the genus level when restricted to 56 Congolese commercial genera.
Chapter 5 underscored these findings, showing that macroscopic cross-sectional features also yielded
low recall and precision, approximately 50% for commercial genera and around 30% when considering all
Congolese species (hypothesis 4.1). Moreover, rank-based accuracy analysis confirmed the limited
discriminatory capacity of macroscopic features: to achieve a 95% probability of including the correct
genus among the top predictions, one would have to consider 36 out of 56 commercial genera. These
results indicate that, in species-rich contexts such as the DRC, macroscopic anatomical assessment of
the cross-section alone is insufficiently reliable for wood identification across a broad range of timbers.
This emphasizes the importance of incorporating more anatomical features available across all three
principal anatomical planes—cross-section, radial, and tangential—and at multiple levels of
magnification, to improve diagnostic accuracy and enable finer taxonomic resolution in wood
identification workflows.

The low performance of classification based on expert-defined features in this study is likely due to the
limited number of anatomical features observable on the cross-section at macroscopic resolution. A full
anatomical assessment incorporates up to 163 anatomical features observed on all three sections of
(cross-section, radial section, tangential section) (Gasson, 2011; NS, 1989; Wheeler, 2011) rather than the
31 cross-sectional features used in this study. These microscopic features remain to this day the standard
method for taxonomic identification (Koch et al., 2015; Richter and Dallwitz, 2000; Wheeler, 2011). As
such, it is essential to study additional microscopic features for identifying Congolese timbers through
wood anatomy. The limited accessibility to these features currently poses challenges regarding the
feasibility in field conditions, underscoring the need for further research developing methods for rapid
visualization.

Low performance is also influenced by the current interpretation of the IAWA framework (Gasson et al.,
2011; NS, 1989). Categorical states—such as “present,” “variable,” or “absent”—fail to capture the full
spectrum of quantitative variation. For example, vessel diameter is typically recorded in broad ranges,
obscuring important differences within those classes (small (<80 pm), medium (80-130 pm) and large
(>130 pm)) (NS, 1989). An illustrative example is the genus Pterocarpus, specifically the challenge of
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distinguishing P. tinctorius from P. soyauxii (see chapter 3: Figure 3.17). P. soyauxii tends to exhibit
predominantly large vessels (small (<80 um) is absent, medium (80-130 um) is variable and large (>130
pm) is present), whereas P. tinctorius shows a predominance of medium-sized vessels (small (<80 pm) is
absent, medium (80-130 pm) is present and large (>130 um) is variable). This scrutinized form of coding
highlights the limitations of the conventional binning strategies, which can mask subtle yet diagnostically
useful anatomical patterns. Improving taxonomic resolution may thus depend on extracting finer-grained
data, such as mean and standard deviation of vessel sizes or ray width. This also underscores that higher
resolution is crucial in that regard as it enables more precise measurements. However, acquiring such
data requires digitization of wood surfaces at high resolution, along with algorithms capable of automated
feature extraction. These automated procedures are becoming more accessible as time progresses with
recent advances showing opportunity for automating digitization at high resolution (Van den Bulcke et al.,
2025). Advances in wood anatomy digitization—through high-resolution scanning, robotics, and deep
learning—offer promising avenues for addressing these limitations (Van den Bulcke et al., 2025). Systems
operating at ~2.25 pm resolution can now automatically segment and measure thousands of vessels, rays,
and parenchyma structures (Van den Bulcke et al., 2025). While these techniques are impractical under
field conditions, they hold tremendous potential for curating high-quality reference databases and
developing downstream classification tools that outperform conventional feature-based methods (Van
den Bulcke et al., 2025).

7.2 The importance of colour and subtle patterns for identification

In field settings, expert-defined anatomical assessments are frequently complemented by expert visual
comparison, where law enforcement officers evaluate the macroscopic cross-sectional appearance of
wood specimens against reference images (Leggett and Kirchoff, 2011). This step allows the inclusion of
colour and texture, beyond the scope of the expert-defined anatomical features (Committee, 2004;
Gasson, 2011; NS, 1989; Wheeler, 2011). Unlike the codified expert-defined features, these visual
estimations are based on tacit experience and offer potentially valuable, albeit subjective, discriminatory
patterns (Kirchoff et al., 2011). Although this informal visual component was not explicitly assessed in the
present study, it remains a plausible contributor to improved identification accuracy and warrants further
empirical investigation. This was studied in Chapter 5 by training and evaluating CV models that can learn
directly from these subtle, non-standardized patterns (hypothesis 4.1). This chapter explored traditional
‘closed-set’ multiclass classification and ‘open-set’ recognition techniques for identification of the same
Congolese tree species studied in chapter 3. The performance of CV-based models in chapter 5 indirectly
highlights the diagnostic value of these subtle, non-standardized patterns. By training CNNs directly on
macroscopic colour images of cross-sections, the models preserved key visual information—achieving
approximately 0.85 in precision, recall, and accuracy for identifying commercial Congolese timber genera
(Chapter 5). Rank-based evaluation further showed that the correct genus appeared within the top six
predictions in over 95% of cases across 56 genera.

These results highlight that raw image data, retaining subtle differences in colour and texture, carries
significantly more discriminatory information than expert-defined anatomical features alone (Knauer et
al., 2019). This reinforces the notion that such subtle patterns—routinely leveraged by human experts—
can be systematically captured through CV, makingit arobustand scalable approach for field-based wood
identification.

7.3 Refining CV-Based wood identification using expert-defined
features

However, as previously noted, field-based wood identification draws on both standardized anatomical

features and holistic visual impressions from full cross-sectional images. This highlights the importance

of evaluating these two information sources both independently and in combination to determine whether

their integration enhances identification accuracy. Chapter 5 demonstrated that CV-based techniques on
macroscopic cross-sectionalimages do not provide full proof identification as the top 4-6 genera must be
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considered among all 56 commercial genera in order not to exclude the correct answer in 95% of the test
specimens. Chapter 3 demonstrated that expert-defined features can facilitate reliable differentiation
between narrow ranges of taxa (such as within a single family or genus). For instance, within Moraceae,
Ficus species show wide axial parenchyma bands and fewer rays per millimetre than genera like Antiaris
and Milicia. Similarly, vessel porosity effectively distinguishes Lamiaceae genera: Tectona displays ring-
porous wood, while Vitex and Premna show diffuse or semi-ring porosity. Another notable example are all
African Pterocarpus species, which were amended to CITES Appendix Il due to challenges in field
identification (CITES, 2022a). Contrary to prior claims that macroscopic features were insufficient (Liu et
al., 2023; Price et al., 2021), our study revealed clear differences between species in this genus. For
example, P. rotundifolius and P. angolensis exhibit semi-ring porosity and moderate vessel frequency
compared to P. tinctorius and P. soyauxii.

Chapter 6 attempted to address whether the expert-defined features provide complementary information
for refining CV-based classifications or whether they provide little added value or can even result in
misidentifications (hypothesis 5). This was evaluated by re-ranking the top kK CNN predictions using
tailored RF models trained on expert-defined features for distinguishing only the top k genera (with k
ranging from 2 to 10). This showed that re-ranking in the top 4 predicted genera improves performance
(accuracy, recall, precision) in general across genera, though the effect is small, the averaged metrics
(points) remain relatively stable, with overall means and standard errors of mean (0.741 = 0.012), Recall
(0.700 £ 0.015), Precision (0.711 + 0.018), and F1-score (0.677 = 0.017), suggesting only minor changes in
performance and additionally the added recall and precision is only for specific genera. Approximately 30%
of the genera suffer notable decreases in recall and 40% in precision due to re-ranking. Genera such as
Antiaris, Gilbertiodendron, Zanthoxylum, Nauclea, Khaya, and Irvingia consistently decrease in recall
across all re-ranking depths. For Guibourtia, Lovoa, and Terminalia, recall performance decreases notably
when re-ranking beyond the top four CNN predictions.

This underscores that while integrating expert-defined macroscopic anatomical features can yield
moderate improvements in CNN-based genus predictions, these benefits are highly dependent on both
the specific genera and the depth of re-ranking applied. The overall results affirm that CNN models alone
already encode substantial taxonomic information, likely due to their training on challenging diagnostic
comparisons that extend beyond traditional anatomical descriptors. This finding underscores the limited
but strategic use of expert-defined macroscopic cross-sectional wood anatomy for refining identifications.
Refinement methods such as re-ranking must be applied with caution, as blind use—especially on
protected taxa—can reduce recall, increasing the risk of overlooking high-priority timbers such as Khaya
(CITES, 2022c).

7.4 Reflecting on future research for wood identification

Collectively, our findings—on hypotheses 2, 4.1, and 5—highlight the importance of periodically and
critically reassessing established methodologies in wood identification, particularly in light of evolving
demands in forensic and regulatory contexts. Macroscopic cross-sectional wood anatomy remains a
valuable and accessible diagnostic tool for rapid field-based screening. However, our results indicate that
expert-defined features alone offer limited discriminatory power when applied to Congolese tree species.
This suggests that further research is needed to systematically evaluate the diagnhostic value of
macroscopic features across a broader taxonomic spectrum, that represents all traded timber species.
This effort should be coupled with parallel research into complementary techniques—improving their field
accessibility and exploring opportunities for integrated identification strategies to refine taxonomic
specificity. Furthermore, greater attention should be given to understanding how visual similarity—both in
terms of intra- and interspecific variation—influences the reliability of visual comparisons with reference
material. It is essential that regulatory agencies and enforcement bodies are aware of the intrinsic
limitations of traditional approaches. This awareness is not to diminish the contributions of expert-based
methodologies, but rather to foster a more adaptive, evidence-driven strategy that integrates conventional
practices with complementary technologies to preserve the operational advantages of in-field expertise
while bolstering accuracy and consistency.
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In this context, CV -based approaches using CNNs have emerged as promising tools for large-scale,
automated wood identification. Collectively, the findings of this study —on hypotheses 4.1, 4.2, 4.3—
affirm the potential of CV as a viable strategy for enabling scalable and reliable wood identification in field
conditions (Andrade et al., 2020; Hwang and Sugiyama, 2021; Ravindran et al., 2021, 2020, 2019; Silva et
al., 2022; Tang et al., 2018; Wiedenhoeft, 2020). The findings in chapter 4—on hypotheses 3—provide
further key insight into the robustness of CV for wood identification. However, deploying CV-based models
in operational contexts (e.g. border inspections, roadside checks, or timber warehouses) not only depends
on quantified performance in controlled experiments. It is essential to consider the differences between
both contexts when constructing databases and developing models (Ravindran and Wiedenhoeft, 2022;
Spiecker et al., 2000; Tardif and Conciatori, 2015). For database construction, these differences are related
to factors such as specimen selection, processing methods, and image acquisition techniques.

7.4.1 Database construction

A critical factor in the development of reliable CV-based classifiers is the extent to which the training data
reflect the intra-class anatomical variability that may be encountered during deployment (Halevy et al.,
2009; Kala et al., 2022). This includes anatomical variation among specimens of the same species and
within individual trees (e.g., across growth rings or along the trunk axis). The analysis in Chapter 3, which
focused on predicting expert-defined features from wood anatomy, extends to the full images and sheds
light on the importance of capturing the variability of the wood anatomy. The SmartWoodID dataset was
constructed as a specimen-database with this in mind, using a minimum of four specimens per species
and linking each anatomical description to specific, digitized specimens (De Blaere et al., 2023). In
contrast, InsideWood aggregates species-level descriptions compiled from disparate sources (Wheeler,
2011; Wheeler et al., 2020)(Wheeler et al., 2020). This difference in design was reflected in model
performance: models trained on SmartWoodID consistently achieved higher accuracy when evaluated on
SmartWoodID specimen descriptions than when tested on generalized InsideWood descriptions. Further
empirical support for the importance of specimen-based data comes from a small study published in the
conference proceedings of the 26" IUFRO World congress (Stockholm, Sweden 2024), evaluating CV-
based classification using an expanded dataset with an increased number of specimens per Congolese
wood genus (De Blaere et al., 2024). Results showed that, using identical model architectures, training
parameters, and image augmentation protocols as applied in this study, and increasing the number of
digitized specimens per genus led to a performance increase from 0.85 (observed in Chapter 5) to 0.94.
Because both studies used the same target genera and similar imaging protocols, these findings show that
covering intra-species variability is a key driver for building robust CV-based wood identification models.
This underscores the importance of collaboration efforts between institutions for building comprehensive
reference databases.

Beyond the number of specimens, the anatomical surface area captured per specimen also influences
model performance. Traditional anatomical descriptions often rely on thin sections covering only ~1 mm?,
whereas SmartWoodID scans encompass a much larger area (~7 cm x 1-2 cm) (De Blaere et al., 2023),
offering broader visual coverage of structural variation within a single piece of wood, potentially revealing
diagnostically relevant features that might be absent from smaller samples. For instance, Pterocarpus
angolensis, which in SmartWoodID has 290% solitary vessels—a diagnostic trait within the genus—was
not represented different in InsideWood (Wheeler, 2011). In addition, this study identified notable
interspecific differences in vessel diameter distributions between P. soyauxii and P. tinctorius, despite both
being described as “>200 pm” in InsideWood (Wheeler, 2011). We note that this comparison is limited by
the lack of information on how many specimens were used in the InsideWood descriptions; nonetheless,
it underscores the importance of using multiple specimens to reliably capture interspecific variation in
quantitative features. While these examples concern expert-defined features, they affect CV-based wood
identification model’s ability to learn such distinctions from raw imagery indirectly. This emphasizes the
need for further research into optimal thresholds for either the number of specimens or the anatomical
surface area required for effective training. Identifying the point of diminishing returns in model accuracy
with respect to increased anatomical representation could enable more efficient dataset construction
strategies, reducing unnecessary labour while preserving classification performance (Szyc, 2020).
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Variation in anatomical features across a pith to bark gradient, at different heights of a tree or in specific
organs (branches) were not explicitly quantified in this study. However, these aspects could potentially be
measured in subsequent studies and could help guide the field forward to improving database
construction for robust model development.

A further critical consideration in developing robust CV-based wood identification models lies in how
datasets are partitioned for training and evaluation of models. This is essential to ensure realistic
performance assessment: when images from the same specimen appear in both training and test sets,
models risk exploiting specimen-specific artefacts rather than learning generalizable anatomical signals
(Ravindran and Wiedenhoeft, 2022). Enforcing splits at the specimen level, where distinct specimens are
used for training, validation, and testing, provides a stricter but more ecologically valid test of model
robustness, reflecting real-world deployment where unknown specimens will be encountered.

Beyond the anatomy, wood can however also show different anomalies—such as cracks (Niemz et al.,
2023a), insect damage (Goodell and Nielsen, 2023; Schmidt, 2006), and fungal deterioration (Goodell and
Nielsen, 2023; Schmidt, 2006)—that are the result of the nature of wood being a natural material. Although
this factor is rarely addressed in the CV wood identification literature, it is highly relevant for field
applications, where perfect specimens are rarely available. This was investigated in the context of model
performance in chapter 4, evaluating the impact of wood damage on CV-based identification using CNNs
(hypothesis 3). This was studied by training a CNN architecture to classify 26 timber genera under three
training conditions: (1) mixed sets containing both damage-free and damaged patches, (2) only damage-
free patches, and (3) only damaged patches. Each model was evaluated on a balanced test set including
both types of wood, and macro-average recall was used to assess overall and class-specific performance.
Grad-CAM visualizations were applied to enhance interpretability by highlighting regions used for
classification. Results show that models trained exclusively on damage-free image patches showed the
highest recall (90.5%), followed closely by mixed-condition patches (88.4%) and, to a lesser extent,
damaged-only patches (79.1%). Grad-CAM visualizations revealed that the CNN focused on intact
anatomical regions and largely ignored areas affected by anomalies. Our research sheds light on this gap
in literature affirming that intact wood anatomical surfaces provide the most important information for CV-
based wood identification models. However, it also suggests that while damage-free specimens should be
prioritized during database construction, the inclusion of imperfect but anatomically interpretable
samples does not substantially compromise predictive performance—so long as diagnostically relevant
features remain discernible.

The method of specimen preparation significantly influences the quality of anatomical information
available for wood identification (Spiecker et al., 2000). In this study, all cross-sectional surfaces were
prepared using a standardized sanding protocol involving a sequence of fine-grit abrasives to ensure
smooth, high-quality surfaces optimized for observing the wood anatomy (De Blaere et al., 2023). While
this method is ideal for generating high-quality reference images (Van den Bulcke et al., 2025), quality is
more difficult to achieve in the field due to limitations in equipment, time, and operator expertise (Spiecker
et al., 2000). Cutting with a sharp blade represents an alternative for field use, though it may introduce
surface irregularities such as scratches or warp surfaces which in turn can affect magnification (Ravindran
et al., 2023). Relevant work by Ravindran et al. (2023) demonstrated that CV models trained on high-quality
sanded specimens maintained strong performance when evaluated on images of cut surfaces or on those
sanded with intermediate grits (P240 or finer) (Ravindran et al., 2023). This suggests that reduced
preparation quality does not impair accurate classification, which underscores the use of high-quality
surface preparation for image database construction (Ravindran et al., 2023).

Image acquisition plays a central role in any CV-based model. Two stable parameters—field-of-view and
resolution—directly affect diagnostic patterns on images (Chen and Guan, 2019; Gorodissky et al., 2018;
Miyata et al., 2020). In CV-based classification workflows, it is standard practice to resize input images to
fixed values, ensuring uniform input dimensions for model training (Chollet and Chollet, 2021; Talebi and
Milanfar, 2021). However, this approach was not applied in the present study due to the significant variation
in scan dimensions across specimens, which presents a concrete risk of losing diagnostically relevant
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anatomical detail through downscaling. The largest cross-sectional scan in the dataset measured
approximately 287.6 mm x 215.1 mm, while the smallest had a vertical dimension of 11 mm x 11 mm,
highlighting the variability in specimen dimensions. General resizing across such a range would result in
uneven loss of image fidelity and potentially compromise anatomical interpretability. To preserve image
detail and maintain a consistent input structure for the CNN, all scans were instead cut into non-
overlapping patches of equal size. Specifically, images were divided into 512 x 512-pixel patches,
corresponding to a physical area of approximately 5.42 x 5.42 mm. This patch size was selected to align
with the scale typically used in anatomical assessments of cross-sectional thin sections, ensuring
sufficient context for recognizing wood anatomical features while enabling systematic analysis of
anomalies, as discussed in Chapter 4. Importantly, overlap between patches was avoided to prevent data
leakage between the training and validation sets (Ravindran and Wiedenhoeft, 2022). Chapters 4 and 5
demonstrate that this patch-based approach supports effective CNN training, with the chosen field-of-
view proving adequate to capture diagnostically relevant patterns for wood identification. Nevertheless,
previous studies have shown that smaller patches can also yield competitive results. For instance,
Ravindran et al. (2021) used patch sizes of 512 x 192 pixel, corresponding to 1.59 mm x 0.60 mm, and
achieved 97% accuracy for a 24-class model to distinguish Peruvian timbers (Ravindran et al., 2021). This
was achieved by cutting Xylotron images of 2048x2048 pixels (6.35x6.35mm) into those smaller patches.
This suggests that field-deployed system like the Xylotron , which uses the full image for direct input into
the neural network for wood identification, might not require that field-of-view. Furthermore, different
resolutions can also yield high accuracy as the resolution of 2400 dpi in this study proved effective, while
the study by Ravindran et al. 2021 used a resolution of 8192 dpi and other studies such as Ravindran et al.
(2018) used a resolution of 4096 dpi and achieved 87.4% accuracy for classifying ten Neotropical
Meliaceae timbers species (Ravindran et al., 2021, 2018).

Findings from Chapter 6 further underscore the importance of field-of-view in wood identification. While
the overall benefit of re-ranking CV-based predictions was limited, certain genera were better identified
when expert-defined features were incorporated. This could be attributed to the difference in scale at
which features were extracted. Expert-defined features were assessed across the entire scan, with
continuous zooming in and out to evaluate anatomical characteristics, whereas CNN-based features are
derived from fixed patches of restricted size. Some diagnostic traits, such as banded or confluent
parenchyma, may only become visible at larger spatial scales. Others may be rare, either due to natural
variability along the pith-to-bark gradient or stem height, or because they are excluded during the patch-
cutting process. Patch-based CNNs are effective in capturing local diagnostic signals and make
computational processing tractable, but they inherently lack the broader spatial context that experts
routinely exploit when scanning whole cross-sections. This highlights the need for multi-scale strategies in
CV-based wood identification. Models capable of dynamically “zooming in and out” across resolutions
would be better able to capture both localized and large-scale features, thereby narrowing the gap between
automated approaches and expert practice. These complementary findings suggest that the optimal patch
size and minimum effective resolution remains undetermined. Future research should therefore explore
the relationship between field-of-view, anatomical feature representation, and model performance. Such
investigations could help determine the smallest viable patch size that balances diagnostic fidelity with
computational efficiency. Additionally, alternative strategies such as multi-scale or zoom-adaptive
approaches may further enhance model generalization and robustness (Talebi and Milanfar, 2021). These
approaches would enable CNNs to capitalize on larger available surface areas when present, while still
functioning reliably under conditions where only limited tissue is accessible (e.g., small specimens or
partial samples).

Beyond field-of-view and resolution, field-based image acquisition can be influenced in the field by lighting
conditions, device-specific colour profiles, magnification differences, and sensor artifacts—that can
cause “distribution shifts” (Owens et al., 2024). This phenomenon, widely documented in the CV literature,
arises when the statistical properties of test-time data diverge from those observed during training, leading
to degraded model performance (Alomar et al., 2023; Liu and Mirzasoleiman, 2022; Liu et al., 2020; Nanni
et al., 2021). Such shifts are particularly relevant in mobile deployments, where variability in camera

59



hardware and user behaviour is difficult to control (Liu et al., 2020). Two primary strategies exist to address
this challenge. First, hardware-based standardization, as implemented in systems like the XyloTron
(Ravindran et al., 2020) or XyloPhone (Wiedenhoeft, 2020), can minimize acquisition variability by using
fixed optics, controlled lighting, and predefined imaging protocols. The disadvantage of this is the need for
developing robust and affordable tools to standardize image acquisition the field. Second, model
robustness can be improved through data augmentation—a widely used technique in CV applications
(Shorten and Khoshgoftaar, 2019). By simulating realistic perturbations during training (e.g., rotation,
brightness shifts, random erasing), data augmentation exposes the model to a broader distribution of
inputs, improving its ability to generalize (Alomar et al.,, 2023; Shorten and Khoshgoftaar, 2019).
Regularization techniques such as dropout and weight decay further reduce the risk of overfitting to
idealized training conditions (Srivastava et al., 2014; Xie et al., 2022). These techniques are important for
mobile applications that depend on integrated cameras which each have different resolution, field-of-view
due to magnification, distance to the surfaces etc. (e.g. Xylorix (Tang and Tay, 2019)) (Liu et al., 2020).
Evidence supporting these strategies comes from Owens et al. (2024), who evaluated model performance
under controlled image perturbations that mimic field-based acquisition artifacts (Owens et al., 2024).
Their study found that CV-based wood identification models were relatively robust to superficial scratches
and mild colour distortions, but more sensitive to significant blur and magnification changes (Owens et al.,
2024). These results emphasize the importance of tailoring augmentation protocols to expected
deployment conditions—particularly when developing smartphone-based applications where user-
induced variability is pronounced (Liu et al., 2020). Furthermore, generalization for smart-phone models
can be improved by training on images captured with different devices, as it incorporates variability in
device-specific colour profiles and resolution (Biney and Sellahewa, 2013; Liu et al., 2020). Further
research is needed to systematically evaluate how cross-device training impacts model performance and
to identify strategies that best simulate field conditions, ultimately supporting the development of more
resilient and deployable identification tools.

The applicability of CV-based identification to traded wood products extends beyond roundwood, and
raises important questions about how diagnostic features are preserved across different levels of
processing, and how reference databases should be designed to reflect these realities. Alternative, non-
anatomical techniques face own challenges regarding identification of engineered wood products: for
instance, glue can interfere with chemical analyses, and drying processes may reduce the amount of
extractable DNA (Jiao et al., 2020; Michael Holtken et al., 2012). While anatomical features generally
remain accessible, their visibility is also affected by processing. As wood is converted into veneers or
engineered products (e.g., plywood, MDF, particleboard, fibreboard), the field-of-view available for
assessing anatomical surfaces becomes progressively smaller. Features that require larger continuous
surfaces for assessment—such as vessel distribution patterns or banded parenchyma—are especially
affected. Reference databases therefore need to account for the limitations of macroscopic anatomy to
remain broadly applicable. Addressing this challenge calls for two complementary strategies. First,
expanding analysis beyond the cross-sectional plane to include tangential and radial orientations may
improve performance, since these surfaces are often presentin blocks, veneers, or particles, and can also
be obtained from splinters. Splinters are particularly valuable, as they can be collected from virtually any
wood product and are widely used in forensic research. Importantly, splinters typically expose slightly
larger tangential and radial surfaces compared to cross-sections, providing a richer anatomical basis for
identification. Second, refining CV models to operate reliably on smaller fields of view is a promising
avenue for applications to veneers and thin plywood layers. Composite materials such as fibreboard,
however, requires other approaches (Helmling et al., 2018; Nieradzik et al., 2024). In these products,
anatomical integrity is reduced to dispersed fragments of cells, cell walls, or isolated vessel elements.
Here, CV approaches may need to be paired with segmentation or other vision-based preprocessing
techniques in order to recover meaningful diagnostic signals (Helmling et al., 2018). Taken together, these
prospects highlight a broader trajectory for future work: adapting CV to the practical realities of traded
wood forms and engineered products, thereby enhancing its utility for enforcement and customs
inspection in complex product streams.

Another critical dimension of database construction is ensuring the taxonomic reliability of reference
collections (Deklerck, 2019). Misidentified specimens are present in xylaria, and careless inclusion into
reference databases can influence downstream identification applications and forensic casework. CV,
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when trained on highly curated collections that have been cross validated by experts and supported by
ancillary methods such as herbarium vouchers or other identification techniques, offers a promising
avenue for verifying the integrity of other collections. A concrete example comes from the evaluation of the
INERA-Yangambi xylarium, where a CNN trained on the SmartWoodID dataset was applied to 193
specimens (presented at the 26th IUFRO Congress in Stockholm, Sweden) (De Blaere et al., 2024). By
aggregating patch-level predictions at the specimen level through majority voting, the model classified
70.5% of specimens correctly to the genus level, while 57 were flagged as potentially misidentified. Such
CV-based models could serve as a first-pass screening step for digitisation projects, flagging specimens
whose metadata is incongruent with visual predictions and therefore warranting re-examination with
complementary methods (e.g., microscopic anatomy, chemical profiling, or genetic testing). In this way,
CV models trained on verified collection material may not only accelerate the detection of misidentified
samples but also supportthe long-term goal of improving reference dataset integrity, which is fundamental
to advancing automated wood identification.

These findings underscore the importance of diligent database construction for the development of robust
CV-based wood identification models. While certain best practices can already be recommended (e.g.,
use of multiple specimens, larger scan areas, and high-quality preparation), many aspects—such as
optimal resolution, acceptable surface quality, and augmentation strategies and adding information from
other anatomical planes (tangential, radial)—require further empirical study. Furthermore, it underscores
the importance of collaboration across wood collections due to the highly diverse pool of timber species
in commerce (Chudnoff, 1984; Council and Organization, 2012; Mark et al., 2014; Richter and Dallwitz,
2000; tropicaux, 1979) and the tailored nature of wood collections focussing predominantly on delineated
regions rather than covering all species world-wide (Ravindran et al., 2018; Silva et al., 2022). Leveraging
this individual expertise is essential for building robust datasets to cover timbers across the world with
enough specimens per species and sufficient variation in wood anatomy within trees. Collaboration also
streamlines progress by reducing duplicated efforts across institutions and maximizing the utility of
existing resources. In addition, different institutes are likely to have digitized their own collections through
different imaging techniques, by using available resources based on expertise. Training models on such
data can enhances model robustness by including device-specific variability, eliminating the need for
individual institutes to invest in multiple imaging setups or repeatedly digitize their collections. For
example, digitizing the 3,742 specimens of the Tervuren collection took over two years of dedicated work—
using multiple imaging techniques would have significantly extended this timeline. Coordinated efforts
save time and labour while broadening research opportunities across institutions. However, it is important
to note that such collaboration must be carefully managed; if different institutes employ inconsistent
imaging protocols or focus on distinct timber groups, it could introduce biases and compromise model
generalizability.

7.4.2 Model development

Beyond the construction of robust reference databases, the design of the model itself plays a critical role
in the performance, scalability, and interpretability of CV-based wood identification systems. In the
broader CV domain, model architecture—including factors such as layer depth, filter size, residual
connections, and hyperparameters—significantly influences a network’s capacity to generalize to unseen
data (Alzubaidi et al., 2021; Bentéjac et al., 2021; Chollet and Chollet, 2021). In this study, we adopted a
single architecture (Xception) with consistent hyperparameters across all models to isolate and evaluate
the effects of classification strategy (Chollet, 2017). However, as CV technologies continue to evolve, future
research should explore more resource-efficient architectures that can maximize predictive power while
minimizing computational demands—especially for mobile deployment where processing capabilities are
limited.

CNN architectures remain well suited for wood identification, as their hierarchical receptive fields allow
features to be aggregated from local structures (e.g., vessels, parenchyma, rays) to global anatomical
patterns across the entire image area (Taye, 2023), aligning closely with the multi-scale nature of wood
anatomy. At the same time, transformer-based architectures, which leverage global self-attention, have
demonstrated strong classification performance on large datasets in other domains (Gufran et al., 2023)
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and may offer complementary advantages once sufficient training data are available. Hybrid approaches
that combine CNNs and transformers are also promising, as they can balance local feature extraction with
global context integration. Future work should therefore benchmark multiple architectural designs of
neural networks systematically to determine the most effective balance between predictive performance,
efficiency, and robustness for wood identification tasks.

7.4.2.1 Classification strategy

The findings presented in Chapter 5 highlight that the classification strategy is a key consideration in the
development of wood identification models for forensic and regulatory applications. While multiclass
classification has been the predominant classification strategy in studies on CV-based wood identification
(Silva et al., 2022) and serves as the classification strategy in current deployed tools (e.g. Xylophone
(Wiedenhoeft, 2020), Xylotron (Ravindran et al., 2020), Xylorix (Tang and Tay, 2019)), its underlying
functioning makes it inherently ill-suited for the biological complexity and real-world variability that
characterize the wood identification in timber trade (McCarthy and Hayes, 1981; Yoshihashi et al., 2019).
Multiclass models operate under a closed-set assumption: they are trained to assign inputs to one of a
fixed set of predefined classes and assume that all possible categories are represented in the training data
(Sinderhauf et al., 2018; Wilber et al., 2013). This poses a limitation for wood identification, which must
contend with vast diversity of timber species and fragmented coverage in existing collections, which often
include only a few specimens per species (Chudnoff, 1984; Council and Organization, 2012; Mark et al.,
2014; Richter and Dallwitz, 2000; tropicaux, 1979). Expanding taxonomic coverage is a slow and resource-
intensive process, requiring either fieldwork by experienced botanists or collaboration across wood
collections, both of which are constrained by logistics, funding, and expertise (Ravindran et al., 2018; Silva
et al., 2022). Even where digitization efforts are underway, institutions face limitations in terms of imaging
capacity, metadata quality, and specimen availability (Gasson et al., 2021). As a result, reference datasets
grow incrementally, and models must be regularly updated to reflect the expanding taxonomic scope. Here,
multiclass models exhibit a critical rigidity with architectures fixed to the classes included during training.
Introducing new taxa necessitates retraining of the model—a process that is not only time-consuming but
also costly in terms of computational and environmental resources. While using transfer learning can
minimize these costs, they remain necessary to expand the pool of timbers. This poses a scalability
bottleneck for global deployment. Moreover, multiclass models perform poorly in open-set conditions,
where inputs may include species thar are absent in training data. Opt-out mechanisms, such as
probability thresholds or “unknown” classes, offer partial mitigation, but these strategies are imperfect
solutions (Entezari and Saukh, 2020; Geifman and El-Yaniv, 2019). A workaround is to train region-specific
models tailored to the local timber trade. While pragmatic, this leads to the proliferation of models trained
on different taxa, using varying architectures, data sources, and augmentation strategies. This undermines
consistency and comparability across institutions, complicates interpretation, and limits the potential for
global standardization. In the absence of shared benchmarks, protocols, or certification frameworks for
field-ready identification models, such fragmentation reduces transparency and poses challenges for
regulatory harmonization (Ravindran and Wiedenhoeft, 2022).

Object re-identification offers a more flexible classification strategy for wood identification by decoupling
recognition from a fixed set of categories (Geng et al., 2020; Scheirer et al., 2012; Yoshihashi et al., 2019).
In contrast to multiclass models that produce discrete class labels, object re-identification networks are
trained to compute image similarities, enabling the identification of the most corresponding reference
image(s) (Ye et al., 2021). In this study, we demonstrated that object re-identification is a promising
classification strategy for wood identification in the field. We tested two approaches, verified in literature
in different fields (facial (Chen et al., 2017; Hermans et al., 2017; Schroff et al., 2015; Shi et al., 2016; Ye et
al., 2021) and vehicle recognition (Bai et al., 2018; He et al., 2020; Kumar et al., 2020; Shen et al., n.d.; Tang
etal., 2019)): binary verification (Chen etal., 2017; Ye et al., 2021) and triplet learning (Bai et al., 2018; Chen
etal., 2023; Ghosh et al., 2023; Guo and Lovell, 2024). This provided the following insights for performance
on the same Congolese timbers compared to the traditional closed-world multiclass technique
(hypothesis 4.2); and for performance of binary verification for identifying non-Congolese timbers
(hypothesis 4.3).

62



Our results demonstrated that the technique of binary verification represents a viable classification
strategy for wood identification in open-world contexts hypothesis. Rather than assigning an input to a
predefined class, binary verification compares an unknown specimen to reference images and computes
a similarity score per image (Chen et al., 2017; Ye et al., 2021). This pairwise structure allows models to
operate independently of the number or identity of classes seen during training, enabling generalization to
taxa not present in the training data. Our results show that binary verification achieves performance
metrics comparable to those of traditional multiclass CNNs, particularly when evaluated on the same set
of Congolese commercial timbers. The binary verification model exhibited only slightly lower performance
(accuracy: 0.75; F1-score: 0.69) than the multiclass model (accuracy: 0.86; F1-score: 0.84). Notably, when
applied to unseen (non-Congolese) timbers excluded from the training data, the binary model correctly
identified the genus in 95% of cases when the top 30% of candidate genera were considered. This ability to
maintain reliable performance on previously unseen taxa is particularly important for real-world
deployment, where inspected samples may originate from diverse geographic and taxonomic sources.
Binary verification offers additional advantages in transparency and interpretability. Unlike multiclass
models, which provide only class probabilities with no direct linkage to specific specimens, binary
verification identifies similarity to individual reference images. This enables traceable predictions, where
the basis of classification can be examined through direct visual comparison or review of specimen
metadata. In forensic and regulatory settings, such transparency is crucial for ensuring accountability,
enabling expert corroboration, and supporting documentation standards such as chain-of-custody
records. Finally, the design of binary verification models facilitates international collaboration and dataset
integration. Because the model evaluates similarity at the image level, it can operate across digitized
reference databases compiled from multiple institutions, without requiring retraining for each new dataset
or region. This enables a more harmonized approach to timber identification, supporting broader
taxonomic coverage while avoiding the fragmentation that results from maintaining multiple region-
specific multiclass models.

Beyond technical performance, classification strategy also carries important semantic implications for
how model outputs are interpreted and used in practice. In the context of timber trade monitoring and law
enforcement, field-based wood identification serves as an initial screening step rather than a definitive
taxonomic determination (Ravindran et al., 2021). At this stage, the primary objective is not to determine
the botanical taxon of traded timber, but to assess whether the declared taxon on accompanying
documentation plausibly matches. This process supports the early detection of potential non-compliance,
including the misdeclaration of protected species, and informs decisions about whether further
identification is warranted (Ravindran et al., 2021). In such workflows, models need not provide full species
resolution but must instead support reliable verification—determining whether a specimen is consistent
with or significantly deviates from known reference examples. Binary verification is well suited to this task.
Its design aligns with the operational logic of preliminary screening by producing a similarity score that
quantifies the degree of match between a queryimage and a reference set of specimens (Chenetal., 2017).
This structure enables rapid flagging of potentially suspicious cases, such as when a specimen shows high
similarity to a CITES-listed genus but is declared as a different, non-protected timber.

Practical implementations of verification-like strategies have been applied in field-deployable systems,
such as the Xylorix platform (Tang and Tay, 2019), which can output similarity scores for individual timbers
via its APIl. While the underlying methodology has not been fully detailed in the literature and remains
subject of speculation, it is plausible that such systems rely on conventional approaches. One
conventional possibility is the use of dedicated binary classifiers trained for individual timbers (e.g.,
“Afzelia” vs. “not Afzelia”). Although this produces intuitive outputs between 0-1, the interpretability of the
resulting scores depends heavily on how the “other” class is constructed, which may vary widely in
taxonomic coverage. Moreover, this strategy requires developing and maintaining a large library of binary
models—potentially one per commercial timber species. Such an approach incurs substantial
computational and logistical costs, as each model must be trained, validated, and periodically retrained
when new reference data become available. This creates scalability challenges for practical deployment
in forensic and regulatory contexts. An alternative is to derive verification-like outputs from multiclass
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models, by evaluating whether the declared species is assigned the highest posterior probability among
the included classes. While this avoids the need for hundreds of dedicated binary models, it remains
constrained by the closed-set assumption of multiclass classification. Probabilities are conditioned only
on the taxa represented in training, which limits their reliability when encountering species outside the
reference set and makes it difficult to capture genuine uncertainty. Together, these strategies illustrate
different ways in which verification can be operationalized, but they also highlight the advantages of the
binary verification framework developed in this dissertation. Unlike multiclass probabilities or species-
specific binary classifiers, verification networks directly quantify the similarity between query and
reference images and can be extended to individual reference specimens. This design is both scalable and
interpretable, making it particularly well-suited to forensic and regulatory applications where robustness
to open-set conditions and transparent decision-making are critical.

However, binary verification also has inherent limitations. Its reliance on exhaustive pairwise comparisons
result in significantly increased computational load—particularly when working with large reference sets
or performing high-resolution patch-based analysis (Chen et al., 2017; Hermans et al., 2017). Although
strategies such as hierarchical narrowing or limiting comparisons to genus-level representatives can
reduce this, they add complexity to the model pipeline (Chen et al., 2017; Hermans et al., 2017; Schroff et
al., 2015). Furthermore, binary verification models are optimized to distinguish between matches and non-
matches based on a threshold, rather than to distribute probability across a class hierarchy (Chen et al.,
2017; Ye et al., 2021). Identification therefore implies transforming the model output of similarity scores to
an output that enables ranking predicted genera to establish the most likely taxon (Chen et al., 2017). The
manner in which predictions are aggregated across image patches to obtain a specimen-level decision is
therefore critical. Naive averaging of patch-level probabilities (applied in Chapter 5) offers a straightforward
means of aggregation, as it preserves the full distribution of confidence scores across classes and enables
ranking beyond the top prediction. However, it inherently sensitive to variation, as a single patch can
disproportionately distort the aggregate. This may explain why top-k analysis (section 5.4.4) revealed that
more top-ranked genera needed to be considered to include the correct genus in 95% of the specimens
compared to multiclass CNN. Still, we note that for Congolese commercial timbers this was limited with
the accuracy matching multiclass classification by considering the top two predicted genera, representing
still a strong and accurate result for field identification across 56 commercial genera and underscoring it
as a valid technique. Majority voting, as applied in Chapter 4, provides a robust alternative to occasional
misclassified patches, since the dominant signal across patches determines the final decision. Its stability
is exemplified in the results presented in Table 4.1 (Section 4.4.2.1) showing that specimen-aggregated
recall across all training scenarios exceeded recall values calculated at the patch level, indicating that
majority voting can secure high overall performance. Nonetheless, this approach can also become
unstable when the number of patches per specimen is small or when class votes are closely divided.
Weighted aggregation techniques represent a pragmatic middle ground. By amplifying the influence of
diagnostically strong patches while reducing the effect of uncertain ones, such methods increase
resilience to local noise without sacrificing the richness of probability distributions. Future research should
systematically investigate how different aggregation strategies affect both class-level performance and
specimen-specific outcomes, as methodological choices at this stage may have a decisive impact on the
reliability of wood identification results.

We also investigated a second re-identification strategy: embedding-based object re-identification using
triplet learning. This method learns a discriminative feature space where similar images are close together
and dissimilar ones are far apart (Hermans et al., 2017), effectively transforming an image into a digital
fingerprint (embedding vector) that enables rapid classification using machine-learning algorithms such
as nearest-neighbour classification with cosine similarity, RF (Salman et al., 2024), or gradient-weighted
boosting algorithms such as XGBoost (Bentéjac et al., 2021). Despite its conceptual advantages and strong
performance in other CV domains metrics (Bai et al., 2018; Chen et al., 2023; Ghosh et al., 2023; Hermans
et al., 2017; Kumar et al., 2020; Schroff et al., 2015; Shen et al., n.d.; Ye et al., 2024), our implementation
of triplet learning consistently underperformed (see sections 5.4.3 and 5.4.4). This may be attributed to the
hard mining methodology implemented in this study, which worked well for binary verification but may not
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suffice for triplet learning. These findings align with prior research showing that embedding-based methods
are highly sensitive to the quality of the mining strategy and loss function design (Bai et al., 2018; Chen et
al., 2017; Hermans et al., 2017; Schroff et al., 2015). More advanced approaches—such as online hard
example mining (Hermans et al., 2017; Schroff et al., 2015), histogram loss (Ustinova and Lempitsky, 2016),
or hybrid models like CROSR (Yoshihashi et al., 2019)—may better structure the embedding space and
improve generalization.

7.4.2.2 Integrating different wood identification techniques

Integrating wood identification techniques is key in forensic research on wood identification, as combining
multiple sources of diagnhostic information strengthens the reliability of taxonomic assignments in the
timber trade (Schmitz et al., 2020). Each method contributes unique perspectives on wood identity—
whether anatomical, chemical, genetic, orisotopic—and together they provide a stronger evidentiary basis
than any single technique alone. However, effective integration requires careful consideration, as each
method relies on different measurement principles, produces different data structures, and is subject to
different limitations.

An effective strategy for improving accuracy would be refining predictions through a serial integration of
techniques. In such a workflow, CV-based models could serve as an initial screening stage: narrowing
candidates to a top-k set and then directing which auxiliary method is most suitable for definitive
resolution. This could be applied with any CV-based models, including the output of other tools such as
Xylophone (Wiedenhoeft, 2020), Xylotron (Ravindran et al., 2020), Xylorix (Tang and Tay, 2019). Unlocking
such potential requires close collaboration with taxonomic experts to establish which techniques are most
effective for specific species or species groups—an endeavour that is central to advancing wood
identification practices. A particularly promising pathway is to leverage anatomical information as a bridge
between macroscopic and microscopic analysis. Databases such as InsideWood provide an invaluable
foundation for this integration by codifying the expert tradition of anatomical wood identification (Wheeler,
2011). By linking macroscopic CV predictions with feature importance scores derived from microscopic
descriptors, systems could flag the traits most diagnostic for distinguishing among taxa in the top-k set.
For instance, if predictions converge on closely related Pterocarpus species, the model could highlight
which microscopic features merit closer inspection, or suggest when complementary analyses—
chemical, genetic, or otherwise—are required. In this way, CV classifiers could evolve from stand-alone
predictive engines into interactive diagnostic tools, guiding forensic workflows by prioritizing critical
features, pointing to confirmatory tests, and ultimately enabling more reliable taxonomic resolution.

However, prediction refinement need not be restricted to serial approaches. Combining different
techniques into a joint prediction framework can also be highly powerful. The wood identification
techniques (as discussed in section 1.2) (Schmitz et al., 2020) follow a common structure: feature
extraction followed by classification based on modality-specific reference data. Across techniques, the
extracted features typically take the form of sequential or vector-based data. For instance, anatomical
assessments rely on expert interpretation, codified into binary or categorical descriptors indicating the
presence of microscopic anatomical features (Committee, 2004; Koch et al., 2018; NS, 1989; Wheeler,
2011). DART-TOFMS produces chemical fingerprints by ionizing low-molecular-weight compounds through
thermal desorption and measuring their mass-to-charge ratios via TOFMS, generating numerical spectral
profiles (Cody et al., 2005; Deklerck, 2022, 2019; Deklerck et al., 2020; Price et al., 2022). Similarly, NIRS
captures the absorbance of light in the 800-2500 nm range by high-molecular-weight compounds such as
cellulose, lignin, and extractives, yielding vectors of wavelength-specific intensity values (Deklerck, 2019;
Lowe et al., 2016; Tsuchikawa et al., 2003; Tsuchikawa and Kobori, 2015). DNA-based approaches—
including barcoding (Jiao et al., 2020, 2019) and fingerprinting (Lowe et al., 2010; Thunen Institute of Forest
Genetics, 2015)—encode taxonomic or individual identity as nucleotide sequences, while stable isotope
analysis provides geographic origin data through continuous variables reflecting local environmental
isotope ratios (Camin et al., 2017; Dormontt et al., 2015; Horacek et al., 2009; Kagawa and Leavitt, 2010;
Lin et al., 2024). Traditional CV-based methods (multiclass) differ from these approaches by merging
feature extraction and classification into a single, end-to-end process (Alzubaidi et al., 2021; Chollet and
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Chollet, 2021; Taye, 2023; Wu, 2017). While effective for image-based predictions, this architecture
complicates integration with other sequential data streams.

Integration of anatomical information with other sequential data can be approached at two main stages of
the identification chain: a priori (before feature extraction) or a posteriori (after classification). A priori
integration involves transforming input data from different modalities into a common representational
format, such as converting sequential data into images suitable for CNN training. For instance,
Jahanbanifard et al. (2023) demonstrated this by converting DART-TOFMS spectra into image-like visual
plots for CNN classification (Jahanbanifard et al., 2023). While this method allows multiple modalities to
be represented in a unified way, the transformation is indirect, potentially lossy, and methodologically
complex.

A posteriori integration, in contrast, combines the outputs of independent models after prediction. This
approach typically aggregates posterior probabilities from different techniques to reach a consensus
decision. Its main strength lies in flexibility: each method can operate within its native domain without
modification, while integration occurs only at the decision-making stage. A posteriori integration would
also enable leveraging the prediction of different multiclass CV-based models embedded in deployed tools
such as Xylophone (Wiedenhoeft, 2020), Xylotron (Ravindran et al., 2020), Xylorix (Tang and Tay, 2019).
Provided that full class probabilities are accessible through their APls, such integration could facilitate
cross-referencing of predictions against multiple deployed tools, thereby enhancing the robustness of
automated wood identification. Yet, the probabilistic outputs of multiclass models must be interpreted
with care, since those tools are conditioned on closed sets of classes (timbers): probabilities reflect the
relative likelihood of a taxon given the training set, rather than an absolute measure of similarity. However,
a posteriori integration treats the features of each technique as separate and therefore cannot leverage
new patterns in features across modalities, limiting their potential to exploit the full diagnostic value of
combined data.

Recent advances in classification strategies have opened the way for a third approach that blends
advantages of both. Rather than transforming input data prior to modelling or combining only posterior
probabilities, images can be transformed into structured, sequential data via embedding-based object re-
identification (Schroff et al., 2015). By extracting fixed-length vectors from raw anatomical images,
embeddings map samples into a multidimensional space where anatomical similarity corresponds to
spatial proximity (Ghosh et al., 2023). Unlike conventional CNN outputs, these embeddings are structured
numerical representations that can be directly compared or integrated with other vectorized data from
chemical, genetic, or isotopic sources. This alignment facilitates deeper integration across diagnostic
methods, enhancing species- and potentially population-level identification. This underscores that
embedding-based object re-identification represents a promising pathway toward fully interoperable,
multimodal wood identification systems. As reference databases grow and techniques for embedding
alignment advance, this strategy offers scalable, field-adaptable, and forensically reliable tools for timber
identification and trade enforcement.

7.4.2.3 Context-sensitive predictions in wood identification

Another crucial consideration for wood identification is a posteriori processing in general. This can serve
not only to integrate different techniques but also to refine model outputs after prediction, bringing them
closer to the ground truth. Such refinement is particularly important because wood, as a biological
material, exhibits substantial variability and complexity, while classification is embedded within a
hierarchical taxonomic system. Even when robust modelling techniques are applied, raw outputs may not
fully align with practical identification needs—especially in forensic and conservation contexts where the
consequences of error are uneven across timbers.

A promising avenue lies in incorporating information on anomalies. As shown in Section 4.4.2.1 (Table 4.1),
recall was consistently lower for anomalous test patches compared to anomaly-free ones, confirming that
predictions are more reliable when clear anatomical structures are present. Aggregation at the specimen
level using majority voting reduced this disparity, as reflected in higher recall scores, though specimens
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with limited usable area may remain vulnerable. A posteriori weighting of patch contributions could further
mitigate such effects by prioritizing anomaly-free regions. This could be achieved through fixed scoring
rules or probabilistic weighting based on the outputs of a binary anomaly verification model. More
advanced approaches would involve segmenting anomalies (e.g., cracks, insect damage, fungal staining,
pith, bark) and quantifying their extent to generate continuous quality indicators. Grad-CAM visualizations
may also be leveraged to estimate anomaly distributions directly, which could inform aggregation
strategies or even be integrated into model architectures via transfer learning. Collectively, these strategies
underscore the need for further research into output standardization methods that explicitly incorporate
patch quality in order to generate more reliable specimen-level predictions.

Beyond basic a posteriori processing—such as weighting predictions according to the quality of individual
images or surfaces to reduce the impact of anomalies—more advanced approaches can account for
relationships both between classes, and between classes and their broader context. Bayesian cost
modelling offers a principled framework for such adjustments, enabling the integration of uncertainty
estimates and contextual information into the decision-making process (Lampinen and Vehtari, 2001).
Unlike likelihood-based methods, which treat all classes equally during training and prediction, posterior
approaches enable rebalancing outcomes according to their real-world significance (Jackson et al., 2010;
Mediavilla-Relafio et al., 2023). These frameworks are relevant for handling look-alike taxa—cases where
visually similar woods carry different regulatory or economic significance. Here, posterior adjustments
could be applied, ensuring that closely resembling species are either flagged for additional scrutiny or
classified conservatively at a higher taxonomic rank when certainty is insufficient. Furthermore, a posteriori
processing is also critical in law enforcement, where errors are not equally consequential: confusing two
common species may be acceptable, but failing to detect a CITES-listed taxon carries ecological and legal
repercussions. Posterior adjustments can address this asymmetry by, for example, recalibrating
predictions with priors reflecting species frequencies in trade, geographic origin, or shipment
documentation. Cost-sensitive decision frameworks can also assign higher penalties to false negatives on
protected species, alighing decisions with enforcement priorities rather than purely statistical likelihoods.
Adaptive thresholds may further increase recall for high-risk taxa by lowering the probability required for
positive identification, thereby reducing the likelihood of missing endangered species. Importantly, such
methods must be validated carefully using both precision and recall, to avoid unfair identifications that
could, for instance, wrongly implicate businesses based on overly cautious thresholds. Automated
approaches such as CV therefore should not be applied in isolation for legal determinations but rather in
tandem with expert assessment, with their primary utility lying in high-throughput screening rather than
courtroom evidence.

Although not implemented in the present study, these strategies point to a clear direction for future
development. By integrating anomaly weighting, contextual priors, and cost-sensitive adjustments, wood
identification systems can evolve from tools of visual similarity to robust decision-support frameworks that
explicitly account for biological variability, taxonomic complexity, and regulatory stakes—better aligning
automated outputs with the priorities of forensic enforcement and conservation biology.

In light of these considerations, it is also critical to address a further limitation of current approaches.
Wood, as a biological material, is embedded within a nested taxonomic hierarchy, yet most models
produce predictions at only a single level of classification. Ideally, outputs should distribute probabilities
across taxonomic levels—for example, estimating confidence that a specimen belongs to Meliaceae
(family), Khaya (genus), or Khaya anthotheca (species). To date, this has not been systematically explored
in the wood identification literature, where models typically target a single taxonomic rank or rely on trade
groupings that do not align strictly with taxonomy (e.g., Meranti wood encompassing multiple Shorea spp.,
or genera such as Lophira and Milicia that are represented in trade by a single species). In other domains,
hierarchical classification has been advanced through strategies such as hierarchical loss functions (La
Grassa et al., 2021; Yan et al., 2015) and contrastive learning (Kokilepersaud et al., 2024). Applying such
approaches to wood identification would not only improve predictive reliability but also generate
biologically faithful representations of uncertainty, allowing practitioners to determine the taxonomic level
at which conclusions can be drawn with confidence. Future work should therefore move beyond single-
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rank predictions to explore hierarchical architectures that provide multi-level outputs, integrate taxonomic
priors, and calibrate uncertainty across ranks, enabling decisions that are both more robust and more
aligned with biological reality.

Circling back to the a posteriori approaches, applying cost-sensitive decision frameworks to look-alike
timbers requires clear definition of what constitutes a look-alike. In essence, a timber is a look-alike when
distinguishing features are so subtle that consistent separation is difficult. In rapid, field-based
identification using macroscopic cross-sections, this depends directly on the scope of information
available. As shown in section 3.4.4, expert-defined anatomical descriptors can cluster taxa with broadly
similar features, but these descriptors are reduced abstractions of wood anatomy and thus provide only
coarse groupings. CNN-extracted features (Chapter 5), by contrast, capture finer-grained patterns that
allow separation of taxa that experts could not distinguish with reduced descriptors. This is reinforced in
Chapter 6, where the limited added value of re-ranking with expert features shows that CNNs already
encode much of the same diagnostic information. Binary verification models trained with hard example
mining (Section 5.3.7) further built on this, as they were explicitly challenged to distinguish between
anatomically similar specimens (according to the coded expert-defined anatomical features. Together,
these results suggest that CNN-derived representations form a stronger foundation for defining look-alikes
than expert-defined features alone.

At the same time, the results in Chapter 6 show that CNNs do not capture all relevant information. Some
genera benefited from re-ranking with expert-defined traits, indicating that diagnostic signals visible only
at larger field-of-view scales remain underutilized. Whereas CNNs work with fixed-size cropped patches,
experts evaluate features across entire cross-sections, often scanning between magnifications to detect
rare or large-scale patterns (e.g., banded parenchyma or vessel groupings). This gap highlights the need for
multi-scale approaches that allow CNNs to integrate information across resolutions and spatial contexts,
aligning them more closely with expert assessment and enabling a clearer operational definition of look-
alikes. Geographic variation is crucial to consider species that appear distinct in one region may be virtually
indistinguishable in another due to convergent traits or local adaptations. Future frameworks for defining
look-alikes in CV-based wood identification should therefore combine CNN feature hierarchies with expert
descriptors, multi-scale anatomical representations, while covering a broad taxonomic scope beyond the
boundaries of a single country (as was the case for this study on the DRC). Such integration would provide
a more reliable definition of look-alikes, which is essential for cost-sensitive decision-making in forensic
and regulatory applications.
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Chapter 8: Supplementary materials

8.1 CNNs for image classification

Al refers to the ability of computer systems to perform tasks that typically require human intelligence, such
as pattern recognition, decision-making, problem-solving, and data analysis (Hunt, 2014; Winston, 1984).
Over the past decades, Al has evolved to self-learning models that autonomously adapt (Chollet and
Chollet, 2021). Deep learning, a subset of machine learning, has revolutionized Al applications by
employing artificial neural networks. These models are computational models inspired by the structure
and function of the human brain, consisting of interconnected layers of artificial neurons that process input
data and learn patterns through iterative adjustments. Each neuron receives an input, applies a
mathematical transformation, and passes the result to the next layer. Artificial neural networks can process
diverse data types, including time-series data, text, images, and video material, allowing them to perform
increasingly complex tasks such as image recognition, speech processing, and natural language
understanding (Jiang et al., 2022). Al has been widely adopted across various fields, including
environmental science, where it is used for biodiversity monitoring, deforestation detection, and climate
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Figure 8.1: Schematic overview of a multiclass CNN for wood identification, showing feature extraction through
convolutional and pooling layers, followed by classification into timber genera via fully connected layers with SoftMax
activation for probabilistic outputs.

pattern prediction (Knauer et al., 2019).

CV, a subfield of Al, enables computers to interpret and analyse image data, extracting meaningful patterns
that mimic human perception (Bay et al., 2006; Hwang and Sugiyama, 2021; Lowe, 2004). When combined
with deep learning, CV has given rise to powerful approaches capable of automatically extracting complex
visual features, enabling robust pattern recognition and classification across diverse image datasets
(Chollet and Chollet, 2021). Among deep learning models, CNNs are particularly effective for learning from
image data (Li et al., 2021; Tang et al., 2020; Wu, 2017; X. Zhao et al., 2024). Unlike traditional image
analysis approaches that require manual feature selection, CNNs automate feature extraction by
recognizing spatial hierarchies within an image. CNNs detect patterns at multiple levels of abstraction,
beginning with basic structures such as edges and progressing to more complex textures, shapes, and
high-level representations. CNNs consist of multiple layer types, each serving a specific role in processing
visual information (Alzubaidi et al., 2021; Chollet and Chollet, 2021; Wu, 2017). An overview of the inner
workings of a CNN for wood identification is presented in Figure 8.1, illustrating the sequence of
convolutional and pooling layers used to extract hierarchical features from cross-sectional images,
followed by fully connected layers that perform classification by outputting class probabilities across all
candidate genera. Convolutional layers apply small, learnable filters (kernels) to an image, detecting
relevant features such as edges, textures, and structural patterns. Digital images consist of a grid of pixels,
each representing intensity values for specific wavelengths of electromagnetic (EM) radiation. Grayscale
images contain a single intensity value per pixel, while multichannel images capture multiple wavelength
ranges. Standard colour images (RGB) use three channels—red (620-780 nm), green (490-570 nm), and
blue (440-490 nm)—encodingvisible light to align digital data with human visual perception. Hyperspectral
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images capture reflectance across numerous narrow spectral bands (beyond the visible spectrum),
stacking channels to provide detailed spectral signatures for material identification. The kernels of the
convolutional layer slide across the input while preserving spatial relationships between pixels, enabling
CNNs to learn localized patterns. A single convolutional layer applies multiple filters to the input image,
increasing the number of feature representations (channels), while maintaining the original spatial
dimensions. The number of filters determines the number of output channels; For example, a standard
colour image (three channels) passed through a convolutional layer with 64 filters, will output a feature
map with 64 feature representations. As the network deepens, later convolutional layers typically apply
more filters, progressively extracting more abstract representations. Pooling layers down-sample the
spatial dimensions of a feature map, to improve computational efficiency and reduce sensitivity to small
transformations. Max pooling, the most common approach, selects the highest pixel value in a kernel,
ensuring that small variations in an image—such as changes in lighting, orientation, or slight distortions—
do not drastically affect the model’s ability to recognize objects (Chollet and Chollet, 2021). Global Average
Pooling computes the average value of each feature map across its entire spatial dimensions, unlike max
pooling, which selects the highest value (Chollet and Chollet, 2021). This results in a single value per
feature map, significantly reducing the number of parameters while preserving essential information. It is
frequently used in literature to produce a compact representation, providing a clear link between feature
extraction and subsequent classification. By stacking multiple convolutional and pooling layers in
succession, CNNs enable hierarchical feature learning, where shallow layers detect low-level structures,
and deeper layers extract increasingly abstract and complex representations of the image (Wu, 2017).

After convolution and pooling operations, the extracted features are passed to fully connected layers,
which integrate and refine the learned representations before transforming them into the desired output
format (Chollet and Chollet, 2021; Taye, 2023). The classification task is facilitated by assigning labels to
images according to a predetermined class distribution. CNNs facilitate classification by converting the
image into a vector of class probabilities, where each value corresponds to the likelihood of the input
belonging to a specific class. The model allocates higher probability values to the classes that are more
likely to represent the image, based on its learned features. Training models to classify based on labelled
examples is known as supervised learning (Cunningham et al., 2008; Sarker, 2021; Wani et al., 2020). In
contrast, models aiming to clusters within the data, without relying on labelling, is called unsupervised
learning (James et al., 2023; Sarker, 2021; Shen et al., n.d.). Both can also be combined into semi-
supervised learning using a small amount of labelled data with a larger set of unlabelled data to improve
model performance. Semi-supervised learning is a good approach if labelling data is expensive and/or
time-consuming (Zhu, 2005). Reinforcement learning involves an agent learning through interactions with
its environment, receiving feedback in the form of rewards or penalties to maximize long-term goals, suiting
well to interactive applications such as robotics or game play (Arulkumaran et al., 2017; Kaelbling et al.,
1996; Sutton and Barto, 1999).

To achieve optimal performance, CNNs rely on an iterative optimization process that adjusts the kernel
weights of the convolutional and fully connected layers based on the discrepancy between the model’s
predictions and the actual labels (Alzubaidi et al., 2021). This is achieved by repeatedly passing the data
through the network and updating the kernel weights at intermediate steps. A complete pass through the
entire dataset is called an epoch (Chollet and Chollet, 2021). During each epoch, the dataset is typically
divided into smaller batches, with weight updates occurring after processing each batch. This mini-batch
approach allows the model to refine its parameters gradually, preventing large, unstable updates (Jian-Wei
et al., 2020). The entire process is referred to as training a model, where images pass through the network
to learn meaningful feature representations by minimizing the discrepancy between the model’s
predictions and the actual labels (Chollet and Chollet, 2021). This discrepancy is quantified by a loss
function, with cross-entropy loss commonly used for classification tasks (Cao et al., 2018). Performance
is optimized by minimizing loss through gradient descent (Haji and Abdulazeez, 2021). The gradient of the
loss function measures how the loss changes with respect to each kernel weight. By computing the
gradient, the model determines the direction in which each weight should be adjusted to decrease the loss.
To determine the influence of each weight on the loss, the error signal from the fully-connected layer is
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propagated backwards through the network (Amari, 1993). The weights are updated accordingly by an
optimization algorithm (e.g., Stochastic Gradient Descent (SGD), Adam) by taking a step in the descending
direction of the gradient, scaled by a learning rate—a hyperparameter that controls the step size (Alzubaidi
et al., 2021; Haji and Abdulazeez, 2021). If the learning rate is too large, the model may overshoot the
optimal solution; if it is too small, convergence may be slow (Alzubaidi et al., 2021; Chollet and Chollet,
2021). Optimization is performed iteratively over multiple batches and epochs, gradually refining the
model’s weights to minimize loss and improve classification. To enhance the learning process, CNNs
incorporate activation functions, which introduce non-linearity and allow the network to learn complex
relationships beyond simple linear transformations (Dubey et al., 2022; Hao et al., 2020). One of the most
widely used activation functions is the RelLU, which replaces negative values with zero (Banerjee et al.,
2019). This is an effective countermeasure for phenomena where the gradient vanishes or explodes (Liu et
al., 2021). When gradients approach values close to zero (and ‘vanish’), weight updates become negligible,
slowing down or even stopping learning. Alternatively, they can become excessively large (or 'explode’),
causing unstable weight updates that lead to drastic fluctuations in model parameters (Chollet and
Chollet, 2021; Hanin, 2018; Hochreiter, 1998). This instability can prevent convergence, making training
ineffective.

While optimization sounds straightforward, ensuring that a model generalizes well to real-world data
requires careful consideration. One of the main challenges in deep learning is overfitting, where a model
becomes overly specialized in recognizing patterns from the training data but fails to perform well on new,
unseen examples (Bejani and Ghatee, 2021; Ying, 2019). A crucial strategy to mitigate overfitting is
validation, where a separate validation dataset, distinct from the training set, is passed through the network
during, without altering the weights (Chollet and Chollet, 2021). Loss is calculated on those images to
evaluate the model’s performance throughout training. This helps detect overfitting by monitoring how well
the model generalizes to unseen data rather than just memorizing training patterns. If the model performs
significantly better on the training data than on the validation data, it indicates that it has learned to fit the
training data too closely rather than capturing generalizable features. To counteract this, training can be
stopped early by monitoring the validation performance and halting training if iterations no longer minimize
loss, calculated on the validation data (Prechelt, 2002). Regularization techniques can be embedded in the
model to further prevent overfitting (Santos and Papa, 2022). Dropout is a widely used regularization
method that randomly deactivates a subset of neurons during training, forcing the network to rely on
multiple feature representations rather than depending too heavily on specific patterns (Srivastava et al.,
2014). Another regularization method, L2 regularization (also known as weight decay), discourages
excessively large weight values by adding a penalty term to the loss function (Xie et al., 2022). Weight decay
constraint helps prevent the model from assigning too much importance to individual features, promoting
smoother and more stable learning (Santos and Papa, 2022). To improve model generalization further, the
images can be transformed (e.g. rotation, flipping, cropping, brightness adjustments, noise addition) to
artificially expand the variation in the training data (Shorten and Khoshgoftaar, 2019). These augmentations
introduce variations in lighting, orientation, and scale, helping the model learn to recognize objects despite
these changes. As a result, data augmentation enhances the model’s ability to generalize to real-world
images, where such variations naturally occur (Shorten and Khoshgoftaar, 2019). A crucial factor in
achieving generalization is maintaining a balanced dataset. An imbalanced dataset can lead to biased
predictions, where the model disproportionately favours classes with more training samples (Chollet and
Chollet, 2021; Johnson and Khoshgoftaar, 2019). This issue is particularly relevant in wood identification,
as certain species may be underrepresented in wood collections. To mitigate this, techniques such as class
weighting and sampling can be employed. Class weighting increases the importance of underrepresented
classes during training, ensuring they contribute proportionally to optimization (Johnson and Khoshgoftaar,
2019). Alternatively, oversampling augments the number of samples in minority classes, while
undersampling reduces the prevalence of dominant classes, thereby improving model balance.

After training, models are typically evaluated on a separate dataset containing distinct images (Alzubaidi
etal., 2021). While the validation dataset can be repurposed for this evaluation, it is recommended to use
an entirely separate test dataset. This prevents potential data leakage, which can occur if overfitting
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mitigation strategies, such as early stopping, were applied. If training is halted based on the progression of
validation loss, the model is effectively optimized for that specific dataset, potentially leading to an
overestimation of its performance on truly unseen data (Prechelt, 2002).
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Table 8.1: Full overview of all SmartWoodID specimens (split across training and test sets) for training and evaluating wood classification models, with a mention of the commercial

status.

Achariaceae

Anacardiaceae

37

21

Caloncoba Gilg

Lepisanthes Blume

Lindackeria C.Presl

Scottellia Oliv.

Antrocaryon Pierre

Clausena Burm.f.

Ganophyllum
Blume

Lannea A.Rich.

Mangifera L.

Myrsine L.

Panda Pierre

Pseudospondias
Engl.

Santiria Blume

Sorindeia Thouars

Caloncoba glauca
(P.Beauv.) Gilg
Caloncoba
welwitschii  (Oliv.)
Gilg

Lepisanthes
senegalensis (Poir.)
Leenh.

Lindackeria
bukobensis Gilg
Lindackeria
dentata (Oliv.) Gilg
Scottellia
klaineana Pierre
Antrocaryon
micraster A.Chev.
& Guillaumin
Antrocaryon
nannanii De Wild.
Clausena anisata
(Willd.) Hook.fil.
Ganophyllum
giganteum
(A.Chev.) Hauman
Lannea welwitschii
(Hiern) Engl.
Mangifera indica L.

Myrsine
melanophloeos (L.)
R.Br.

Panda oleosa
Pierre
Pseudospondias
longifolia Engl.
Pseudospondias
microcarpa
(A.Rich.) Engl.
Santiria trimera
(Oliv.) Aubrév.
Sorindeia africana
(Engl.) Van der
Veken

Sorindeia
juglandifolia

Twos4, Tw2022,
Tw7180
Tw63887, Tw61053

Tw60200, Tw60172

Tw59391

Tw61173

Tw8313, Tw1907,

Tw1311
Tw53856

Tw7682, Tw7534,

Tw7567
Tw28798

Two885, Twb325,

Tw3644

Tw1265, Tw1464,

Tw33
Tw457

Tw21937, Tw18728

Tw1865, Twb241,

Two47
Tw61416

Tw1278, Tw43692

Tw10196

Tw9012, Tw8716

Tw61418,
Tw61456, Tw41112

Tw928

Tw59461

Tw32771

Tw21926

Tw146

Tw1919

Tw29940

Tw7119, Tw1406

Tw23531

Tw1696, Tw1536

Tw1574

Tw19558

Tw13215

Tw7143

Tw60636

Tw125

Tw10152

Tw192

Tw32374, Tw32768

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Anisophylleaceae

Annonaceae

2

52

29

Spondias L.

Trichoscypha
Hook.f.

Xymalos Baill.

Anisophyllea R.Br.
ex Sabine
Annickia Setten &
Maas

Anonidium Engl. &
Diels
Brieya De Wild.

Cleistopholis Pierre

ex Engl.

Duguetia A.St.-Hil.

Greenwayodendro

nVerdc.

Hexalobus A.DC.

Isolona Engl.

(A.Rich.) Planch. ex
Oliv.

Spondias dulcis
Parkinson
Trichoscypha
acuminata Engl.
Trichoscypha
lucens Oliv.
Trichoscypha
oddonii De Wild.
Xymalos
monospora (Harv.)
Baill.

Anisophyllea
boehmii Engl.
Annickia affinis
(Exell) Versteegh &
Sosef

Annickia  lebrunii
(Robyns & Ghesq.)
Setten & Maas
Anonidium mannii
(Oliv.) Engl. & Diels
Brieya fasciculata
De Wild.
Cleistopholis
glauca Pierre ex
Engl. & Diels
Cleistopholis
patens (Benth.)
Engl. & Diels
Duguetia  staudtii
(Engl. & Diels)
Chatrou
Greenwayodendro
n suaveolens (Engl.
& Diels) Verdc.
Hexalobus
crispiflorus A.Rich.
Hexalobus
monopetalus
(A.Rich.) Engl. &
Diels

Isolona congolana
(De wild. &
T.Durand) Engl. &
Diels

Isolona  hexaloba
Pierre ex Engl. &
Diels

Tw31049,
Tw72037, Tw71044
Tw7333, Tw182,
Tw1906

Tw8481

Tw43719

Tw8483, Tw13214,
Tw17193

Tw24226, Tw28526

Tw4820, Tw10808

Tw2479

Tw619, Tw1892,
Tw362, Tw2510
Tw7624

Tw8030

Tw357, Tw1820,
Tw1888

Tw1244, Tw970
Tw205, Tw404,
Tw880, Tw552
Tw10812, Tw14609,

Tw14809
Tw41433

Tw8290, Tw8243

Tw8312

Tw71775

Tw7326

Tw21117

Tw112

Tw4333

Tw20594

Tw10268

Tw2009

Tw1191, Tw1858

Tw1261

Tw7408

Tw1795, Tw1407

Tw10344

Tw199, Tw150

Tw10144, Tw10811

Tw30055

Tw3603

Tw63477

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Apocynaceae

31

16

Monodora Dunal
Platymitra Boerl.

Xylopia L.

Alstonia R.Br.

Diplorhynchus
Welw. ex Ficalho &
Hiern

Funtumia Stapf

Holarrhena R.Br.

Hunteria Roxb.

Picralima Pierre

Pleiocarpa Benth.

1

2

24

Monodora
angolensis Welw.
Platymitra arborea
(Blanco) Kessler
Xylopia aethiopica
(Dunal) A.Rich.
Xylopia
aurantiiodora De
Wild. & T.Durand
Xylopia cupularis
Mildbr.

Xylopia  flamignii
Boutique

Xylopia gilbertii
Boutique

Xylopia
hypolampra Mildbr.
& Diels

Xylopia
katangensis De
Wwild.

Xylopia phloiodora
Mildbr.

Xylopia rubescens
Oliv.

Xylopia staudtii
Engl. & Diels
Xylopia  wilwerthii
De Wild.

Alstonia  boonei
De Wild.

Alstonia congensis
Engl.
Diplorhynchus
condylocarpon
(Mall.Arg.) Pichon
Funtumia elastica
(Preuss) Stapf
Holarrhena
floribunda (G.Don)
T.Durand & Schinz
Hunteria umbellata
(K.Schum.) Hallier
fil.

Picralima nitida
(Stapf) T.Durand &
H.Durand
Pleiocarpa
pycnantha
(K.Schum.) Stapf

Tw7238

Tw87, Tw8267

Tw356, Tw3683

Twé11

Tw4822, Tw6958
Tw7749, Tw2481,
Tw2480

Tw7581, Tw1915

Tw57, Tw1451

Tw21176, Tw3604

Tw1944, Tw3687,
Tw1955
Tw2484, Tw791

Tw50,  Tw10359,
Tw10832

Tw58862, Tw58861
Tw225, Tw1640,
Tw575

Tw294, Tw475,
Tw145

Tw20543,
Tw28193, Tw24217
Tw616, Tw487

Tw5160, Tw439

Tw14478, Tw23851

Tw32461

Tw33076

Tw2219

Tw1279

Tw170

Tw599

Tw33463

Tw2482

Tw1894

Tw1421

Tw1973

Tw32755

Tw10831

Tw4867

Tw32601

Tw1168, Tw1470

Tw317

Tw24382

Tw17972

Tw272

Tw114

Tw10214

Tw29762

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

93



Araliaceae

Asteraceae

Bignoniaceae

Boraginaceae

16

11

10

Rauvolfia L.

Tabernaemontana

Plum. ex L.

Voacanga Thouars

Cussonia Thunb.

Polyscias J.R.Forst.

& G.Forst.
Brenandendron
H.Rob.

Gymnanthemum
Cass.

Fernandoa Welw.

ex Seem.
Kigelia DC.

Markhamia Seem.

Spathodea
Beauverd

Stereospermum
Cham.

Cordia L.

Rauvolfia caffra
Sond.

Rauvolfia vomitoria
Afzel.
Tabernaemontana
crassa Benth.
Tabernaemontana
pachysiphon Stapf
Voacanga africana
Stapf ex Scott Elliot
Voacanga thouarsii
Roem. & Schult.
Cussonia arborea
Hochst. ex A.Rich.
Cussonia spicata
Thunb.

Polyscias fulva
(Hiern) Harms
Brenandendron
donianum (DC.)
H.Rob.
Gymnanthemum
amygdalinum
(Delile) Sch.Bip. ex
Walp.

Fernandoa adolfi-
friderici  (Gilg &
Mildbr.) Heine
Kigelia africana
(Lam.) Benth.
Markhamia lutea
(Benth.) K.Schum.
Markhamia
obtusifolia (Baker)
Sprague
Markhamia
tomentosa (Benth.)
K.Schum. ex Engl.
Markhamia
zanzibarica (Bojer
ex DC.) K.Schum.
Spathodea
campanulata
Beauverd
Stereospermum
harmsianum
K.Schum.
Stereospermum
kunthianum Cham.
Cordia africana
Lam.

Tw24035, Tw25770
Tw1248, Tw21824,
Tw20976

Tw52, Tw26564,
Tw21945, Tw26563
Tw39181, Tw28855
Tw753, Tw28921
Tw8544

Tw57545

Tw25917

Tw875, Tw749

Tw181, Tw17507,
Tw28136

Tw51060

Tw7107

Tw23847,
Tw17478, Tw27684
Tw22717, Tw8182,
Tw25680

Tw334

Tw41, Tw8565,

Tw28509

Tw23618

Tw57691, Tw59627

Tw327

Tw11296

Tw7345, Tw2010,
Tw2106

Tw18706

Tw21822

Tw143, Tw10351

Tw28178

Tw21823

Tw8539

Tw31821

Tw17154

Tw7291

Tw26577

Tw50919

w1217

Tw24304

Tw1868, Tw1866

Tw1972

Tw8392

Tw18709

Tw33038

Tw24354

Tw11295

Tw6982

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Burseraceae

Calophyllaceae

Cannabaceae

20

4

21

12

11

Aucoumea Pierre

Canarium L.

Commiphora Jacq.

Pachylobus G.Don

Endodesmia Benth.

Mammea L.

Celtis L.

1

13

1

Cordia millenii
Baker

Cordia monoica
Roxb.

Cordia myxa L.

Cordia platythyrsa
Baker

Aucoumea
klaineana Pierre
Canarium
schweinfurthii
Engl.

Commiphora
mollis (Oliv.) Engl.
Pachylobus
buettneri  (Engl.)
Guillaumin
Pachylobus edulis
G.Don
Pachylobus
igaganga (Aubrév. &
Pellegr.) Byng &
Christenh.
Pachylobus
normandii (Aubrév.
& Pellegr.) Byng &
Christenh.
Pachylobus osika
Guillaumin
Pachylobus
pubescens
Vermoesen
Endodesmia
calophylloides
Benth.

Mammea africana
G.Don

Celtis
gomphophylla
Baker

Celtis latifolia

(Blume) Planch.
Celtis mildbraedii
Engl.

Celtis philippensis
Blanco

Celtis tessmannii
Rendle

Tw11445,
Tw33112, Tw14028
Tw28614, Tw28677

Tw60259

Tw1259, Tw22655

Tw25782,
Tw18752, Tw57884
Tw255, Tw128,
Tw364

Tw28183

Tw10770,
Tw22559, Tw13196

Tw2358, Tw2064

Tw57881,
Tw18755, Tw43722

Tw57880

Tw9760

Two82, Tw1516,
Tw267

Tw30676

Tw452, Tw472,
Tw467

Tw64995,
Tw64993, Tw7603,
Tw6969, Tw64991,
Tw3605

Tw71106

Tw1560, Tw3437,
Tw1561
Tw573

Tw62768

Tw17784

Tw28481

Tw30079

Tw1242

Tw14988, Tw12938

Tw1164, Tw1195

Tw23062

Tw18754

Tw1547

Tw51795

Tw18756

Tw8021

Tw130, Tw1433

Tw29814

Tw382, Tw421

Tw26920, Tw64992

Tw71087

Tw2135

Tw31998

Tw62746

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial
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Chrysobalanacea

Morus L.

Trema Lour.
Apodytes E.Mey. ex
Bernh.

Cassine L.

Magnistipula Engl.

Maranthes Blume

Parinari Aubl.

Allanblackia Oliv.

Garcinia L.

Celtis zenkeri Engl.

Morus mesozygia
Stapf

Trema orientale (L.)
Blume

Apodytes dimidiata
E.Mey. ex Arn.
Cassine peragua L.

Magnistipula
butayei De Wild.
Maranthes
chrysophylla (Oliv.)
Prance ex F.White
Maranthes
gabunensis (Engl.)
Prance

Maranthes glabra
(Oliv.) Prance
Maranthes
kerstingii (Engl.)
Prance ex F.White
Parinari congensis
Didr.

Parinari
curatellifolia
Planch. ex Benth.
Parinari excelsa
Sabine
Allanblackia
floribunda Oliv.
Allanblackia
kisonghi
Vermoesen
Allanblackia
parviflora A.Chev.
Garcinia
chromocarpa Engl.
Garcinia epunctata
Stapf

Garcinia huillensis
Welw.

Garcinia ovalifolia
Oliv.

Garcinia punctata
Oliv.

Garcinia
smeathmannii
(Planch. & Triana)
Oliv.

Tw1515, Tw2008,
Tw1509

Tw1471, Tw17738,
Tw1472

Tw57698,
Tw59409, Tw59650
Tw21931

Tw21954,
Tw29739, Tw39086
Tw31487

Tw26573

Tw7177

Tw8219, Tw47797,
Tw2395
Tw22962, Tw44434

Tw6999

Tw23504, Tw3889,
Tw23510

Tw8098, Tw33991,
Tw736

Tw358, Tws3,
Tw1835

Tw273, Tw8574,
Tw2402

Tw23010, Tw22983

Tw63602, Tw63601

Tw167, Tw155,
Tw2003

Tw20553,
Tw28476, Tw10219
Tw33362

Tw7469, Tw1139,
Tw32224
Tw2210, Tw21821

Tw1553

Tw1238, Tw1249

Tw28460, Tw23439

Tw19979

Tw29740

Tw14119

Tw25712

Tw25733

Twb97

Tw10383

Tw3488

Tw19261, Tw21126

Tw1270, Tw1136

Tw395

Tw8314

Tw10380

Tw63598

Tw178

Tw21754

Tw10181

Tw3643

Tw10210

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial



Combretaceae

40

23

Lebrunia Staner

Pentadesma
Sabine

Symphonia L.f.

Combretum Loefl.

Terminalia L.

10

30

Lebrunia busbaie
Staner
Pentadesma
butyracea Sabine
Pentadesma
grandifolia  Baker
fil.

Symphonia
globulifera L.fil.
Combretum
adenogonium
Steud. ex A.Rich.
Combretum
collinum Fresen.
Combretum
collinum subsp.
elgonense  (Exell)
Okafor
Combretum lokele
Liben

Combretum molle
R.Br. ex G.Don
Combretum
zeyheri Sond.
Terminalia
anisoptera (Welw.
ex M.A.Lawson)
Gere & Boatwr.
Terminalia
brachystemma
Welw. ex Hiern
Terminalia catappa
L.

Terminalia
hylodendron
(Mildbr.) Gere &
Boatwr.

Terminalia
ivorensis A.Chev.

Terminalia
leiocarpa (DC.)
Baill.

Terminalia
macroptera Guill. &
Perr.

Terminalia mollis
M.A.Lawson
Terminalia sericea
Burch. ex DC.

Tw1645, Tw2193

Tw7627, Tw142,
Tw171
Tw7134, Tw7234

Tw54142

Tw60236

Tw28266, Tw28709

Tw23672, Tw23674

Tw33108

Tw28503

Tw24029,
Tw24349, Tw28225
Tw28181, Tw28172

Tw28537

Tw25689,
Tw57696, Tw59834
Tw8530, Twb156,
Tw6957

Tw47938,
Tw20807,
Tw40978,
Tw26420, Tw17974
Tw31659,
Tw30912, Tw41424

Tw49440

Tw11366,

Tw11372, Tw340
Tw28590, Tw24039

Tw1067

Tw10339, Tw11616

Twb53

Tw25413

Tw29011

Tw28207

Tw20545

Tw32744

Tw26054

Tw28209

Tw24370

Tw24340

Tw59490

Tw1104, Tw30030

Tw14029, Tw11064

Tw30077, Tw30693

Tw41423

Tw11300, Tw11264

Tw17177

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Daphniphyllaceae

Dipterocarpaceae

Ebenaceae

Erythroxylaceae

Euphorbiaceae

13

48

27

Plagiostyles Pierre

Marquesia Gilg

Monotes A.DC.

Diospyros L.

Erythroxylum
Browne
Cavacoa J.Léonard

Croton L.

Terminalia
superba Engl. &
Diels

Terminalia
welwitschii Gere &
Boatwr.
Plagiostyles
africana (Mull.Arg.)
Prain

Marquesia
macroura Gilg
Monotes
hypoleucus var.
angolensis (De
Wild.) Meerts
Monotes
katangensis (De
Wild.) De Wild.
Diospyros
batocana Hiern
Diospyros
crassiflora Hiern
Diospyros dendo
Welw. ex Hiern
Diospyros  ferrea
(Willd.) Bakh.
Diospyros iturensis
(Gurke) Letouzey &
F.White

Diospyros
mespiliformis
Hochst. ex A.DC.
Erythroxylum
mannii Oliv.
Cavacoa quintasii
(Pax & K.Hoffm.)
J.Léonard

Croton
haumanianus
J.Léonard

Croton
macrostachyus
Hochst. ex Delile
Croton
mayumbensis
J.Léonard

Croton
megalocarpus
Hutch.

Croton mubango
Mull.Arg.

Tw1430, Tw57060,
Tw1354, Tw57207,
Tw55833, Tw88
Tw7741

Tw2491, Tw2490

Tw341, Two816,
Tw24249
Tw28221

Tw307

Tw20550,
Tw56593, Tw28273
Tw523, Tw788,
Tw57052, Tw7651
Tw8077

Tw22862, Tw1802

Tw33548

Tw14485, Tw17165

Tw29886, Tw816,
Tw30886
Tw33564

Tw9759

Tw39143

Tw4318, Tw1929

Tw26071

Tw8084

Tw1353, Tw1318,

Tw1409

Tw28134

Tw2403

Tw20548, Tw22727

Tw28139

Tw23912

Tw29615

Tw14483, Tw33268

Tw22664

Tw1263

Tw32832

Tw10293

Tw22563, Tw22564

Tw10142

Tw33372

Tw28714

Tw168

Tw18849

Tw7128

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial



Fabaceae

425

221

Dichostemma
Pierre
Discoglypremna
Prain

Grossera Pax
Hevea Aubl.
Klaineanthus Pierre
ex Prain

Macaranga
Thouars

Maprounea Aubl.

Neoboutonia
Mull.Arg.
Ricinodendron
Mull.Arg.

Schinziophyton
Hutch. ex
Radcl.Sm.
Sclerocroton
Hochst.

Shirakiopsis Esser

Tetrorchidium
Poepp.

Afzelia Sm.

28

Croton  sylvaticus
Hochst.
Dichostemma
glaucescens Pierre
Discoglypremna
caloneura (Pax)
Prain

Grossera
macrantha Pax
Hevea brasiliensis
(Willd. ex A.Juss.)
Mull.Arg.
Klaineanthus
gaboniae Pierre ex
Prain

Macaranga
kilimandscharica
Pax

Macaranga
monandra
Mull.Arg.
Macaranga spinosa
Mull.Arg.
Maprounea
africana Mull.Arg.
Neoboutonia
macrocalyx Pax
Ricinodendron
heudelotii (Baill.)
Heckel
Ricinodendron
heudelotii subsp.
africanum
(Mall.Arg.)
J.Léonard
Schinziophyton
rautanenii (Schinz)

Radcl.-Sm.
Sclerocroton
cornutus (Pax)
Kruijt & Roebers
Shirakiopsis

elliptica (Hochst.)
Esser
Tetrorchidium
didymostemon
(Baill.) Pax &
K.Hoffm.

Afzelia africana
Sm. ex Pers.

Tw7714, Tw7921
Tw2391, Tw1286
Tw624, Tw6967
Tw7329, Tw8216,
Tw7227

Tw61294,

Tw61295, Tw50322

Tw8543, Tw11439,
Tw8434

Tw19426, Tw4916,
Tw24166

Tw10224, Tw1223,
Tw2651

Tw7122, Tw8163
Tw32701, Tw28261
Tw21942,

Tw31481, Tw17221
Tw43839, Tw41100

Tw2471, Tw122

Tw11329, Twa335,

Tw11333

Tw8228, Tw2249

Tw907

Tw2189, Tw2049,
Tw967

Tw14035, Tw5024,
Tw53917,

Tw27710

Tw1155

Tw1224

Tw10143, Tw30664

Tw26141, Tw19370

Tw8446

Tw2563

Tw2649

Tw1149

Tw24351

Tw24189

Tw12959

Tw1119

Tw11292, Tw11273

Tw10218

Tw2060

Tw1909, Tw164

Tw5023, Tw11081

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Albizia Durazz.

38

21

Afzelia bella Harms

Afzelia
bipindensis
Harms

Afzelia pachyloba
Harms

Afzelia quanzensis
Welw.

Albizia adianthifolia
(Schumach.)
W.Wight

Albizia adianthifolia
var. intermedia (De
Wild. & T.Durand)
Villiers

Albizia altissima
Hook.f.

Albizia antunesiana
Harms

Albizia  chinensis
(Osbeck) Merr.
Albizia coriaria
Welw. ex Oliv.
Albizia ferruginea
(Guill. & Perr.)
Benth.

Albizia glaberrima
(Schumach. &
Thonn.) Benth.
Albizia glaberrima
var. glabrescens
(Oliv.) Brenan
Albizia gummifera
(J.F.Gmel.) C.A.Sm.
Albizia gummifera
var. ealaensis (De
Wild.) Brenan
Albizia laurentii De
wild.

Albizia lebbeck (L.)
Benth.

Albizia
schimperiana Oliv.
Albizia  versicolor
Welw. ex Oliv.

Tw535086,
Tw47200, Tw53948
Tw375, Tw10452,
Tw42694

Tw26431, Tw1567,
Tw3898, Tw53508,
Tw14072, Twa886,
Tw30643, Tw11236
Tw14458,
Tw23635, Tw2100,
Tw57088, Tw62,
Tw65751, Tw57069
Tw322, Tw28248,
Tw308, Tw342
Tw2034, Twa3678,
Tw4962, Tw24343

Tw5343

Tw985,  Tw8552,
Tw3948
Tw29622,
Tw29058, Tw28848
Tw25206,
Tw10957, Tw50580
Tw1214, Tw20703,
Tw7131

Tw724, Tw1544,
Tw609, Tw842

Tw29572, Tw29594

Tw8122

Tw690, Tw528

Tw2164, Tw926,
Tw1111

Tw20615, Tw3607

Tw30609

Tw43691

Tw6998, Tw7584,
Tw3586

Tw3899
Tw13492, Tw2417,
Tw29571

Tw62357,

Tw20811, Tw51747

Tw28143, Tw1022

Tw1927, Tw11235

Tw518

Tw30094, Tw3582

Tw28191, Tw24213

Tw41850

Tw6962

Tw1450, Tw1172

Tw25101

Tw4764

Tw1141

Tw262

Tw1670

Tw10908

Tw43690

Tw2014, Tw2389

Not Commercial

Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Amphimas Pierre
ex Harms

Annea Mackinder &
Wieringa

Anthonotha
P.Beauv.

Aphanocalyx Oliv.

Baikiaea Benth.

Baphia Afzel. ex
G.Lodd.

Berlinia Sol. ex
Hook.f. & Benth.

Albizia zygia (DC.)
J.F.Macbr.
Amphimas
ferrugineus Pierre
ex Pellegr.
Amphimas
pterocarpoides
Harms

Annea laxiflora
(Benth.) Mackinder
& Wieringa
Anthonotha brieyi
(De Wild.)
J.Léonard
Anthonotha
fragrans (Baker f.)
Exell & Hillc.
Anthonotha
pynaertii (De Wild.)
Exell & Hillc.
Aphanocalyx
cynometroides
Oliv.

Aphanocalyx
microphyllus
(Harms) Wieringa
Baikiaea insignis
Benth.

Baikiaea  robynsii
Ghesq. ex Laing
Baphia bequaertii
De Wild.

Baphia dewevrei
De Wild.

Baphia
massaiensis Taub.
Baphia nitida
G.Lodd.

Baphia pubescens
Hook.f.

Berlinia bracteosa
Benth.

Berlinia confusa
Hoyle

Berlinia
congolensis (Baker
f.) Keay

Berlinia
grandiflora (Vahl)
Hutch. & Dalziel

Tw3625, Tw657

Tw32663, Tw2036,
Tw1289

Tw394, Tw3694

Tw28601, Tw32418

Tw19374, Tw95

Tw3600

Tw7539

Tw62474, Tw7639

Tw7145, Tw4949

Tw24394,
Tw24393, Tw25687
Tw40341, Tw39908

Tw28161,
Tw24225, Tw24350
Tw49182

Tw28666

Tw29890,
Tw14446, Tw14497
Tw32737, Tw30012

Tw10786, Tw789,
Tw113

Tw24418,
Tw12967, Tw32021
Tw32626

Tw8439, Tw3492,
Tw49435

Tw20707

Tw32495

Tw1404

Tw28470

Tw1206

Tw1056

Tw33471

Tw62443

Tw2050

Tw21538, Tw10287

Tw33344

Tw23671, Tw23670

Tw39910

Tw28567

Tw28779

Tw29855

Tw57428

Tw30016

Tw1438

Tw22674, Tw32753

Not Commercial

Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial
Commercial

Not Commercial

Not Commercial

Commercial
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Bobgunnia
J.H.Kirkbr. &
Wiersema

Brachystegia
Benth.

Burkea Benth.

Cassia L.

Copaifera L.

Craibia Harms &
Dunn

27

Bobgunnia
fistuloides
(Harms)
J.H.Kirkbr. &
Wiersema
Bobgunnia
madagascariensis
(Desv.) J.H.Kirkbr. &
Wiersema
Brachystegia
boehmii Taub.
Brachystegia
bussei Harms
Brachystegia
laurentii (De Wild.)
Louis ex J.Léonard
Brachystegia
longifolia Benth.
Brachystegia
manga De Wild.
Brachystegia
spiciformis Benth.
Brachystegia
tamarindoides
subsp. microphylla
(Harms) Chikuni
Brachystegia
tamarindoides
subsp.
tamarindoides
Brachystegia
taxifolia Harms
Brachystegia utilis
Hutch. & Burtt Davy
Burkea africana
Hook.

Cassia mannii Oliv.

Cassia sieberiana
DC.

Copaifera
mildbraedii
Harms

Copaifera religiosa
J.Léonard

Craibia affinis (De
Wild.) De Wild.
Craibia grandiflora
(Micheli) Baker f.
Craibia lujae De
wild.

Tw22594,
Tw18782,
Tw51757, Tw25708

Tw304, Tw28165

Tw61780,
Tw44583, Tw19267
Tw61765, Tw61764

Tw30675, Tw2540,
Tw1562, Tw2414

Tw28190,
Tw11379, Tw329
Tw56370,
Tw19270, Tw61812
Tw3887, Tw320,
Tw2002, Tw345
Tw19274, Tw28416

Tw28607

Tw3592, Tw24234,
Tw330
Tw2370, Tw20562

Tw19275,
Tw29610, Tw17181
Tw3598, Tw40369
Tw53923,
Tw51672, Tw49425
Tw8430, Tw7472,
Tw8299

Tw48331

Tw973

Tw5068, Tw7353

Tw7750, Tw8298

Tw13500, Tw11245

Tw20586

Tw57541

Tw19268

Tw1363, Tw1030

Tw11278, Tw11288

Tw61785

Tw11303, Tw11326

Tw19271

Tw1577

Tw11269, Tw11302

Tw1373

Tw20563

Tw264

Tw10885, Tw41426

Tw7109, Tw5228

Tw26874

Tw4198

Tw2360

Tw7125

Commercial

Not Commercial

Not Commercial
Not Commercial

Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Crudia Schreb.

Cryptosepalum
Benth.
Cylicodiscus
Harms
Cynometra L.

Dalbergia L.f.

Daniellia Benn.

Dialium L.

22

Crudia harmsiana
De Wild.

Crudia laurentii De
Wwild.
Cryptosepalum
exfoliatum De Wild.
Cylicodiscus
gabunensis Harms
Cynometra
alexandri
C.H.Wright
Cynometra hankei
Harms

Cynometra lujae
De Wild.
Cynometra mannii
Oliv.

Cynometra
sessiliflora Harms
Dalbergia boehmii
Taub.

Daniellia
alsteeniana
P.A.Duvign.
Daniellia klainei
Pierre ex A.Chev.
Daniellia oliveri
(Rolfe) Hutch. &
Dalziel

Daniellia pynaertii
De Wild.

Daniellia soyauxii
(Harms) Rolfe
Dialium
englerianum
Henrig.

Dialium excelsum
Louis ex Steyaert
Dialium
pachyphyllum
Harms

Dialium
pentandrum Louis
ex Steyaert

Dialium
polyanthum Harms
Dialium tessmannii
Harms

Dialium zenkeri
Harms

Tw8410, Tw39900

Tw39884

Tw28259

Tw29781,
Tw25735, Tw18881
Tw3489, Tw1992,
Tw1747

Tw1668, Tw2152,
Tw589
Tw7161, Tw4765

Tw25692, Tw24420

Tw8063, Tw3490,
Tw7136
Tw24384

Tw20565,
Tw21750, Tw778

Tw51768, Tw4838,
Tw48454
Tw14038, Tw877,
Tw20501

Tw51745, Tw901

Tw5352, Tw8395

Tw26915, Tw8414,
Tw10201

Tw7638, Tw3612,
Tw7342

Tw61981,
Tw51772, Tw852,
Tw6745, Tw57704
Tw21873,
Tw13337, Tw7580

Tw696, Tw2474,
Tw2473
Tw61162, Tw32636

Tw10163, Tw7743,
Tw5018

Tw39899

Tw3954

Tw28160

Tw18765, Tw14033

Tw2394

Tw1662, Tw1158

Tw1440

Tw24419

Tw27064, Tw1529

Tw21191

Tw7182

Tw41218, Tw10752

Tw3676

Tw23020

Tw18766

Tw44562

Tw1107, Tw2429

Tw100, Tw4826

Tw3685

Tw2478

Tw32248

Tw7708

Not Commercial
Not Commercial
Not Commercial
Not Commercial

Commercial

Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial
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Dichrostachys
(A.DC.) Wight &
Arn.

Entada Adans.

Erythrina L.

Erythrophleum
Afzel. ex G.Don

Faidherbia A.Chev.
Fillaeopsis Harms

Gilbertiodendron
J.Léonard

Gilletiodendron
Vermoesen

Guibourtia Benn.

Dichrostachys
cinerea (L.) Wight &
Arn.

Entada abyssinica
Steud. ex A.Rich.
Erythrina
abyssinica Lam.
Erythrina
droogmansiana De
Wild. & T.Durand
Erythrina  excelsa
Baker

Erythrina orophila
Ghesq.
Erythrophleum
africanum (Benth.)
Harms
Erythrophleum
suaveolens (Guill.
& Perr.) Brenan
Faidherbia albida
(Delile) A.Chev.
Fillaeopsis
discophora Harms
Gilbertiodendron
dewevrei (De
Wild.) J.Léonard
Gilbertiodendron
grandiflorum  (De
Wild.) J.Léonard
Gilbertiodendron
grandistipulatum
(De wild.)
J.Léonard
Gilbertiodendron
mayombense
(Pellegr.) J.Léonard
Gilbertiodendron
ogoouense
(Pellegr.) J.Léonard
Gilletiodendron
kisantuense
(Vermoesen ex De
Wild.) J.Léonard
Gilletiodendron
mildbraedii
(Harms)
Vermoesen
Guibourtia
arnoldiana (De

Tw28572,
Tw29050,
Tw26730, Tw3957
Tw3593

Tw755

Tw8441, Twb022,
Tw26829

Tw5255

Tw5078

Tw312, Tw29619,
Tw3588

Tw321, Tw853,

Tw931, Tw96,
Tw34933, Tw864
Tw44661,
Tw28184, Tw29593
Tw531, Twos1,
Tw7685

Tw568, Tw549,
Tw5215

Tw5175, Tw5094

Tw5097, Twb093,
Tw5092, Tw5095

Tw26259

Tw5138, Tw398,

Tw3441

Tw60050, Tw60051

Tw3693, Tw1975,
Tw2390

Tw1622, Tw1414,
Tw1507

Tw23518, Tw22650

Tw21194

Tw20580

Tw5161

Tw24380

Tw1068

Tw11356, Tw18720

Tw131, Tw1187,

Tw32962

Tw30347

Tw44, Tw2134

Tw2018, Tw332

Tw105

Tw1252, Tw42

Tw19376

Tw3439, Tw3440

Tw29479

Tw1169, Tw1106

Tw1508

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Commercial

Not Commercial
Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial
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Hylodendron Taub.

Hymenostegia
Harms

Intsia Thouars

Isoberlinia Craib &
Stapf

Julbernardia
Pellegr.

Lonchocarpus
Kunth

Millettia Wight &
Arn.

3 1
3 2
3 2
6 3
12 7
1 1
15 7

Wild. & T.Durand)
J.Léonard
Guibourtia
coleosperma
(Benth.) J.Léonard
Guibourtia
demeusei (Harms)
J.Léonard
Guibourtia  ehie
(A.Chev.)
J.Léonard
Hylodendron
gabunense Taub.
Hymenostegia
mundungu
(Pellegr.) J.Léonard
Intsia bijuga var.
bijuga

Isoberlinia
angolensis (Welw.
ex Benth.) Hoyle &
Brenan

Isoberlinia doka
Craib & Stapf
Isoberlinia
tomentosa (Harms)
Craib & Stapf
Julbernardia brieyi
(De Wild.) Troupin
Julbernardia
globiflora (Benth.)
Troupin
Julbernardia
paniculata (Benth.)
Troupin
Julbernardia
pellegriniana
Troupin
Julbernardia seretii
(De Wild.) Troupin
Lonchocarpus
sericeus (Poir.)
Kunth ex DC.
Millettia  drastica
Welw. ex Baker
Millettia dura Dunn

Millettia
eetveldeana
(Micheli) Hauman

Tw13508, Tw4203,
Tw22751

Tw32757

Tw22580,
Tw18884, Tw25777

Tw1275, Tw1422,
Tw3636
Tw7256, Tw8062,
Tw7737

Tw27153,

Tw22581, Tw26099
Tw5257, Tw28173

Tw48547,
Tw49428, Tw18192
Tw49427

Tw30657

Tw19280,
Tw19279, Tw763

Tw24348, Tw3891,
Tw27515

Tw29484

Tw5326, Tw2285,

Tw3958, Tw2281

Tw28204

Tw891, Tw21965

Tw4320, Tw905

Tw4328, Tw8255

Tw29612

Tw31

Tw13426, Tw12955

Tw25757

Tw7162, Tw10141

Tw11652, Tw22514

Tw20568

Tw48548

Tw3879

Tw1441

Tw19281

Tw24347, Tw20570

Tw18779

Tw1539, Tw1611

Tw11240

Tw1198

Tw1213

Tw2043

Not Commercial

Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Newtonia Baill.

Pachyelasma
Harms

Paramacrolobium
J.Léonard

Parkia R.Br.
Peltophorum
(Vogel) Benth.

Pentaclethra
Benth.

Pericopsis
Thwaites

Piliostigma Hochst.

12

1

Millettia laurentii
De Wild.

Millettia
stuhlmannii Taub.
Millettia versicolor
Welw. ex Baker
Newtonia
aubrevillei
(Pellegr.) Keay
Newtonia
buchananii (Baker)
G.C.C.Gilbert &
Boutique

Newtonia
glandulifera
(Pellegr.)
G.C.C.Gilbert &
Boutique

Newtonia
leucocarpa
(Harms)
G.C.C.Gilbert &
Boutique
Pachyelasma
tessmannii
(Harms) Harms
Paramacrolobium
coeruleum (Taub.)
J.Léonard

Parkia bicolor
A.Chev.
Peltophorum
africanum Sond.
Pentaclethra
eetveldeana De
Wild. & T.Durand
Pentaclethra
macrophylla Benth.
Pericopsis
angolensis (Baker)
Meeuwen
Pericopsis elata
(Harms) Meeuwen

Piliostigma
thonningii
(Schumach.) Milne-
Redh.

Tw532, Tw59847,
Tw3894, Tw5227,
Tw425

Tw25676

Tw20679, Tw18,
Twb

Tw10414, Tw808,
Tw10403

Tw8095, Tw20708,
Tw18879

Tw8393, Tw7587,
Tw1448

Tw7340, Tw64766,
Tw4821

Tw3959, Tw1246,
Tw1163

Tw697, Tw7699,
Tw1129

Tw434009,
Tw38609, Tw64617
Tw26830

Tw43406, Tw2524,
Tw2527, Tw2525,
Tw2522, Tw2528
Tw1458, Twb5205,
Tw1720

Tw21116, Tw3888,
Tw28843

Tw7648, Tw248,
Tw1861, Tw1237,
Tw3613, Tw1520
Tw28157

Tw1988, Tw281

Tw20822

Tw28

Tw3602

Tw2202

Tw7753

Tw25765, Tw2133

Tw29478

Tw729

Tw57203

Tw20571

Tw152, Tw1369,
Tw2523

Tw3946

Tw20572, Tw18888

Tw1100, Tw17985

Tw20556

Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial
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Piptadeniastrum
Brenan

Platysepalum
Welw. ex Baker

Prioria Griseb.

Pterocarpus Jacq.

Senegalia Raf.

Senna Mill.

Tamarindus Tourn.
ex L.

38

3

Piptadeniastrum
africanum
(Hook.f.) Brenan
Platysepalum
chevalieri Harms
Platysepalum
violaceum  Welw.
ex Baker

Prioria
balsamifera
(Vermoesen)
Breteler

Prioria  buchholzii
(Harms) Breteler
Prioria mannii
(Baill.) Breteler
Prioria oxyphylla
(Harms) Breteler
Pterocarpus
angolensis DC.

Pterocarpus
rotundifolius
(Sond.) Druce
Pterocarpus
soyauxii Taub.

Pterocarpus
tinctorius Welw.

Senegalia senegal
(L.) Britton

Senna siamea
(Lam.) H.S.Irwin &
Barneby
Tamarindus indica
L.

Tw25103, Tw957,
Tw960

Two174

Tw4330

Tw51767,
Tw33490, Tw3616

Tw435, Tw29630

Tw7680

Tw60038,
Tw60049, Tw60033
Tw344, Tw18724,
Tw11369,
Tw17187,
Tw10286,
Tw11636,
Tw19284, Twa8261,
Tw768, Tw1013,
Tw11266, Tw11390
Tw28199, Tw28123

Tw29805, Tw1826,
Tw955, Tw7654,
Tw29088,
Tw51777, Tw3760,
Tw236, Tw392,
Tw7671, Tw10773,
Tw1131

Tw1010, Tw1322,
Tw13506, Tw26,
Tw762, Tw1021,
Tw20585,
Tw11420,
Tw11327, Twa30,
Tw19386, Tw313
Tw41460

Tw951, Tw111086,
Tw1032

Tw19625,
Tw18301, Tw5163

Tw1533, Tw1985

Tw5069

Tw33039

Tw1334, Tw1417

Tw1269

Tw11241

Tw60031, Tw1109
Tw8325, Tw11635,

Tw11338,
Tw19369, Tw20583

Tw23063

Tw463, Tw83e6,
Tw718, Tw346

Tw41191, Tw1426,
Tw29542, Tw24162

Tw23499

Tw710

Tw17418,Tw11018

Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial
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Gentianaceae

Huaceae

Hypericaceae

Irvingiaceae

18

11

Tessmannia Harms

Tetraberlinia
(Harms) Hauman

Tetrapleura Benth.

Vachellia Wight &
Arn.

Anthocleista Afzel.
ex R.Br.

Hua Pierre ex De
wild.

Harungana Lam.

Desbordesia Pierre
ex Tiegh.

Irvingia Hook.f.

Tessmannia
africana Harms
Tessmannia
anomala (Micheli)
Harms
Tessmannia
anomala var.
flamignii J.Léonard
Tessmannia
lescrauwaetii (De
Wild.) Harms
Tessmannia
yangambiensis
Louis ex J.Léonard
Tetraberlinia
bifoliolata (Harms)
Hauman
Tetrapleura
tetraptera
(Schumach. &
Thonn.) Taub.
Vachellia
abyssinica
(Hochst. ex Benth.)
Kyal. & Boatwr.
Vachellia seyal
(Delile)
P.J.H.Hurter
Anthocleista
grandiflora Gilg
Anthocleista
nobilis G.Don
Anthocleista
schweinfurthii Gilg
Hua gaboni Pierre
ex De Wild.
Harungana
madagascariensis
Poir.

Desbordesia
glaucescens (Engl.)
Tiegh.

Irvingia
gabonensis
(Aubry-Lecomte
ex O'Rorke) Baill.
Irvingia grandifolia
(Engl.) Engl.
Irvingia robur
Mildbr.

Tw56967

Tw2362, Tw3953

Tw2279

Tw7173, Twb5295,

Tw7228

Tw7199

Tw43754,

Tw42963, Tw44694

Tw56, Tw61105,

Tw53891

Tw39177

Tw30353

Tw17189

Tw3071, Tw3069,
Tw3070
Tw1183, Tw29297,
Tw1229
Tw7995

Tw871, Tw2500,
Tw2564

Tw22741,
Tw25705, Tw18758

Tw8166, Tw5238,
Tw9749

Tw2485, Tw137,
Tw1117
Tw7980, Twa8235,
Tw2487

Tw1272

Tw14835

Tw2276

Tw5211, Tw5231

Tw1189

Tw24415, Tw25691

Tw120, Tw2197

Tw28151

Tw30352

Tw1185

Tw25768, Tw3066

Tw23926

Tw32243

Tw819

Tw10793, Tw1208

Tw1647, Tw260

Tw1415

Tw10145, Tw2486

Commercial

Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Commercial

Commercial

Not Commercial
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Ixonanthaceae

Kirkiaceae

Lamiaceae

Lauraceae

31

16

14

Klainedoxa Pierre
ex Engl.
Phyllocosmus
Klotzsch

Kirkia Oliv.

Gmelina L.

Premna L.
Tectona L.f.

Vitex L.

Beilschmiedia
Nees

Irvingia smithii
Hook.fil.

Irvingia
tenuinucleata
Tiegh.

Klainedoxa
gabonensis Pierre
Phyllocosmus
africanus
(Hook.fil.) Klotzsch
Kirkia acuminata
Oliv.

Gmelina arborea
Roxb. ex Sm.

Premna angolensis
Gurke
Tectona grandis L.f.

Vitex congolensis
De wild. &
T.Durand

Vitex congolensis
var. congolensis

Vitex doniana
Sweet
Vitex ferruginea
Schumach. &
Thonn.

Vitex madiensis
Oliv.

Vitex madiensis
subsp. milanjiensis
(Britten) F.White
Vitex mombassae
Vatke
Beilschmiedia
congolana Robyns
& R.Wilczek
Beilschmiedia
corbisieri (Robyns)
Robyns & R.Wilczek
Beilschmiedia
louisii Robyns &
R.Wilczek

Tw9783

Tw7142, Tw9781

Tw8279, Tw5332,
Tw6954
Tw2216, Tw9770

Tw28189, Tw24054

Tw25291,
Tw57692,
Tw18090,
Tw14064,
Tw31785,
Tw14451,
Tw29514,
Tw44885, Tw60284
Tw39150,
Tw28127, Tw20731
Tw767, Tw11055,
Tw13935
Tw20613, Tw7237

Tw2039, Tw1791,
Tw7575

Tw18592, Tw1245,
Tw302

Tw28639,
Tw61051, Tw61425
Tw2033, Tw780

Tw1825, Tw754

Tw8527

Tw5210, Tw33511

Tw839, Tw543,
Tw719

Tw4334

Tw13339

Tw3049

Tw1435, Tw2398

Tw1120

Tw18997

Tw29515,
Tw14280, Tw53935

Tw28477

Tw3805

Tw10222

Tw1563, Tw1114

Tw1000, Tw10800

Tw61373

Tw56974

Tw28453

Tw1146

Tw32863

Tw1255, Tw513

Tw1099

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial
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Lecythidaceae

Loganiaceae

Malvaceae

46

29

Persea Mill.

Petersianthus
Merr.

Brenania Keay

Strychnos L.

Adansonia L.

Ceiba Mill.

Cola Schott & EndlL.

Desplatsia Bocq.

Dombeya Cav.

Duboscia Bocq.
Grewia L.

Heritiera Aiton

Beilschmiedia
mannii (Meisn.)
Robyns & R.Wilczek
Beilschmiedia
oblongifolia
Robyns & R.Wilczek
Beilschmiedia
ugandensis Rendle
Persea americana
Mill.
Petersianthus
macrocarpus
(P.Beauv.) Liben
Brenania brieyi (De
Wild.) E.M.A.Petit
Strychnos
cocculoides Baker
Strychnos innocua
Delile

Strychnos spinosa
Lam.

Adansonia digitata
L.

Ceiba pentandra
(L.) Gaertn.

Cola ballayi Cornu
ex Tschirch &
O.Oesterle

Cola cordifolia
(Cav.) R.Br.

Cola gigantea
A.Chev.

Cola lateritia
K.Schum.

Cola nitida (Vent.)
Schott & Endl.

Cola  welwitschii
Exell & Mendonga
Desplatsia
subericarpa Bocq.
Dombeya
rotundifolia
(Hochst.) Planch.
Dombeya torrida
(J.F.Gmel.) Bamps
Duboscia viridiflora
(K.Schum.) Mildbr.
Grewia louisii
R.Wilczek

Heritiera littoralis
Dryand. ex Aiton

Tw44011,
Tw10372, Tw12941

Tw7457, Tw1607,
Tw5082

Tw45063

Tw24643,
Tw19159, Tw19160
Tw989, Tw815,
Tw889

Tw66, Tw30902
Tw28270

Tw24360

Tw56901,
Tw24357, Tw56904
Tw53835

Tw622, Tw8159,
Tw8138

Tw8486, Tw2217,
Tw62026

Tw41336

Tw56987

Tw9175, Tw8224
Tw57419

Tw29586

Tw7313, Tw185,
Tw1860

Tw26043,
Tw24381, Tw44530
Tw24195

Tw29808,
Tw30889, Tw62418
Tw8225

Tw13932

Tw30093

Tw5083

Tw4201

Tw22468

Tw282, Tw693

Tw30897

Tw24361

Tw2399

Tw56902

Tw25915

Tw50225, Tw251

Tw6953

Tw30698

Tw22813

Tw10338

Tw57182

Tw28133

Tw6975

Tw26110

Tw19993

Tw43837

Tw7544

Tw11632

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Melastomataceae

Meliaceae

1

152

62

Microcos L.

Nesogordonia Baill.

Pterygota Schott &
Endl.

Sterculia L.

Triplochiton
K.Schum.

Dichaetanthera
Endl.

Carapa Aubl.

Ekebergia Sparrm.

Entandrophragma
C.DC.

56

22

Microcos coriacea
(Mast.) Burret
Microcos
pinnatifida (Mast.)
Burret
Nesogordonia
kabingaensis
(K.Schum.)
Capuron
Nesogordonia
papaverifera
(A.Chev.) Capuron
Pterygota
bequaertii De
wild.

Pterygota
macrocarpa
K.Schum.
Sterculia
quinqueloba
(Garcke) K.Schum.
Sterculia
tragacantha Lindl.
Triplochiton
scleroxylon
K.Schum.
Dichaetanthera
corymbosa (Cogn.)
Jacq.-Fél.

Carapa procera
DC.

Ekebergia
benguelensis
Welw. ex C.DC.
Ekebergia capensis
Sparrm.
Entandrophragma
angolense (Welw.)
c.DC.

Entandrophragma
candollei Harms

Tw2645

Tw2647, Tw2643,
Tw7253

Twe64765, Tw3634,
Tw266

Tw14117,
Tw14118, Tw14060

Tw25719, Tw2434

Tw2721, Tw14057,
Tw21879

Tw732

Tw7693, Twb088,
Tw6961
Tw879, Tw68416

Tw33391

Tw7506, Tw22440,
Tw257, Tw8101,
Tw909, Tw7104
Tw28179, Tw9815

Tw9785, Tw738,
Tw9800

Tw243, Tw554,
Tw530, Tw133,
Tw713, Tw1550,
Tw5354, Tw2536,
Tw1212, Tw1543,
Tw384, Tw378,
Tw8484, Tw1982
Tw5036, Tw5035,
Tw1653, Tw9805,
Tw32292, Twb566,
Tw5032, Tw1535,
Tw350, Tw5031,
Tw20824

Tw2644

Tw1897, Tw187

Tw129, Tw1512

Tw11446, Tw13942

Tw1138

Tw11082, Tw11443

Tw2247

Tw28250, Tw1475

Tw65071

Tw24202

Tw67, Tw1603

Tw24219

Tw20915, Tw23849

Tw1432, Tw3630,

Tw1118, Tw7468,
Tw43

Tw9755, Tw14044,
Tw11747, Tw51782

Not Commercial

Not Commercial

Commercial

Commercial

Commercial

Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Commercial
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Khaya A.Juss.

Leplaea
Vermoesen

Lovoa Harms

30

Entandrophragma
cylindricum
(Sprague) Sprague

Entandrophragma
delevoyi De Wild.
Entandrophragma
excelsum (Dawe &
Sprague) Sprague
Entandrophragma
palustre Staner
Entandrophragma
utile (Dawe &
Sprague) Sprague

Khaya anthotheca
(Welw.) C.DC.

Khaya
grandifoliola
c.DC.

Leplaea cedrata
(A.Chev.)
E.J.M.Koenen &
J.J.de Wilde

Leplaea laurentii
(De wild.)
E.J.M.Koenen &
J.).de Wilde
Leplaea
thompsonii
(Sprague & Hutch.)
E.J.M.Koenen &
J.J.de Wilde

Lovoa trichilioides
Harms

Tw866, Tw14076,
Tw941, Tw1324,
Tw1043, Tw912,
Tw11069, Tw527,
Tw11465

Tw11394, Tw310,
Tw20588

Tw1232, Tw14125,
Tw750, Tw8096

Tw733, Tw862,
Tw904

Tw8192, Tw1534,
Tw134, Tw2161,
Tw20826, Tw914,
Tw18783, Tw1315,
Tw3632, Tw14046,
Tw1102, Tw1329
Tw8381, Tw26913,
Tw9787, Tw209,
Tw44570, Tw9814,
Tw8382, Tw558
Tw39363, Tw7355,
Tw7351, Tw18904,
Tw43840, Tw50773
Tw20827,
Tw32811,
Tw18784,
Tw43852,
Tw50299,
Tw26497,
Tw17991, Tw1305,
Tw85, Tw660,
Tw7455, Tw1655,
Tw14047, Tw8322,
Tw29916

Tw373, Tw338,
Tw621

Tw1190, Tw7262,
Tw26919,
Tw32715, Tw5338,
Tw7157, Tw46414,
Tw9799, Tw26905,
Tw2030, Tw1110,
Tw1388

Tw18786,
Tw32236,
Tw29794, Tw449,
Tw7622, Tw20604,
Tw11065, Tw593,

Tw10476, Tw233,
Tw867

Tw26881

Tw1057, Tw1059

Tw605, Tw1160

Tw1410, Tw245,
Tw9801, Tw13391,
Tw32368

Tw215, Tw45,
Tw838

Tw18193,
Tw22771, Tw14507

Tw406, Tw12958,
Tw14077, Tw295,
Tw7484

Twe03

Tw9752, Tw3233,
Tw5339, Tw5145

Tw14049,
Tw51784,
Tw26496,
Tw10779,
Tw39119, Tw9798

Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Commercial

Commercial

Commercial

Not Commercial

Commercial

Commercial
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Moraceae

44

22

Trichilia P.Browne

Turraeanthus Baill.

Antiaris Lesch.

Artocarpus
J.R.Forst. &
G.Forst.
Bosqueiopsis De
Wild. & T.Durand

Ficus L.

17

Trichilia dregeana
Sond.

Trichilia  emetica
subsp. emetica
Trichilia gilgiana
Harms

Trichilia gilletii De
wild.

Trichilia
monadelpha
(Thonn.) J.De Wild.
Trichilia prieuriana
A.Juss.

Trichilia rubescens
Oliv.

Trichilia tessmannii
Harms

Trichilia welwitschii
C.DC.
Turraeanthus
africanus (Welw.
ex C.DC.) Pellegr.

Antiaris toxicaria
(Pers.) Lesch.
Antiaris  toxicaria
subsp. welwitschii
(Engl.) C.C.Berg
Antiaris  toxicaria
var. africana Scott
Elliot ex A.Chev.
Artocarpus  altilis
(Parkinson)
Fosberg
Bosqueiopsis
gilletii De Wild. &
T.Durand

Ficus bubu Warb.

Ficus demeusei
Warb.

Ficus elastica
Roxb.

Ficus lutea Vahl

Tw17993,
Tw12932, Tw7358,
Tw533, Tw20829,
Tw25775,
Tw29906, Tw1465,
Tw613

Tw39121

Tw39147

Tw29632

Tw33536, Tw7540,
Tw33154

Tw22969,
Tw33357, Tw2428

Tw1896, Tw104,
Tw29868

Tw2876, Tw3284,
Tw86

Tw29883

Tw7322

Tw20830,
Tw54557, Tw1635,
Tw2410, Twa858,
Tw29968, Tw26490
Tw31032, Tw7338,
Tw7568

Tw2266

Tw14512,

Tw17995, Tw53862

Tw18579

Tw8244, Tw7218

Tw4824, Tw990,
Tw7602
Tw7740

Tw48761

Tw11628,
Tw47922, Tw53945

Tw22775

Tw13289

Tw1911

Tw34956

Tw29964

Tw2055

Tw21947, Tw2874

Tw2044

Tw7178

Tw17994, Tw2413,
Tw64413

Tw25, Tw11457

Tw2112

Tw18911

Tw11626

Tw7130

Tw2020, Tw173

Tw28805

Tw44660

Tw53828

Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial

Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Myristicaceae

Myrtaceae

15

12

Milicia Sim

Treculia Decne.

Trilepisium Thouars

Coelocaryon Warb.

Pycnanthus Warb.

Staudtia Warb.

Syzygium Gaertn.

Ficus mucuso
Welw. ex Ficalho
Ficus sur Forssk.

Ficus sycomorus L.

Ficus thonningii
Blume

Ficus vogeliana
(Miq.) Mig.

Milicia excelsa
(Welw.) C.C.Berg

Treculia  africana
Decne. ex Trécul
Trilepisium
madagascariense
DC.

Coelocaryon
botryoides
Vermoesen
Coelocaryon
preussii Warb.
Pycnanthus
angolensis
(Welw.) Exell
Staudtia
kamerunensis
Warb.

Staudtia
kamerunensis var.
gabonensis
(Warb.) Fouilloy
Syzygium
aromaticum (L.)
Merr. & L.M.Perry
Syzygium
cordatum Hochst.
Syzygium
guineense (Willd.)
DC.

Syzygium
owariense
(P.Beauv.) Benth.
Syzygium
parvifolium (Engl.)
Mildbr.

Syzygium  staudtii
(Engl.) Mildbr.

Tw1807, Tw1923

Tw28210
Tw26530

Tw24368, Tw7529,
Tw24026

Tw30668, Tw7942,
Tw3609

Tw54822, Tw58,
Tw51741, Tw1462,
Tw256, Tw785,
Tw235, Tw1463,
Tw1121

Tw53901, Tw57422

Tw40,  Tw32949,
Tw992, Twb9682,
Tw291
Tw1707, Tw948,
Twé15

Tw1644, Two4,
Tw135

Tw17999,
Tw14052, Tw10336

Tw64739,
Tw61419, Tw61366

Tw51752,
Tw57429, Tw59844

Tw8185

Tw27770,
Tw28873, Tw766
Tw59423, Tw57682

Tw39115, Tw30941

Tw31491

Tw176, Tw33557,
Tw33058

Tw1411

Tw2111
Tw13325

Tw33888

Tw6956

Tw54832, Tw1416,
Tw391

Tw3608

Tw25108, Tw20715

Tw8405

Tw1849

Tw1437

Tw61457

Tw473, Tw328

Tw1034

Tw17196, Tw23906

Tw21948

Tw24353

Tw26066

Tw33517

Not Commercial

Not Commercial
Not Commercial

Not Commercial
Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Ochnaceae

Olacaceae

Oleaceae

Pandaceae

Passifloraceae
Penaeaceae
Peraceae

Phyllanthaceae

29

57

13

32

Lophira Banks ex
C.F.Gaertn.

Coula Baill.

Diogoa Exell ex
Mendonga

Heisteria Jacq.

Okoubaka Pellegr.
& Normand

Ongokea Pierre

Strombosia Blume

Strombosiopsis
Engl.
Ximenia L.

Olea L.

Microdesmis
Planch.

Barteria Hook.f.
Psydrax Gaertn.
Chaetocarpus

Thwaites
Antidesma L.

Lophira alata
Banks ex
C.F.Gaertn.

Lophira lanceolata
Tiegh. ex Keay
Coula edulis Baill.

Diogoa zenkeri
(Engl.) Exell &
Mendonga

Heisteria parvifolia
Sm.

Okoubaka
aubrevillei Pellegr.
& Normand
Ongokea gore

(Hua) Pierre

Strombosia
grandifolia Hook.fil.
ex Benth.
Strombosia
pustulata var.
pustulata
Strombosia
scheffleri Engl.
Strombosiopsis
tetrandra Engl.
Ximenia americana
L.

Olea capensis
subsp. macrocarpa
(C.H.Wright) I.Verd.
Olea europaea
subsp. cuspidata
(Wall. & G.Don) Cif.
Olea  welwitschii
(Knobl.) Gilg &
G.Schellenb.
Microdesmis
kasaiensis
J.Léonard

Barteria  nigritana
Hook.fil.

Psydrax palma
(K.Schum.) Bridson
Chaetocarpus
africanus Pax
Antidesma
laciniatum
Mull.Arg.

Tw11463, Tw374,
Tw11060, Tw731

Tw30064, Tw887

Tw7536, Tw1940,
Tw25713
Tw726

Tw1798, Tw29791,
Tw10139
Tw6577, Tw21883,
Tw8498

Tw247, Tw824,
Tw407, Tw56966,
Tw470, Tw206
Tw1291, Tw1456,
Tw97

Tw1258, Tw1899,
Tw10335

Tw7504, Tw19983,
Tw20718

Tw1902, Tw1987,
Tw1713

Tw28424

Tw19991,
Tw23492, Tw18196

Tw19995

Tw39082, Tw39094

Tw8081

Tw7209, Tw7701,
Tw8094

Tw722, Tw355
Tw8074, Tw8043

Tw62507, Tw62516

Tw10767, Tw10345

Tw27540

Tw10758, Tw10346

Tw3686

Tw2407

Tw7135

Tw197, Tw389

Tw2015

Tw18794

Tw7270

Tw10162, Tw1122

Tw28372

Tw23490

Tw19984

Tw28211

Tw7316

Tw7746

Tw10158

Tw7924

Tw32891

Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Bridelia Willd.

Cleistanthus
Hook.f. ex Planch.

Hymenocardia
Wall. ex LindL.

Maesobotrya
Benth.

Margaritaria L.f.

Phyllanthus L.

Pseudolachnostyli

s Pax

Uapaca Baill.

22

Antidesma
membranaceum
Mull.Arg.

Bridelia atroviridis
Mull.Arg.

Bridelia brideliifolia
(Pax) Fedde
Bridelia ferruginea
Benth.

Bridelia micrantha
(Hochst.) Baill.
Cleistanthus
caudatus Pax

Cleistanthus
inundatus
J.Léonard
Cleistanthus
polystachyus
Hook.f. ex Planch.
Hymenocardia
acida Tul.
Hymenocardia
ulmoides Oliv.
Maesobotrya
staudtii (Pax)
Hutch.

Margaritaria
discoidea  (Baill.)
G.L.Webster
Phyllanthus
physocarpus
Mull.Arg.
Pseudolachnostyli
s maprouneifolia
Pax

Uapaca guineensis
Mull.Arg.

Uapaca heudelotii
Baill.

Uapaca kirkiana
Mull.Arg.

Uapaca mole Pax

Uapaca nitida
Mull.Arg.

Uapaca pilosa
Hutch.

Uapaca robynsii De
wild.

Tw7332, Tw23522,
Tw13377

Tw829, Tw1856,
Tw2077
Tw44655

Tw39022,
Tw28437, Tw28463
Tw24387,
Tw17168, Tw8221
Tw8449, Tw62504,
Tw62495,
Tw62477, Tw9776
Tw40348

Tw8099

Tw7203, Tw23624

Tw7220, Tw28202,
Tw8078
Tw39892

Tw59600

Tw9778, Tw1127,
Tw10198

Tw24221,
Tw28175, Tw28232

Tw59820,
Tw61424, Tw61372
Tw8247, Tw53895,
Tw9768

Tw1684, Tw24371

Tw368, Tw79,
Tw30884, Tw8172
Tw772, Tw13501,
Tw13514

Tw676, Tw23602

Tw23917

Tw10464, Tw10205

Tw7719

Tw21953

Tw10207, Tw22732

Tw28138

Tw50653, Tw62435

Tw33366

Tw1604

Tw10217

Tw1006, Tw10184

Tw184

Tw1444

Tw33620

Tw28180

Tw380, Tw59813

Tw26721, Tw195

Tw1596

Tw1423, Tw196

Tw306

Tw23600

Tw23913

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Proteaceae

Putranjivaceae

Rhamnaceae

Rhizophoraceae

Rosaceae

Rubiaceae

11

62

33

Faurea Harv.

Drypetes Vahl

Maesopsis Engl.
Ziziphus Mill.
Anopyxis Pierre ex

Engl.
Cassipourea Aubl.

Rhizophora L.
Hagenia J.F.Gmel.
Prunus L.

Aidia Lour.
Aulacocalyx
Hook.f.

Coffea L.

Corynanthe Welw.

Uapaca
sansibarica Pax
Uapaca togoensis
Pax

Uapaca vanhouttei
De Wild.

Faurea rochetiana
(A.Rich.) Chiov. ex
Pic.Serm.

Faurea saligna
Harv.

Drypetes
angustifolia Pax &
K.Hoffm.

Drypetes gerrardii
Hutch.

Drypetes
gossweileri
S.Moore
Maesopsis eminii
Engl.

Ziziphus abyssinica
Hochst. ex A.Rich.
Anopyxis klaineana
(Pierre) Engl.
Cassipourea
congoensis R.Br. ex
DC.

Cassipourea
gummiflua Tul.
Cassipourea
malosana (Baker)
Alston

Rhizophora
racemosa G.Mey.
Hagenia abyssinica
(Bruce) J.F.Gmel.
Prunus africana
(Hook.fil.) Kalkman
Aidia  ochroleuca
(K.Schum.)
E.M.A.Petit
Aulacocalyx
jasminiflora
Hook.f.

Coffea liberica
W.Bull

Corynanthe
macroceras
K.Schum.

Tw24359, Tw44707

Tw49444

Tw954

Tw751

Tw324, Tw7497

Tw62412, Tw62577

Tw33866, Tw23517

Tw1126, Tw1302,
Tw1219

Tw1192, Tw28149,
Tw1393

Tw60205

Tw3103,  Tw711,
Tw3109

Tw24194, Tw39872
Tw31482

Tw26100, Tw30363
Tw347, Tw25567,
Tw7

Tw740, Tw21932

Tw18972, Tw3583

Tw7441

Tw33037, Tw32945

Tw25823, Tw28578

Tw289, Tw7516,
Tw35920

Tw24305

Tw30053

Twé3

Tw23977

Tw24169

Tw62406

Tw23503

Tw1284

Tw1103, Tw1170

Tw20593

Tw2511, Tw2515

Tw24024

Tw31022

Tw19990

Tw14054, Tw22177

Tw21621

Tw17207

Tw1304

Tw23009

Tw25652

Tw254, Tw10150

Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
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Craterispermum
Benth.

Crossopteryx Fenzl

Gardenia J.Ellis

Heinsia DC.

Massularia (K.Schu
m.) Hoyle

Mitragyna Korth.

Morinda L.

Nauclea L.

Oxyanthus DC.

Corynanthe
paniculata Welw.
Craterispermum
cerinanthum Hiern
Craterispermum
laurinum (Poir.)
Benth.
Crossopteryx
febrifuga (Afzel. ex
G.Don) Benth.
Gardenia imperialis
K.Schum.

Gardenia ternifolia
subsp. jovis-
tonantis  (Welw.)
Verdc.

Heinsia crinita
(Wennberg)
G.Taylor
Massularia
acuminata (G.Don)
Bullock ex Hoyle
Mitragyna
ledermannii
(K.Krause) Ridsdale
Mitragyna
rubrostipulata
(K.Schum.) Havil.
Mitragyna
stipulosa (bC.)
Kuntze

Morinda
chrysorhiza
(Thonn.) DC.
Morinda citrifolia L.

Morinda lucida
Benth.

Nauclea
diderrichii (De
Wild.) Merr.
Nauclea latifolia
Sm.

Nauclea pobeguinii
(Hua ex Pobég.)
Merr.

Oxyanthus
tubiflorus
(Andrews) DC.

Tw977, Tw98s,
Tw288
Tw62542

Tw38625

Tw8079, Tw1959,
Tw28443

Tw24241,
Tw36120, Tw40359
Tw28429

Tw59364,
Tw59360, Tw59359

Tw40329, Tw8294

Tw29825, Tw108,
Tw14055

Tw26094, Tw31476

Tw1161, Twb546,
Tw276, Tw4a3s,
Tw241, Tw32,
Tw349

Tw1267

Tw691

Tw846, Tw635,
Tw728
Tw5209, Tw32869,

Tw263, Tw17,
Tw32256, Tw383
Tw12947

Tw1962, Tw30041,
Tw712

Tw894

Tw1442, Tw154

Tw41594

Tw30111

Tw7293

Tw39101

Tw28237

Tw59362

Tw33202

Tw14082

Tw25679

Tw293, Tw12,
Tw520

Tw102

Tw55585

Tw491, Tw608

Tw1144, Tw315

Tw10363

Tw34

Tw32546

Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial
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Rutaceae

Salicaceae

Sapindaceae

15

12

21

13

Psychotria L.

Rothmannia
Thunb.

Schumanniophyto
n Harms
Tricalysia  A.Rich.

ex DC.
Citrus L.

Vepris Comm. ex
A.uss.
Zanthoxylum L.

Homalium Jacq.

Allophylus L.

Blighia K.D.Koenig

Chytranthus
Hook.f.

Psychotria
dermatophylla
(K.Schum.)
E.M.A.Petit
Rothmannia
longiflora Salisb.
Rothmannia lujae
(De Wild.) Keay
Schumanniophyto
n magnificum
(K.Schum.) Harms
Tricalysia pallens
Hiern

Citrus x aurantium
L.

Citrus x limon (L.)
Osbeck

Vepris louisii
G.C.C.Gilbert
Zanthoxylum
chalybeum Engl.
Zanthoxylum
gilletii (De Wild.)
P.G.Waterman
Zanthoxylum heitzii
(Aubrév. & Pellegr.)
P.G.Waterman
Zanthoxylum
lemairei (De Wild.)
P.G.Waterman
Homalium
abdessammadii
Asch. & Schweinf.
Homalium
africanum
(Hook.fil.) Benth.
Homalium letestui
Pellegr.

Homalium
longistylum Mast.
Homalium
stipulaceum Welw.
ex Mast.

Allophylus
africanus P.Beauv.
Allophylus
dummeri Baker fil.
Blighia welwitschii
(Hiern) Radlk.
Chytranthus
carneus Radlk.

Tw966

Tw59623

Tw109, Tw8036,
Tw1671

Tw40372, Tw68428
Tw30246, Tw32306
Tw25991, Tw3782
Tw60223, Tw42211
Tw7525

Tw760, Tw319

Tw9820, Tw60730,
Tw61094

Tw9s, Tw18798,
Tw25749

Tw43831, Tw29298
Tw2046, Tw757
Tw2052, Tw6960,
Tw92

Tw26607, Tw30383
Tw1171,  Twe698,
Tw4955

Tw7971, Tw32277
Tw28154

Tw34780

Tw1424, Tw1116,

Tw1669
Tw8437

Tw821

Tw33023

Tw41588

Tw40364

Tw28555

Tw23577

Tw1950

Tw2418

Tw21933

Tw61374

Tw61993

Tw13227

Tw1874

Tw709

Tw18858

Tw69

Tw10147

Tw1461

Tw33534

Tw1652

Tw34807

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Sapotaceae

76

42

Haplocoelum
Radlk.

Lecaniodiscus
Planch. ex Benth.

Majidea J.Kirk ex

Oliv.
Pancovia Willd.

Sapindus L.

Zanha Hiern

Aningeria Aubrév. &
Pellegr.

Autranella A.Chev.

Baillonella Pierre

Breviea Aubrév. &
Pellegr.

Donella Pierre ex
Baill.

Englerophytum
K.Krause

Gambeya Pierre

Chytranthus
setosus Radlk.
Haplocoelum
intermedium
Hauman
Lecaniodiscus
cupanioides

Planch.

Majidea fosteri
(Sprague) Radlk.
Pancovia

floribunda Pellegr.
Pancovia laurentii
(De Wild.) Gilg ex
De Wild.

Sapindus rarak DC.

Zanha golungensis
Hiern

Aningeria  adolfi-
friederici (Engl.)
Robyns & Gilbert
Aningeria
altissima
(A.Chev.) Aubrév.
& Pellegr.
Aningeria pierrei
(A.Chev.) Aubrév.
& Pellegr.
Autranella
congolensis (De
Wild.) A.Chev.
Baillonella
toxisperma Pierre
Breviea sericea
Aubrév. & Pellegr.
Donella
pruniformis (Engl.)
Pierre ex Engl.
Englerophytum
laurentii (De Wild.)
L.Gaut.
Englerophytum
magalismontanum
(Sond.) T.D.Penn.
Gambeya africana
(A.DC.) Pierre

Tw19379, Tw1859

Tw8231

Tw8433, Tw8308

Tw8369

Tw827

Tw2931, Tw1220,
Tw2934

Tw44659, Tw20973

Tw32011,
Tw39959, Tw29876
Tw2555

Tw13234,
Tw22809, Tw51779

Tw8049, Tw29934,
Tw14523

Tw57417, Twé33,
Tw51736, Tw299,
Tw515, Tw430
Tw1675, Tw51781,
Tw46, Tw59843
Tw30679

Tw7300

Tw959, Tw614

Tw26912

Tw51786,
Tw61383,
Tw33010,
Tw61335, Tw61110

Tw10421

Tw174

Tw10213

Tw8134

Tw7956

Tw2933

Tw10229

Tw2080, Tw10454

Tw2554

Tw5147

Tw64760

Tw32272, Tw1175,

Tw13496

Tw1666, Tw1673

Tw29904

Tw1457

Tw33333

Tw26104

Tw1132, Tw1571

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial

Commercial

Commercial

Commercial
Not Commercial

Not Commercial

Not Commercial

Not Commercial

Commercial
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Letestua Lecomte

Malacantha Pierre

Manilkara Adans.

Mimusops L.

Neolemonniera
Heine

Omphalocarpum
P.Beauv.

Synsepalum
(A.DC.) Daniell

1

1

Gambeya  albida
(G.Don) Aubrév. &
Pellegr.

Gambeya  beguei
(Aubrév. & Pellegr.)
Aubrév. & Pellegr.
Gambeya
lacourtiana (De
Wild.) Aubrév. &
Pellegr.

Gambeya lungi (De
Wild.) Aubrév. &
Pellegr.

Gambeya
perpulchra (Mildbr.
ex Hutch. & Dalziel)
Aubrév. & Pellegr.
Gambeya subnuda
(Baker) Pierre
Letestua durissima
(A.Chev.) Lecomte
Malacantha
alnifolia (Baker)
Pierre

Manilkara mochisia
(Baker) Dubard
Manilkara obovata
(Sabine & G.Don)
J.H.Hemsl.
Mimusops zeyheri
Sond.
Neolemonniera
clitandrifolia
(A.Chev.) Heine
Omphalocarpum
brieyi De Wild.
Omphalocarpum
lecomteanum
Pierre ex Engl.
Synsepalum afzelii
(Engl.) T.D.Penn.
Synsepalum
brevipes (Baker)
T.D.Penn.
Synsepalum
revolutum (Baker)
T.D.Penn.
Synsepalum
stipulatum (Radlk.)
Engl.

Tw25112, Tw18990

Tw31499

Tw13, Tw1674,
Two71

Tw820, Tw996

Tw57667,
Tw32713, Tw53867

Tw1853, Tw2678,
Tw2679
Tw13884

Twb59528

Tw61732

Tw30896,
Tw21560, Tw28583

Tw759, Tw26522

Tw937

Tw93, Tw5538

Tw63032

Tw29980, Tw7230

Tw8533

Tw7722

Tw8391, Tw8424

Tw18989

Tw1705

Tw57424

Tw1303

Tw29938, Tw20726

Tw1130, Tw101

Tw13326

Tw53936

Tw41091

Tw13231, Tw20727

Tw1991

Tw8560

Tw2206

Tw34779

Tw10176

Tw30074

Tw13946

Tw7327

Not Commercial

Not Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

121



Simaroubaceae

Sladeniaceae

Stilbaceae

Ulmaceae

Urticaceae

Violaceae

Vochysiaceae

Zygophyllaceae

Tieghemella Pierre

Tridesmostemon
Engl.

Vitellaria

C.F.Gaertn.
Odyendea Engl.

Pierreodendron
Engl.

Ficalhoa Hiern
Nuxia Comm. ex

Lam.
Holoptelea Planch.

Musanga R.Br.

Myrianthus
P.Beauv.

Rinorea Aubl.

Erismadelphus
Mildbr.
Balanites Delile

Synsepalum
subcordatum De
wild.

Tieghemella
africana Pierre
Tieghemella
heckelii (A.Chev.)
Pierre ex Dubard

Tridesmostemon
omphalocarpoides
Engl.

Vitellaria paradoxa
C.F.Gaertn.
Odyendea
gabunensis (Pierre)
Engl.
Pierreodendron
africanum
(Hook.fil.) Little
Ficalhoa laurifolia
Hiern

Nuxia congesta
R.Br.
Holoptelea

grandis  (Hutch.)
Mildbr.

Musanga
cecropioides R.Br.
ex Tedlie
Myrianthus
arboreus P.Beauv.
Myrianthus holstii
Engl.

Myrianthus preussii
Engl.

Rinorea welwitschii
(Oliv.) Kuntze
Erismadelphus
exsul Mildbr.
Balanites
wilsoniana Dawe &
Sprague

Tw1150, Tw62740,
Tw62838

Tw25779,
Tw20837, Tw18800
Tw26510,
Tw18005,
Tw31670,
Tw55117,
Tw14526, Tw21571
Tw67108,
Tw29894, Tw5237

Tw7620, Tw26914

Tw62535, Tw8029

Tw7725, Tw7531,

Tw8055

Tw24199

Tw26542

Tw969, Tw1836,
Tw1876

Tw20, Tw1847,
Tw1898

Tw7566, Tw36,
Tw8220

Tw2261, Tw872
Tw33243

Tw34805

Tw725, Tw25756,

Tw30910
Tw8404, Tw9779

Tw62806

Tw10761, Tw15000

Tw19951, Tw12949

Tw57057

Tw18988

Tw62438

Tw5288, Tw25760

Tw22510

Tw13211

Tw1419, Tw1698

Tw1180, Tw1468

Tw82

Tw17234

Tw28794

Tw32909

Tw33352

Tw8287

Not Commercial

Commercial

Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial

Not Commercial
Not Commercial

Commercial

Not Commercial

Not Commercial
Not Commercial
Not Commercial
Not Commercial
Not Commercial

Not Commercial
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Table 8.2: Hyperparameters grid for finding the optimal parameter settings across all machine-learning classifiers in Chapter 3.

Classifier Hyperparameter Full Description Functionality Values
. . Unlimited depth (‘None’) raises complexity, risking
max_depth 24'51[:(t|tri’r:1ur2t(c)ie:th of the tree, controlling how deep the tree can grow before overfitting, while limited depth can lead to improved | None, 10, 20, 30
bT P g stops. generalization
min_samples_split Minimum number of samples required to split an internal node. Larger values prevent the tree from growing too complex. 2,5,10
min_samples_leaf Minimum number of samples required to be at a leaf node. Larger Yalue§ S|rT1pl|fy the model by pfeventlng overly small 1,2,4
and noisy splits, improving generalization
c Regularization parameter that controls the trade-off between a smooth Lower values increase regularization (smoother boundary), 0.1.1.10. 100
decision boundary and classifying training points correctly. while higher values prioritize fitting the training data T
Specifies the kernel type used in the algorithm (linear, radial basis function SPEC|f|§s the function u;sed to map data into h|gher— “”ea'f radial basis
SVM kernel K . . dimensional space, allowing the model to capture either | function (RBF),
(RBF), polynomial, or sigmoid). R R - L . . .
linear or non-linear relationships in the data. polynomial, or sigmoid
Thi trols the infl f indivi Ltraini L
gamma Kernel coefficient for non-linear kernels (RBF, poly, sigmoid) 'S cor? f° sthein uehce © |r1d|V|dua raining exampies on scale', 'auto’
the decision boundary in non-linear kernel methods.
n_estimators The number of trees in the RF. More tregs can improve accuracy but may increase 50, 100, 200
computational cost.
Unlimited depth (‘None’) raises complexity, risking
max_depth Maximum depth of each tree in the forest, limiting how deep the tree can grow. overfitting, while limited depth can lead to improved None, 10, 20
RF generalization
min_samples_split Minimum number of samples required to split an internal node. Larger values prevent the tree from growing too complex. 2,5,10
. . . L L implify th del b ti L u
min_samples_leaf Minimum number of samples required at a leaf node. arger Ya ”esi s@p " -e mogae y pfeven ing overly sma 1,2,4
and noisy splits, improving generalization
This parameter governs the model’s learning rate. Lower
learning_rate Step size used to update weights, controlling how quickly the model learns. values slow down learning but enhance accuracy, while 0.01, 0.05, 0.1
higher values accelerate learning at the cost of accuracy.
Increasing tree depth enhances pattern recognition but risks
depth Depth of each tree, determining the complexity of the model. overfitting, while shallow trees generalize well but may | 3,4,6
overlook complex relationships.
Catboost
Leaf weights are regularized to prevent overfitting by
12_leaf_reg Coefficient for L2 regularization penalizing large leaf values, encouraging simpler models 1,3,5
with better generalization.
Higher values increase the model's granularity in handling
border_count The number of splits for numerical features. numerical data, potentially improving accuracy but at a 32,64,128

higher computational cost.
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Correct order classification Misclassified Misclassified at intermediate level

Figure 8.2: Horizontal grouped bar chart showing classification outcomes for 144 species with observed taxonomic mismatches. Each species
is represented by three bars indicating the number of specimens that fall into one of the following categories: Blue (mismatched): Specimens
with partial classification errors—at least one taxonomic levelis correct, but others are incorrect (e.g., Family and Species correct, Genus wrong;
or Genus correct, Family and Species wrong); Yellow (fully misclassified): Specimens that were misclassified at all three taxonomic levels—
Family, Genus, and Species; Green (correct): Specimens correctly classified in a hierarchical order—Family must be correct, with Genus and/or
Species also correct (e.g., Family correct but Genus and Species wrong; Family and Genus correct, Species wrong; or all three levels correct).
This visualization helps identify patterns of classification accuracy and inconsistency across taxonomic levels.



Table 8.3: Summary of accuracy par species across taxonomic levels, showing for each species what percentages of their specimens was correctly identified by the RF model on
Species, Genus, or Family level and what percentage of each species was misidentified.

Species

\ Correct Species

Correct Genus

Correct Family

Completely Wrong

Caloncoba glauca 25 Caloncoba 25 Achariaceae 25

Caloncoba welwitschii 0 Caloncoba 0 Achariaceae 0

Lepisanthes senegalensis 50 Lepisanthes 50 Achariaceae 50

Lindackeria bukobensis 0 Lindackeria 0 Achariaceae 0

Lindackeria dentata 0 Lindackeria 0 Achariaceae 0

Scottellia klaineana 0 Scottellia 0 Achariaceae 0

Antrocaryon micraster 0 Antrocaryon 0 Anacardiaceae 25

Antrocaryon nannanii 12.5 Antrocaryon 25 Anacardiaceae 25 75
Clausena anisata 0 Clausena 0 Anacardiaceae 0

Ganophyllum giganteum 62.5 Ganophyllum 62.5 Anacardiaceae 62.5 37.5
Lannea welwitschii 0 Lannea 0 Anacardiaceae 0

Mangifera indica 0 Mangifera 0 Anacardiaceae 0

Myrsine melanophloeos _I Myrsine _ Anacardiaceae 0
Panda oleosa 0 Panda 0 Anacardiaceae 0

Pseudospondias longifolia 0 Pseudospondias 0 Anacardiaceae 75 25
Pseudospondias microcarpa 0 Pseudospondias 0 Anacardiaceae 0

Santiria trimera 0 Santiria 0 Anacardiaceae 0

Sorindeia africana 0 Sorindeia 75 Anacardiaceae 75 25
Sorindeia juglandifolia 12.5 Sorindeia 25 Anacardiaceae 25 75
Spondias dulcis 25 Spondias 25 Anacardiaceae 25 75
Trichoscypha acuminata 50 Trichoscypha 50 Anacardiaceae 50 50
Trichoscypha lucens 75 Trichoscypha 75 Anacardiaceae 75 25
Trichoscypha oddonii 25 Trichoscypha 75 Anacardiaceae 75 25
Xymalos monospora 0 Xymalos 0 Anacardiaceae 0

Anisophyllea boehmii 0 Anisophyllea 0 Anisophylleaceae 0

Annickia affinis 0 Annickia 0 Annonaceae 75 25
Annickia lebrunii 0 Annickia 0 Annonaceae 75 25
Anonidium mannii 12.5 Anonidium 12.5 Annonaceae 50 50
Brieya fasciculata 0 Brieya 0 Annonaceae 75 25
Cleistopholis glauca 0 Cleistopholis 25 Annonaceae 25 75
Cleistopholis patens 87.5 Cleistopholis 87.5 Annonaceae 87.5 12.5
Duguetia staudtii 25 Duguetia 25 Annonaceae 75 25
Greenwayodendron suaveolens _I Greenwayodendron _ Annonaceae 0
Hexalobus crispiflorus 62.5 Hexalobus 62.5 Annonaceae 0
Hexalobus monopetalus 0 Hexalobus 0 Annonaceae 75
Isolona congolana 50 Isolona 50 Annonaceae 0
Isolona hexaloba 0 Isolona 75 Annonaceae 0
Monodora angolensis 0 Monodora 0 Annonaceae 0
Platymitra arborea 75 Platymitra 75 Annonaceae 0
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Xylopia aethiopica 25 Xylopia Annonaceae
Xylopia aurantiiodora —‘ Xylopia Annonaceae
Xylopia cupularis 0 Xylopia 50 Annonaceae
Xylopia flamignii 75 Xylopia 75 Annonaceae
Xylopia gilbertii 0 Xylopia 75 Annonaceae
Xylopia hypolampra 25 Xylopia Annonaceae
Xylopia katangensis 0 Xylopia Annonaceae
Xylopia phloiodora 0 Xylopia Annonaceae
Xylopia rubescens 0 Xylopia Annonaceae
Xylopia staudtii 0 Xylopia Annonaceae
Xylopia wilwerthii 0 Xylopia Annonaceae
Alstonia boonei 12.5 Alstonia Apocynaceae
Alstonia congensis _I Alstonia Apocynaceae
Diplorhynchus condylocarpon 0 Diplorhynchus 0 Apocynaceae
Funtumia elastica 0 Funtumia 0 Apocynaceae
Holarrhena floribunda 25 Holarrhena 25 Apocynaceae
Hunteria umbellata 50 Hunteria 50 Apocynaceae
Picralima nitida 0 Picralima 0 Apocynaceae
Pleiocarpa pycnantha g Plejocarpa ; Apocynaceae
Rauvolfia caffra 0 Rauvolfia 25 Apocynaceae
Rauvolfia vomitoria 0 Rauvolfia 0 Apocynaceae
Tabernaemontana crassa 25 Tabernaemontana 50 Apocynaceae
Tabernaemontana pachysiphon 0 Tabernaemontana 25 Apocynaceae
Voacanga africana 0 Voacanga 0 Apocynaceae
Voacanga thouarsii 0 Voacanga 0 Apocynaceae
Cussonia arborea 0 Cussonia 0 Araliaceae
Cussonia spicata 0 Cussonia 0 Araliaceae
Polyscias fulva 0 Polyscias 0 Araliaceae
Brenandendron donianum 0 Brenandendron 0 Asteraceae
Gymnanthemum amygdalinum 0 Gymnanthemum 0 Asteraceae
Fernandoa adolfi-friderici 0 Fernandoa 0 Bignoniaceae
Kigelia africana 0 Kigelia 0 Bignoniaceae
Markhamia lutea 37.5 Markhamia 50 Bignoniaceae
Markhamia obtusifolia 0 Markhamia 0 Bignoniaceae
Markhamia tomentosa 0 Markhamia 75 Bignoniaceae
Markhamia zanzibarica 0 Markhamia 25 Bignoniaceae
Spathodea campanulata 0 Spathodea 0 Bignoniaceae
Stereospermum harmsianum 0 Stereospermum 0 Bignoniaceae
Stereospermum kunthianum 0 Stereospermum 0 Bignoniaceae
Cordia africana 25 Cordia 50 Boraginaceae
Cordia millenii 0 Cordia 0 Boraginaceae 0
Cordia monoica 0 Cordia 0 Boraginaceae 0
Cordia myxa 0 Cordia 0 Boraginaceae 0
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Cordia platythyrsa 25 Cordia 25 Boraginaceae 25 75
Aucoumea klaineana 0 Aucoumea 0 Burseraceae 375 62.5
Canarium schweinfurthii 62.5 Canarium 75 Burseraceae 87.5 12.5
Commiphora mollis 0 Commiphora 0 Burseraceae 75 25
Pachylobus buettneri 75 Pachylobus 75 Burseraceae 75 25
Pachylobus edulis 0 Pachylobus 0 Burseraceae 75 25
Pachylobus igaganga 0 Pachylobus 25 Burseraceae 25 75
Pachylobus normandii 0 Pachylobus 0 Burseraceae 0

Pachylobus osika 0 Pachylobus 0 Burseraceae 0

Pachylobus pubescens 0 Pachylobus 62.5 Burseraceae 62.5 37.5
Endodesmia calophylloides g Endodesmia ; Calophyllaceae 0
Mammea africana 50 Mammea 50 Calophyllaceae 50 50
Celtis gomphophylla 50 Celtis 50 Cannabaceae 50 50
Celtis latifolia 0 Celtis 25 Cannabaceae 25 75
Celtis mildbraedii 25 Celtis 50 Cannabaceae 50 50
Celtis philippensis 0 Celtis 25 Cannabaceae 25 75
Celtis tessmannii 25 Celtis 25 Cannabaceae 25 75
Celtis zenkeri _I Celtis _ Cannabaceae 0
Morus mesozygia 75 Morus 75 Cannabaceae 75 25
Trema orientale 0 Trema 0 Cannabaceae 0

Apodytes dimidiata 0 Apodytes 0 Celastraceae 0

Cassine peragua ﬁl Cassine ﬁ Celastraceae 0
Maghnistipula butayei 0 Magnistipula 0 Chrysobalanaceae 75 25
Maranthes chrysophylla 0 Maranthes 25 Chrysobalanaceae 50 50
Maranthes gabunensis 0 Maranthes 0 Chrysobalanaceae 0

Maranthes glabra 0 Maranthes 0 Chrysobalanaceae 0

Maranthes kerstingii 75 Maranthes Chrysobalanaceae 0
Parinari congensis 0 Parinari Chrysobalanaceae 0
Parinari curatellifolia 37.5 Parinari 75 Chrysobalanaceae 75

Parinari excelsa 0 Parinari 62.5 Chrysobalanaceae 87.5

Allanblackia floribunda 0 Allanblackia 0 Clusiaceae 0

Allanblackia kisonghi 0 Allanblackia 0 Clusiaceae 25

Allanblackia parviflora 0 Allanblackia 25 Clusiaceae 25

Garcinia chromocarpa 0 Garcinia 0 Clusiaceae 0

Garcinia epunctata 75 Garcinia 75 Clusiaceae 75

Garcinia huillensis 0 Garcinia 0 Clusiaceae 0

Garcinia ovalifolia 0 Garcinia 0 Clusiaceae 0

Garcinia punctata 0 Garcinia 0 Clusiaceae 0

Garcinia smeathmanii 0 Garcinia 25 Clusiaceae 25

Lebrunia busbaie 0 Lebrunia 0 Clusiaceae 0

Pentadesma butyracea 0 Pentadesma 0 Clusiaceae 0

Pentadesma grandifolia 0 Pentadesma 25 Clusiaceae 25

Symphonia globulifera 0 Symphonia 0 Clusiaceae 0
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Combretum adenogonium 0 Combretum 25 Combretaceae

Combretum collinum 0 Combretum 0 Combretaceae

Combretum collinum subsp. elgonense 0 Combretum 75 Combretaceae

Combretum lokele 0 Combretum Combretaceae

Combretum molle 0 Combretum Combretaceae

Combretum zeyheri _I Combretum Combretaceae

Terminalia anisoptera 0 Terminalia 25 Combretaceae

Terminalia brachystemma 0 Terminalia 0 Combretaceae

Terminalia catappa 0 Terminalia 25 Combretaceae

Terminalia hylodendron 0 Terminalia 12.5 Combretaceae

Terminalia ivorensis 25 Terminalia 50 Combretaceae 50
Terminalia leiocarpa 0 Terminalia 0 Combretaceae 0
Terminalia macroptera 0 Terminalia 0 Combretaceae 0
Terminalia mollis 25 Terminalia 62.5 Combretaceae 62.5
Terminalia sericea 0 Terminalia 0 Combretaceae 0
Terminalia superba 33.33333333 Terminalia 33.33333333 Combretaceae 33.33333333 66.66666667
Terminalia welwitschii 0 Terminalia 25 Combretaceae 25 75
Plagiostyles africana 0 Plagiostyles 0 Daphniphyllaceae 0
Marquesia macroura g Marquesia ; Dipterocarpaceae

Monotes hypoleucus var. angolensis 0 Monotes 0 Dipterocarpaceae 25
Monotes katangensis 0 Monotes 0 Dipterocarpaceae 0
Diospyros batocana 25 Diospyros 50 Ebenaceae 75
Diospyros crassiflora 0 Diospyros 0 Ebenaceae 0
Diospyros dendo 0 Diospyros 25 Ebenaceae 25
Diospyros ferrea 0 Diospyros 0 Ebenaceae 0
Diospyros iturensis 0 Diospyros 0 Ebenaceae 0
Diospyros mespiliformis 0 Diospyros 0 Ebenaceae 0
Erythroxylum mannii 62.5 Erythroxylum 62.5 Erythroxylaceae 62.5
Cavacoa quintasii 0 Cavacoa 0 Euphorbiaceae 0
Croton haumanianus 0 Croton 25 Euphorbiaceae 25
Croton macrostachyus 0 Croton 0 Euphorbiaceae 0
Croton mayumbensis 0 Croton 0 Euphorbiaceae 0
Croton megalocarpus 0 Croton 0 Euphorbiaceae 0
Croton mubango 0 Croton 50 Euphorbiaceae 50
Croton sylvaticus 0 Croton 0 Euphorbiaceae 25
Dichostemma glaucescens 0 Dichostemma 0 Euphorbiaceae 0
Discoglypremna caloneura 0 Discoglypremna 0 Euphorbiaceae 75
Grossera macrantha 0 Grossera 0 Euphorbiaceae 37.5
Hevea brasiliensis 25 Hevea 25 Euphorbiaceae 25
Klaineanthus gaboniae 0 Klaineanthus 25 Euphorbiaceae 25
Macaranga kilimandscharica 0 Macaranga 0 Euphorbiaceae 0
Macaranga monandra 0 Macaranga 25 Euphorbiaceae 75
Macaranga spinosa 0 Macaranga 25 Euphorbiaceae 25
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Maprounea africana Maprounea Euphorbiaceae
Neoboutonia macrocalyx Neoboutonia Euphorbiaceae
Ricinodendron heudelotii Ricinodendron Euphorbiaceae
Ricinodendron heudelotii subsp. africanum Ricinodendron Euphorbiaceae
Schinziophyton rautanenii Schinziophyton Euphorbiaceae
Sclerocroton cornutus 0 Sclerocroton 0 Euphorbiaceae
Shirakiopsis elliptica 0 Shirakiopsis 0 Euphorbiaceae
Tetrorchidium didymostemon 50 Tetrorchidium 62.5 Euphorbiaceae
Afzelia africana [100 | Afzelia Fabaceae
Afzelia bella 50 Afzelia Fabaceae
Afzelia bipindensis 58.33333333 Afzelia Fabaceae
Afzelia pachyloba 25 Afzelia Fabaceae
Afzelia quanzensis 37.5 Afzelia Fabaceae
Albizia adianthifolia 12.5 Albizia Fabaceae
Albizia adianthifolia var. intermedia 0 Albizia Fabaceae
Albizia altissima 62.5 Albizia Fabaceae
Albizia antunesiana 0 Albizia |50 | Fabaceae
Albizia chinensis 0 Albizia Fabaceae
Albizia coriaria 0 Albizia Fabaceae
Albizia ferruginea 62.5 Albizia Fabaceae
Albizia glaberrima Albizia Fabaceae
Albizia glaberrima var. glabrescens Albizia Fabaceae
Albizia gummifera Albizia Fabaceae
Albizia gummifera var. ealaensis Albizia o | Fabaceae
Albizia laurentii Albizia Fabaceae
Albizia lebbeck Albizia Fabaceae
Albizia schimperiana Albizia Fabaceae
Albizia versicolor Albizia 37.5 Fabaceae
Albizia zygia Albizia 50 Fabaceae
Amphimas ferrugineus Amphimas Fabaceae
Amphimas pterocarpoides Amphimas Fabaceae
Annea laxiflora Annea Fabaceae
Anthonotha brieyi 0 Anthonotha 0 Fabaceae
Anthonotha fragrans 0 Anthonotha 0 Fabaceae
Anthonotha pynaertii 0 Anthonotha 0 Fabaceae
Aphanocalyx cynometroides 0 Aphanocalyx 0 Fabaceae
Aphanocalyx microphyllus 0 Aphanocalyx 0 Fabaceae
Baikiaea insignis 12.5 Baikiaea 12.5 Fabaceae
Baikiaea robynsii 0 Baikiaea 0 Fabaceae
Baphia bequaertii 0 Baphia 0 Fabaceae
Baphia dewevrei 0 Baphia 0 Fabaceae
Baphia massaiensis 50 Baphia Fabaceae
Baphia nitida 0 Baphia 0 Fabaceae

12.5
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Baphia pubescens 0 Baphia 0 Fabaceae 0
Berlinia bracteosa 25 Berlinia 50 Fabaceae 0
Berlinia confusa 50 Berlinia 50 Fabaceae 0
Berlinia congolensis 0 Berlinia 25 Fabaceae 0
Berlinia grandiflora 0 Berlinia 62.5 Fabaceae 0
Bobgunnia fistuloides 50 Bobgunnia 62.5 Fabaceae 12.5
Bobgunnia madagascariensis 0 Bobgunnia 25 Fabaceae 50
Brachystegia boehmii 0 Brachystegia 25 Fabaceae 0
Brachystegia bussei 0 Brachystegia 75 Fabaceae 0
Brachystegia laurentii 62.5 Brachystegia 62.5 Fabaceae 0
Brachystegia longifolia 12.5 Brachystegia ; Fabaceae 0
Brachystegia manga 0 Brachystegia 75 Fabaceae 0
Brachystegia spiciformis 25 Brachystegia 75 Fabaceae 0
Brachystegia tamarindoides subsp. microphylla 0 Brachystegia Fabaceae 0
Brachystegia tamarindoides subsp. tamarindoides 0 Brachystegia Fabaceae 0
Brachystegia taxifolia 25 Brachystegia 50 Fabaceae 0
Brachystegia utilis 0 Brachystegia 25 Fabaceae 0
Burkea africana 25 Burkea 25 Fabaceae 0
Cassia mannii 0 Cassia 0 Fabaceae 0
Cassia sieberiana 0 Cassia 0 Fabaceae 0
Copaifera mildbraedii 50 Copaifera 50 Fabaceae 0
Copaifera religiosa 75 Copaifera 75 Fabaceae 0
Craibia affinis 0 Craibia 0 Fabaceae 0
Craibia grandiflora 0 Craibia 0 Fabaceae 0
Craibia lujae 0 Craibia 0 Fabaceae

Crudia harmsiana 0 Crudia 0 Fabaceae 25
Crudia laurentii 0 Crudia 25 Fabaceae 0
Cryptosepalum exfoliatum subsp. pseudotaxus _I Cryptosepalum Fabaceae 0
Cylicodiscus gabunensis 0 Cylicodiscus 12.5 Fabaceae 0
Cynometra alexandri 50 Cynometra 50 Fabaceae 25
Cynometra hankei 50 Cynometra 75 Fabaceae 0
Cynometra lujae _I Cynometra Fabaceae 0
Cynometra mannii 75 Cynometra Fabaceae 0
Cynometra sessiliflora 0 Cynometra 25 Fabaceae 37.5
Dalbergia boehmii 0 Dalbergia 0 Fabaceae 25
Daniellia alsteeniana 0 Daniellia 50 Fabaceae 0
Daniellia klainei 0 Daniellia 25 Fabaceae 0
Daniellia oliveri 0 Daniellia 0 Fabaceae 0
Daniellia pynaertii 25 Daniellia 25 Fabaceae 25
Daniellia soyauxii 75 Daniellia Fabaceae 0
Dialium englerianum 0 Dialium Fabaceae 25
Dialium excelsum Dialium Fabaceae 0
Dialium pachyphyllum 25 Dialium 50 Fabaceae 12.5
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Dialium pentandrum 0 Dialium 75 Fabaceae 75 25
Dialium polyanthum 0 Dialium 0 Fabaceae 25 75
Dialium tessmannii 0 Dialium 25 Fabaceae 50 50
Dialium zenkeri 0 Dialium 0 Fabaceae 25 75
Dichrostachys cinerea 50 Dichrostachys 50 Fabaceae 12.5
Entada abyssinica 0 Entada 0 Fabaceae 75
Erythrina abyssinica 75 Erythrina 75 Fabaceae 25
Erythrina droogmansiana 50 Erythrina 75 Fabaceae 0
Erythrina excelsa _ Erythrina _ Fabaceae 0
Erythrina orophila 0 Erythrina 0 Fabaceae 75
Erythrophleum africanum 37.5 Erythrophleum 37.5 Fabaceae 0
Erythrophleum suaveolens 16.66666667 Erythrophleum 16.66666667 Fabaceae 16.66666667
Faidherbia albida Faidherbia Fabaceae 0
Fillaeopsis discophora 25 Fillaeopsis 37.5 Fabaceae 0
Gilbertiodendron dewevrei 50 Gilbertiodendron 50 Fabaceae 0
Gilbertiodendron grandiflorum 25 Gilbertiodendron 75 Fabaceae 0
Gilbertiodendron grandistipulatum 25 Gilbertiodendron 75 Fabaceae 0
Gilbertiodendron mayombense 0 Gilbertiodendron 0 Fabaceae 75
Gilbertiodendron ogoouense 62.5 Gilbertiodendron 75 Fabaceae 0
Gilletiodendron kisantuense 75 Gilletiodendron 75 Fabaceae 25
Gilletiodendron mildbraedii 12.5 Gilletiodendron 12.5 Fabaceae 37.5
Guibourtia arnoldiana 75 Guibourtia 75 Fabaceae 0
Guibourtia coleosperma 75 Guibourtia 75 Fabaceae 0
Guibourtia demeusei 75 Guibourtia _ Fabaceae 0
Guibourtia ehie 0 Guibourtia 0 Fabaceae 0
Hylodendron gabunense 50 Hylodendron 50 Fabaceae 25
Hymenostegia mundungu 25 Hymenostegia 50 Fabaceae 25
Intsia bijuga var. bijuga 12.5 Intsia 12.5 Fabaceae 0
Isoberlinia angolensis 50 Isoberlinia 50 Fabaceae 0
Isoberlinia doka 0 Isoberlinia 50 Fabaceae 0
Isoberlinia tomentosa 0 Isoberlinia 25 Fabaceae 0
Julbernardia brieyi 0 Julbernardia 25 Fabaceae 0
Julbernardia globiflora 0 Julbernardia 25 Fabaceae 0
Julbernardia paniculata 0 Julbernardia 62.5 Fabaceae 0
Julbernardia pellegriniana _I Julbernardia Fabaceae 0
Julbernardia seretii 0 Julbernardia 25 Fabaceae 62.5
Lonchocarpus sericeus 0 Lonchocarpus 0 Fabaceae 0
Millettia drastica 0 Millettia 25 Fabaceae 50
Millettia dura 25 Millettia 75 Fabaceae 25
Millettia eetveldeana Millettia Fabaceae 0
Millettia laurentii Millettia Fabaceae 12.5
Millettia stuhlmannii 0 Millettia Fabaceae 0
Millettia versicolor 75 Millettia Fabaceae 0
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Newtonia aubrevillei 0 Newtonia 0 Fabaceae 100 0
Newtonia buchananii 0 Newtonia 25 Fabaceae 75 25
Newtonia glandulifera 0 Newtonia 0 Fabaceae 0 100
Newtonia leucocarpa 0 Newtonia 0 Fabaceae 25 75
Pachyelasma tessmannii 0 Pachyelasma 0 Fabaceae 50 50
Paramacrolobium coeruleum 0 Paramacrolobium 0 Fabaceae 75 25
Parkia bicolor 50 Parkia 75 Fabaceae 100 0
Peltophorum africanum 0 Peltophorum 0 Fabaceae 100 0
Pentaclethra eetveldeana 75 Pentaclethra 75 Fabaceae 91.66666667 8.333333333
Pentaclethra macrophylla 0 Pentaclethra 0 Fabaceae 100 0
Pericopsis angolensis 0 Pericopsis 25 Fabaceae 37.5 62.5
Pericopsis elata 62.5 Pericopsis 75 Fabaceae 75 25
Piliostigma thonningii 0 Piliostigma 0 Fabaceae 100 0
Piptadeniastrum africanum 37.5 Piptadeniastrum 37.5 Fabaceae 100 0
Platysepalum chevalieri 0 Platysepalum 50 Fabaceae 75 25
Platysepalum violaceum 0 Platysepalum 0 Fabaceae 75 25
Prioria balsamifera 12.5 Prioria 25 Fabaceae 100 0
Prioria buchholzii 0 Prioria 0 Fabaceae 50 50
Prioria mannii 0 Prioria 0 Fabaceae 100 0
Prioria oxyphylla 37.5 Prioria 37.5 Fabaceae 100 0
Pterocarpus angolensis 75 Pterocarpus 100 Fabaceae 100 0
Pterocarpus rotundifolius 50 Pterocarpus 75 Fabaceae 100 0
Pterocarpus soyauxii 93.75 Pterocarpus 93.75 Fabaceae 100 0
Pterocarpus tinctorius 31.25 Pterocarpus 87.5 Fabaceae 100 0
Senegalia senegal 0 Senegalia 25 Fabaceae 100 0
Senna siamea 50 Senna 50 Fabaceae 50 50
Tamarindus indica 12.5 Tamarindus 12.5 Fabaceae 100 0
Tessmannia africana 25 Tessmannia 75 Fabaceae 100 0
Tessmannia anomala 0 Tessmannia 0 Fabaceae 50 50
Tessmannia anomala var. flamignii 0 Tessmannia 0 Fabaceae 25 75
Tessmannia lescrauwaetii 62.5 Tessmannia 62.5 Fabaceae 75 25
Tessmannia yangambiensis 0 Tessmannia 0 Fabaceae 100 0
Tetraberlinia bifoliolata 37.5 Tetraberlinia 37.5 Fabaceae 100 0
Tetrapleura tetraptera 0 Tetrapleura 0 Fabaceae 100 0
Vachellia abyssinica 0 Vachellia 0 Fabaceae 100 0
Vachellia seyal 100 Vachellia 100 Fabaceae 100 0
Anthocleista grandiflora 0 Anthocleista 25 Gentianaceae 25 75
Anthocleista nobilis 37.5 Anthocleista 50 Gentianaceae 50 50
Anthocleista schweinfurthii 25 Anthocleista 25 Gentianaceae 25 75
Hua gaboni 0 Hua 0 Huaceae 0 100
Harungana madagascariensis 0 Harungana 0 Hypericaceae 0 100
Desbordesia glaucescens 25 Desbordesia 25 Irvingiaceae 25 75
Irvingia gabonensis 25 Irvingia 25 Irvingiaceae 25 75
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Irvingia grandifolia 0 Irvingia 25 Irvingiaceae 25 75
Irvingia robur 0 Irvingia 25 Irvingiaceae 25 75
Irvingia smithii 0 Irvingia 50 Irvingiaceae 50 50
Irvingia tenuinucleata 0 Irvingia 0 Irvingiaceae 50 50
Klainedoxa gabonensis 75 Klainedoxa 75 Irvingiaceae 75 25
Phyllocosmus africanus 0 Phyllocosmus 0 Ixonanthaceae 0 100
Kirkia acuminata 0 Kirkia 0 Kirkiaceae 0 100
Gmelina arborea 8.333333333 Gmelina 8.333333333 Lamiaceae 8.333333333 91.66666667
Premna angolensis 0 Premna 0 Lamiaceae 50 50
Tectona grandis 0 Tectona 0 Lamiaceae 50 50
Vitex congolensis 0 Vitex 25 Lamiaceae 25 75
Vitex congolensis var. congolensis 37.5 Vitex 50 Lamiaceae 75 25
Vitex doniana 37.5 Vitex 62.5 Lamiaceae 62.5 37.5
Vitex ferruginea 0 Vitex 25 Lamiaceae 25 75
Vitex madiensis 0 Vitex 0 Lamiaceae 33.33333333 66.66666667
Vitex madiensis subsp. milanjiensis 0 Vitex 60 Lamiaceae 60 40
Vitex mombassae 0 Vitex 75 Lamiaceae 75 25
Beilschmiedia congolana 0 Beilschmiedia 50 Lauraceae 50 50
Beilschmiedia corbisieri 37.5 Beilschmiedia 37.5 Lauraceae B8745) 62.5
Beilschmiedia louisii 0 Beilschmiedia 0 Lauraceae 0 100
Beilschmiedia mannii 0 Beilschmiedia 50 Lauraceae 50 50
Beilschmiedia oblongifolia 0 Beilschmiedia 0 Lauraceae 0 100
Beilschmiedia ugandensis 0 Beilschmiedia 0 Lauraceae 0 100
Persea americana 0 Persea 25 Lauraceae 25 75
Petersianthus macrocarpus 0 Petersianthus 0 Lecythidaceae 0 100
Brenania brieyi 50 Brenania 50 Loganiaceae 50 50
Strychnos cocculoides 100 Strychnos 100 Loganiaceae 100 0
Strychnos innocua 0 Strychnos 0 Loganiaceae 0 100
Strychnos spinosa 75 Strychnos 75 Loganiaceae 100 0
Adansonia digitata 0 Adansonia 0 Malvaceae 100 0
Ceiba pentandra 25 Ceiba 37.5 Malvaceae 75 25
Cola ballayi 75 Cola 100 Malvaceae 100 0
Cola cordifolia 0 Cola 0 Malvaceae 0 100
Cola gigantea 0 Cola 75 Malvaceae 75 25
Cola lateritia 0 Cola 0 Malvaceae 0 100
Cola nitida 100 Cola 100 Malvaceae 100 0
Cola welwitschii 75 Cola 75 Malvaceae 100 0
Desplatsia subericarpa 0 Desplatsia 25 Malvaceae 50 50
Dombeya rotundifolia 25 Dombeya 25 Malvaceae 25 75
Dombeya torrida 0 Dombeya 0 Malvaceae 25 75
Duboscia viridiflora 75 Duboscia 75 Malvaceae 75 25
Grewia louisii 0 Grewia 0 Malvaceae 75 25
Heritiera littoralis 0 Heritiera 0 Malvaceae 25 75
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Microcos coriacea 0 Microcos 0 Malvaceae 25 75
Microcos pinnatifida 0 Microcos 0 Malvaceae 37.5 62.5
Nesogordonia kabingaensis 25 Nesogordonia 25 Malvaceae 50 50
Nesogordonia papaverifera 50 Nesogordonia 50 Malvaceae 50 50
Pterygota bequaertii 100 Pterygota 100 Malvaceae 100 0
Pterygota macrocarpa 37.5 Pterygota 37.5 Malvaceae 37.5 62.5
Sterculia quinqueloba 0 Sterculia 0 Malvaceae 0 100
Sterculia tragacantha 25 Sterculia 37.5 Malvaceae 62.5 37.5
Triplochiton scleroxylon 50 Triplochiton 50 Malvaceae 100 0
Dichaetanthera corymbosa 0 Dichaetanthera 0 Melastomataceae 0 100
Carapa procera 12.5 Carapa 37.5 Meliaceae 87.5 12.5
Ekebergia benguelensis 50 Ekebergia 50 Meliaceae 100 0
Ekebergia capensis 0 Ekebergia 0 Meliaceae 37.5 62.5
Entandrophragma angolense 40 Entandrophragma 80 Meliaceae 85 15
Entandrophragma candollei 0 Entandrophragma 37.5 Meliaceae 56.25 43.75
Entandrophragma cylindricum 16.66666667 Entandrophragma 50 Meliaceae 66.66666667 33.33333333
Entandrophragma delevoyi 0 Entandrophragma 25 Meliaceae 25 75
Entandrophragma excelsum 12.5 Entandrophragma 25 Meliaceae 50 50
Entandrophragma palustre 25 Entandrophragma 75 Meliaceae 75 25
Entandrophragma utile 30 Entandrophragma 70 Meliaceae 95 B
Khaya anthotheca 8.333333333 Khaya 8.333333333 Meliaceae 50 50
Khaya grandifoliola 0 Khaya 16.66666667 Meliaceae 41.66666667 58.33333333
Leplaea cedrata 50 Leplaea 55 Meliaceae 70 30
Leplaea laurentii 75 Leplaea 75 Meliaceae 75 25
Leplaea thompsonii 12.5 Leplaea 50 Meliaceae 75 25
Lovoa trichilioides 45.83333333 Lovoa 45.83333333 Meliaceae 66.66666667 33.33333333
Trichilia dregeana 0 Trichilia 0 Meliaceae 75 25
Trichilia emetica subsp. emetica 0 Trichilia 0 Meliaceae 0 100
Trichilia gilgiana 0 Trichilia 50 Meliaceae 50 50
Trichilia gilletii 0 Trichilia 25 Meliaceae 25 75
Trichilia monadelpha 0 Trichilia 0 Meliaceae 0 100
Trichilia prieuriana 0 Trichilia 0 Meliaceae 0 100
Trichilia rubescens 0 Trichilia 0 Meliaceae 0 100
Trichilia tessmannii 0 Trichilia 0 Meliaceae 0 100
Trichilia welwitschii 0 Trichilia 25 Meliaceae 100 0
Turraeanthus africanus 33.33333333 Turraeanthus 33.33333333 Meliaceae 66.66666667 33.33333333
Antiaris toxicaria 37.5 Antiaris 37.5 Moraceae 37.5 62.5
Antiaris toxicaria subsp. welwitschii 0 Antiaris 0 Moraceae 0 100
Antiaris toxicaria var. africana 0 Antiaris 0 Moraceae 0 100
Artocarpus altilis 0 Artocarpus 0 Moraceae 0 100
Bosqueiopsis gilletii 0 Bosqueiopsis 0 Moraceae 0 100
Ficus bubu 0 Ficus 25 Moraceae 25 75
Ficus demeusei 0 Ficus 100 Moraceae 100 0
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Ficus elastica 0 Ficus 100 Moraceae 100 0
Ficus lutea 0 Ficus 50 Moraceae 50 50
Ficus mucuso 0 Ficus 75 Moraceae 100 0
Ficus sur 0 Ficus 100 Moraceae 100 0
Ficus sycomorus 0 Ficus 100 Moraceae 100 0
Ficus thonningii 75 Ficus 75 Moraceae 75 25
Ficus vogeliana 0 Ficus 100 Moraceae 100 0
Milicia excelsa 25 Milicia 25 Moraceae 25 75
Treculia africana 0 Treculia 0 Moraceae 0 100
Trilepisium madagascariense 0 Trilepisium 0 Moraceae 0 100
Coelocaryon botryoides 25 Coelocaryon 25 Myristicaceae 25 75
Coelocaryon preussii 0 Coelocaryon 25 Myristicaceae 50 50
Pycnanthus angolensis 100 Pycnanthus 100 Myristicaceae 100 0
Staudtia kamerunensis 0 Staudtia 0 Myristicaceae 0 100
Staudtia kamerunensis var. gabonensis 0 Staudtia 25 Myristicaceae 25 75
Syzygium aromaticum 0 Syzygium 25 Myrtaceae 25 75
Syzygium cordatum 0 Syzygium 62.5 Myrtaceae 62.5 37.5
Syzygium guineense 0 Syzygium 25 Myrtaceae 50 50
Syzygium owariense 0 Syzygium 25 Myrtaceae 25 75
Syzygium parvifolium 0 Syzygium 75 Myrtaceae 75 25
Syzygium staudlii 25 Syzygium 25 Myrtaceae 25 75
Lophira alata 87.5 Lophira 87.5 Ochnaceae 87.5 12.5
Lophira lanceolata 0 Lophira 0 Ochnaceae 0 100
Coula edulis 0 Coula 0 Olacaceae 12.5 87.5
Diogoa zenkeri 0 Diogoa 0 Olacaceae 25 75
Heisteria parvifolia 75 Heisteria 75 Olacaceae 100 0
Okoubaka aubrevillei 75 Okoubaka 75 Olacaceae 100 0
Ongokea gore 50 Ongokea 50 Olacaceae 87.5 12.5
Strombosia grandifolia 25 Strombosia 25 Olacaceae 25 75
Strombosia pustulata var. pustulata 0 Strombosia 50 Olacaceae 50 50
Strombosia scheffleri 0 Strombosia 25 Olacaceae 100 0
Strombosiopsis tetrandra 12.5 Strombosiopsis 12.5 Olacaceae 50 50
Ximenia americana 0 Ximenia 0 Olacaceae 0 100
Olea capensis subsp. macrocarpa 75 Olea 75 Oleaceae 75 25
Olea europaea subsp. cuspidata 0 Olea 75 Oleaceae 75 25
Olea welwitschii 0 Olea 25 Oleaceae 25 75
Microdesmis kasaiensis 0 Microdesmis 0 Pandaceae 0 100
Barteria nigritana 50 Barteria 50 Passifloraceae 50 50
Psydrax palma 0 Psydrax 0 Penaeaceae 0 100
Chaetocarpus africanus 50 Chaetocarpus 50 Peraceae 75 25
Antidesma laciniatum 0 Antidesma 25 Phyllanthaceae 50 50
Antidesma membranaceum 0 Antidesma 12.5 Phyllanthaceae 50 50
Bridelia atroviridis 25 Bridelia 75 Phyllanthaceae 75 25
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Bridelia brideliifolia 0 Bridelia 0 Phyllanthaceae 75 25
Bridelia ferruginea 25 Bridelia 50 Phyllanthaceae 62.5 37.5
Bridelia micrantha 0 Bridelia 50 Phyllanthaceae 75 25
Cleistanthus caudatus 0 Cleistanthus 0 Phyllanthaceae 0 100
Cleistanthus inundatus 0 Cleistanthus 0 Phyllanthaceae 0 100
Cleistanthus polystachyus 0 Cleistanthus 0 Phyllanthaceae 0 100
Hymenocardia acida 50 Hymenocardia 50 Phyllanthaceae 50 50
Hymenocardia ulmoides 12.5 Hymenocardia 25 Phyllanthaceae 25 75
Maesobotrya staudtii 0 Maesobotrya 0 Phyllanthaceae 100 0
Margaritaria discoidea 0 Margaritaria 0 Phyllanthaceae 0 100
Phyllanthus physocarpus 0 Phyllanthus 0 Phyllanthaceae 25 75
Pseudolachnostylis maprouneifolia 50 Pseudolachnostylis 50 Phyllanthaceae 50 50
Uapaca guineensis 0 Uapaca 37.5 Phyllanthaceae 37.5 62.5
Uapaca heudelotii 12.5 Uapaca 50 Phyllanthaceae 50 50
Uapaca kirkiana 0 Uapaca 50 Phyllanthaceae 50 50
Uapaca mole 0 Uapaca 50 Phyllanthaceae 62.5 37.5
Uapaca nitida 25 Uapaca 75 Phyllanthaceae 75 25
Uapaca pilosa 0 Uapaca 75 Phyllanthaceae 100 0
Uapaca robynsii 0 Uapaca 75 Phyllanthaceae 75 25
Uapaca sansibarica 50 Uapaca 75 Phyllanthaceae 75 25
Uapaca togoensis 0 Uapaca 100 Phyllanthaceae 100 0
Uapaca vanhouttei 0 Uapaca 50 Phyllanthaceae 50 50
Faurea rochetiana 0 Faurea 25 Proteaceae 25 75
Faurea saligna 0 Faurea 0 Proteaceae 0 100
Drypetes angustifolia 100 Drypetes 100 Putranjivaceae 100 0
Drypetes gerrardii 0 Drypetes 0 Putranjivaceae 0 100
Drypetes gossweileri 0 Drypetes 50 Putranjivaceae 50 50
Maesopsis eminii 0 Maesopsis 0 Rhamnaceae 0 100
Ziziphus abyssinica 0 Ziziphus 0 Rhamnaceae 0 100
Anopyxis klaineana 25 Anopyxis 25 Rhizophoraceae 37.5 62.5
Cassipourea congoensis 75 Cassipourea 75 Rhizophoraceae 75 25
Cassipourea gummiflua 0 Cassipourea 0 Rhizophoraceae 0 100
Cassipourea malosana 0 Cassipourea 0 Rhizophoraceae 0 100
Rhizophora racemosa 12.5 Rhizophora 12.5 Rhizophoraceae 12.5 87.5
Hagenia abyssinica 50 Hagenia 50 Rosaceae 50 50
Prunus africana 0 Prunus 0 Rosaceae 0 100
Aidia ochroleuca 0 Aidia 0 Rubiaceae 25 75
Aulacocalyx jasminiflora 0 Aulacocalyx 0 Rubiaceae 25 75
Coffea liberica 0 Coffea 0 Rubiaceae 75 25
Corynanthe macroceras 50 Corynanthe 50 Rubiaceae 75 25
Corynanthe paniculata 0 Corynanthe 12.5 Rubiaceae 50 50
Craterispermum cerinanthum 0 Craterispermum 0 Rubiaceae 50 50
Craterispermum laurinum 25 Craterispermum 25 Rubiaceae 75 25
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Crossopteryx febrifuga 75 Crossopteryx 75 Rubiaceae 0
Gardenia imperialis 50 Gardenia 50 Rubiaceae 0
Gardenia ternifolia subsp. jovis-tonantis 0 Gardenia 0 Rubiaceae 25
Heinsia crinita _ Heinsia _ Rubiaceae 0
Massularia acuminata 50 Massularia 50 Rubiaceae 75 25
Mitragyna ledermannii 0 Mitragyna 25 Rubiaceae 50 50
Mitragyna rubrostipulata 0 Mitragyna 0 Rubiaceae 25 75
Mitragyna stipulosa 75 Mitragyna 75 Rubiaceae 83.33333333 16.66666667
Morinda chrysorhiza 0 Morinda 0 Rubiaceae 0

Morinda citrifolia 0 Morinda 25 Rubiaceae 25 75
Morinda lucida g Morinda ; Rubiaceae 0
Nauclea diderrichii 62.5 Nauclea 62.5 Rubiaceae 62.5 37.5
Nauclea latifolia 0 Nauclea 25 Rubiaceae 50 50
Nauclea pobeguinii 25 Nauclea 25 Rubiaceae 0
Oxyanthus tubiflorus 0 Oxyanthus 0 Rubiaceae 75 25
Psychotria dermatophylla 0 Psychotria 0 Rubiaceae 0

Rothmannia longiflora 0 Rothmannia 0 Rubiaceae 75 25
Rothmannia lujae 0 Rothmannia 0 Rubiaceae 25 75
Schumanniophyton magnificum g Schumanniophyton ; Rubiaceae 0
Tricalysia pallens 75 Tricalysia 75 Rubiaceae 0
Citrus x aurantium 25 Citrus 50 Rutaceae 50 50
Citrus x limon 75 Citrus 75 Rutaceae 75 25
Vepris louisii 0 Vepris 0 Rutaceae 0

Zanthoxylum chalybeum 0 Zanthoxylum 0 Rutaceae 0

Zanthoxylum gilletii 0 Zanthoxylum 25 Rutaceae 25
Zanthoxylum heitzii 0 Zanthoxylum 0 Rutaceae 0

Zanthoxylum lemairei 0 Zanthoxylum 25 Rutaceae 25 75
Homalium abdessammadii 0 Homalium 25 Salicaceae 25 75
Homalium africanum 0 Homalium 25 Salicaceae 25 75
Homalium letestui 0 Homalium 50 Salicaceae 50 50
Homalium longistylum 0 Homalium 75 Salicaceae 75 25
Homalium stipulaceum 0 Homalium 50 Salicaceae 50 50
Allophylus africanus 0 Allophylus 0 Sapindaceae 0

Allophylus dummeri 0 Allophylus 0 Sapindaceae 0

Blighia welwitschii 0 Blighia 0 Sapindaceae 0

Chytranthus carneus 50 Chytranthus 50 Sapindaceae 50

Chytranthus setosus 0 Chytranthus 0 Sapindaceae 0

Haplocoelum intermedium 0 Haplocoelum 0 Sapindaceae 0

Lecaniodiscus cupanioides 0 Lecaniodiscus 0 Sapindaceae 0

Majidea fosteri 0 Majidea 0 Sapindaceae 0

Pancovia floribunda _I Pancovia _ Sapindaceae

Pancovia laurentii 75 Pancovia 75 Sapindaceae 75

Sapindus rarak 0 Sapindus 0 Sapindaceae 0
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Zanha golungensis 12.5 Zanha 25 Sapindaceae 25 75
Aningeria adolfi-friederici 0 Aningeria 0 Sapotaceae 25 75
Aningeria altissima 0 Aningeria 0 Sapotaceae 75 25
Aningeria pierrei 0 Aningeria 0 Sapotaceae 75 25
Autranella congolensis 91.66666667 Autranella 91.66666667 Sapotaceae 91.66666667 8.333333333
Baillonella toxisperma 50 Baillonella 50 Sapotaceae 100 0
Breviea sericea 0 Breviea 0 Sapotaceae 75 25
Donella pruniformis 0 Donella 0 Sapotaceae 75 25
Englerophytum laurentii 0 Englerophytum 0 Sapotaceae 100 0
Englerophytum magalismontanum 0 Englerophytum 0 Sapotaceae 0 100
Gambeya africana 0 Gambeya 37.5 Sapotaceae 100 0
Gambeya albida 0 Gambeya 25 Sapotaceae 50 50
Gambeya beguei 0 Gambeya 50 Sapotaceae 75 25
Gambeya lacourtiana 0 Gambeya 75 Sapotaceae 75 25
Gambeya lungi 0 Gambeya 50 Sapotaceae 75 25
Gambeya perpulchra 0 Gambeya 37.5 Sapotaceae 50 50
Gambeya subnuda 0 Gambeya 25 Sapotaceae 50 50
Letestua durissima 0 Letestua 0 Sapotaceae 100 0
Malacantha alnifolia 0 Malacantha 0 Sapotaceae 100 0
Manilkara mochisia 0 Manilkara 0 Sapotaceae 75 25
Manilkara obovata 37.5 Manilkara 37.5 Sapotaceae 50 50
Mimusops zeyheri 0 Mimusops 0 Sapotaceae 75 25
Neolemonniera clitandrifolia 0 Neolemonniera 0 Sapotaceae 75 25
Omphalocarpum brieyi 0 Omphalocarpum 0 Sapotaceae 25 75
Omphalocarpum lecomteanum 0 Omphalocarpum 0 Sapotaceae 0 100
Synsepalum afzelii 0 Synsepalum 0 Sapotaceae 50 50
Synsepalum brevipes 0 Synsepalum 75 Sapotaceae 100 0
Synsepalum revolutum 0 Synsepalum 25 Sapotaceae 100 0
Synsepalum stipulatum 0 Synsepalum 0 Sapotaceae 75 25
Synsepalum subcordatum 75 Synsepalum 75 Sapotaceae 75 25
Tieghemella africana 0 Tieghemella 37.5 Sapotaceae 75 25
Tieghemella heckelii 37.5 Tieghemella 50 Sapotaceae 62.5 37.5
Tridesmostemon omphalocarpoides 0 Tridesmostemon 0 Sapotaceae 75 25
Vitellaria paradoxa 25 Vitellaria 50 Sapotaceae 100 0
Odyendea gabunensis 0 Odyendea 0 Simaroubaceae 0 100
Pierreodendron africanum 87.5 Pierreodendron 87.5 Simaroubaceae 87.5 12.5
Ficalhoa laurifolia 0 Ficalhoa 0 Sladeniaceae 0 100
Nuxia congesta 0 Nuxia 0 Stilbaceae 0 100
Holoptelea grandis 12.5 Holoptelea 12.5 Ulmaceae 12.5 87.5
Musanga cecropioides 25 Musanga 25 Urticaceae 25 75
Myrianthus arboreus 25 Myrianthus 25 Urticaceae 25 75
Myrianthus holstii 50 Myrianthus 50 Urticaceae 50 50
Myrianthus preussii 0 Myrianthus 0 Urticaceae 0 100
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Rinorea welwitschii

Erismadelphus exsul

0

Erismadelphus

0

Vochysiaceae

Balanites wilsoniana

50

Balanites

50

Zygophyllaceae

50

50
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Table 8.4: Summary of botanical genera and species used for training and testing the CNN on timber genus classification. The first column gives the botanical genus, the second column

presents the full taxon of all species included in this study, the final column shows the number of specimens of each species.

Botanical Genus Full taxon Number of specimens
Afzelia africana Sm. ex Pers. 8
Afzelia bella Harms 4
Afzelia bipindensis Harms 11

Afzelia Sm.
Afzelia pachyloba Harms 10
Afzelia peturei De Wild. 1
Afzelia quanzensis Welw. 7
Albizia spp. Durazz. 3
Albizia adianthifolia (Schumach.) W.Wight 6
Albizia adianthifolia var. intermedia (De Wild. & T.Durand) Villiers 2
Albizia altissima Hook.f. 5

Albizia Durazz. Albizia antunesiana Harms 5
Albizia chinensis (Osbeck) Merr. 6
Albizia coriaria Welw. ex Oliv. 5
Albizia ferruginea (Guill. & Perr.) Benth. 6
Albizia glaberrima (Schumach. & Thonn.) Benth. 3
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Albizia glaberrima var. glabrescens (Oliv.) Brenan

Albizia grandibracteata Taub.

Albizia gummifera (J.F.Gmel.) C.A.Sm.

Albizia gummifera var. ealaensis (De Wild.) Brenan

Albizia laurentii De Wild.

Albizia lebbeck (L.) Benth.

Albizia schimperiana Oliv.

Albizia versicolor Welw. ex Oliv.

Albizia zygia (DC.) J.F.Macbr.

Alstonia R.Br.

Alstonia boonei De Wild.

Alstonia congensis Engl.

Beilschmiedia Nees

Beilschmiedia spp. Nees

Beilschmiedia alata Robyns & R.Wilczek

Beilschmiedia congolana Robyns & R.Wilczek

Beilschmiedia corbisieri (Robyns) Robyns & R.Wilczek

Beilschmiedia donisii Robyns & R.Wilczek

Beilschmiedia gaboonensis (Meisn.) Benth. & Hook.fil.

Beilschmiedia gilbertii Robyns & R.Wilczek

Beilschmiedia louisii Robyns & R.Wilczek

Beilschmiedia mannii (Meisn.) Robyns & R.Wilczek

Beilschmiedia mannioides Robyns & R.Wilczek

Beilschmiedia mayumbensis Robyns & R.Wilczek
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Beilschmiedia michelsonii Robyns & R.Wilczek

Beilschmiedia oblongifolia Robyns & R.Wilczek

Beilschmiedia schmitzii Robyns & R.Wilczek

Beilschmiedia ugandensis Rendle

Beilschmiedia variabilis Robyns & R.Wilczek

Beilschmiedia zenkeri Engl.

Brachystegia Benth.

Brachystegia spp. Benth.

Brachystegia angustistipulata De Wild.

Brachystegia boehmii Taub.

Brachystegia bussei Harms

Brachystegia floribunda Benth.

Brachystegia gossweileri Hutch. & Burtt Davy

Brachystegia laurentii (De Wild.) Louis ex J.Léonard

Brachystegia longifolia Benth.

Brachystegia manga De Wild.

Brachystegia spiciformis Benth.

Brachystegia stipulata De Wild.

Brachystegia tamarindoides subsp. microphylla (Harms) Chikuni

Brachystegia tamarindoides subsp. tamarindoides

Brachystegia taxifolia Harms

Brachystegia utilis Hutch. & Burtt Davy

Celtis L.

Celtis spp. L.

142



Celtis adolfi-friderici Engl.

Celtis africana Burm.fil.

Celtis gomphophylla Baker

Celtis latifolia (Blume) Planch.

Celtis mildbraedii Engl.

Celtis philippensis Blanco

Celtis tessmannii Rendle

Celtis zenkeri Engl.

Cynometra L.

Cynometra alexandri C.H.Wright

Cynometra hankei Harms

Cynometra lujae De Wild.

Cynometra mannii Oliv.

Cynometra michelsonii).Léonard

Cynometra schlechteri Harms

Cynometra sessiliflora Harms

Dialium L.

Dialium spp. L.

Dialium angolense Welw. ex Oliv.

Dialium englerianum Henriq.

Dialium excelsum Louis ex Steyaert

Dialium guineense Willd.

Dialium kasaiense Louis ex Steyaert

Dialium pachyphyllum Harms
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Dialium pachyphyllum Harms

Dialium pentandrum Louis ex Steyaert

Dialium polyanthum Harms

Dialium tessmannii Harms

Dialium zenkeri Harms

Diospyros L.

Diospyros spp. L.

Diospyros alboflavescens (Gurke) FWhite

Diospyros batocana Hiern

Diospyros bipindensis Gurke

Diospyros boala De Wild.

Diospyros canaliculata De Wild.

Diospyros chrysocarpa FWhite

Diospyros conocarpa Gurke

Diospyros crassiflora Hiern

Diospyros dendo Welw. ex Hiern

Diospyros ferrea (Willd.) Bakh.

Diospyros gilletii De Wild.

Diospyros grex FWhite

Diospyros heterotricha (Welw. ex Hiern) FWhite

Diospyros hoyleana F.White

Diospyros iturensis (Gurke) Letouzey & F.White

Diospyros mespiliformis Hochst. ex A.DC.
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Diospyros monbuttensis Gurke

Diospyros physocalycina Glrke

Diospyros piscatoria Gurke

Diospyros polystemon Gurke

Diospyros pseudomespilus Mildbr. 4
Diospyros pseudomespilus subsp. undabunda (Hiern ex Greves) F.White 1
Diospyros vermoesenii De Wild. 1
Diospyros viridicans Hiern 2
Diospyros zenkeri (Gurke) FWhite 2
Entandrophragma spp. C.DC. 6
Entandrophragma angolense (Welw.) C.DC. 22
Entandrophragma candollei Harms 17
Entandrophragma cylindricum (Sprague) Sprague 14
Entandrophragma C.DC.
Entandrophragma delevoyi De Wild. 4
Entandrophragma excelsum (Dawe & Sprague) Sprague 6
Entandrophragma palustre Staner 5
Entandrophragma utile (Dawe & Sprague) Sprague 19
Ficus spp. Tourn. ex L. 1
Ficus ampelos Burm.fil. 1
Ficus Tourn. ex L. Ficus ardisioides Warb. 1
Ficus bubu Warb. 5

Ficus craterostoma Warb. ex Mildbr. & Burret
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Ficus demeusei Warb.

Ficus dicranostyla Mildbr.

Ficus elastica Roxb.

Ficus glumosa Delile

Ficus ingens (Miq.) Miq.

Ficus lutea Vahl

Ficus mucuso Welw. ex Ficalho

Ficus recurvata De Wild.

Ficus sarmentosa var. sarmentosa

Ficus sur Forssk.

Ficus sycomorus L.

Ficus thonningii Blume

Ficus trichopoda Baker

Ficus vallis-choudae Delile

Ficus variifolia Warb.

Ficus vogeliana (Mig.) Miq.

Ficus wildemaniana Warb. ex De Wild. & T.Durand

Gambeya Pierre

Gambeya africana (A.DC.) Pierre

Gambeya albida (G.Don) Aubrév. & Pellegr.

Gambeya beguei (Aubrév. & Pellegr.) Aubrév. & Pellegr.

Gambeya gorungosana (Engl.) Liben

Gambeya lacourtiana (De Wild.) Aubrév. & Pellegr.
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Gambeya lungi (De Wild.) Aubrév. & Pellegr. 3
Gambeya perpulchra (Mildbr. ex Hutch. & Dalziel) Aubrév. & Pellegr. 5
Gambeya subnuda (Baker) Pierre 5
Gilbertiodendron J.Léonard 1
Gilbertiodendron dewevrei (De Wild.) J.Léonard 5
Gilbertiodendron grandiflorum (De Wild.) J.Léonard 3
Gilbertiodendron J.Léonard
Gilbertiodendron grandistipulatum (De Wild.) J.Léonard 6
Gilbertiodendron mayombense (Pellegr.) J.Léonard 3
Gilbertiodendron ogoouense (Pellegr.) J.Léonard 5
Homalium spp. Jacq. 1
Homalium abdessammadii Asch. & Schweinf. 3
Homalium africanum (Hook.f.) Benth. 4
Homalium Jacq.
Homalium letestui Pellegr. 5
Homalium longistylum Mast. 5
Homalium stipulaceum Welw. ex Mast. 4
Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. 5
Irvingia grandifolia (Engl.) Engl. 4
Irvingia Hook.f. Irvingia robur Mildbr. 6
Irvingia smithii Hook.fil. 2
Irvingia tenuinucleata Tiegh. 3
Leplaea cedrata (A.Chev.) E.J.M.Koenen &J.J.de Wilde 20
Leplaea Vermoesen
Leplaea laurentii (De Wild.) E.J.M.Koenen & J.J.de Wilde 4
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Leplaea mayombensis (Pellegr.) Staner

Leplaea thompsonii (Sprague & Hutch.) E.J.M.Koenen & J.J.de Wilde 17
Microcos coriacea (Mast.) Burret 2
Microcos mildbraedii Burret 1
Microcos L.
Microcos oligoneura Burret 1
Microcos pinnatifida (Mast.) Burret 5
Milicia Sim Milicia excelsa (Welw.) C.C.Berg 13
Millettia Wight & Arn. 2
Millettia drastica Welw. ex Baker 3
Millettia dura Dunn 3
Millettia eetveldeana (Micheli) Hauman 3
Millettia hockii De Wild. 1
Millettia Wight & Arn. Millettia hylobia Louis ex Hauman 2
Millettia laurentii De Wild. 7
Millettia limbutuensis De Wild. 1
Millettia macroura Harms 1
Millettia stuhlmannii Taub. 3
Millettia versicolor Welw. ex Baker 4
Nauclea spp. L. 3
Nauclea diderrichii (De Wild.) Merr. 10
Nauclea L.
Nauclea latifolia Sm. 3
Nauclea pobeguinii (Hua ex Pobég.) Merr. 5
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Nauclea vanderguchtii (De Wild.) E.M.A.Petit

Prioria spp. Griseb. 3
Prioria balsamifera (Vermoesen) Breteler 7
Prioria buchholzii (Harms) Breteler 3
Prioria Griseb.
Prioria gilbertii (J.Léonard) Breteler 1
Prioria mannii (Baill.) Breteler 2
Prioria oxyphylla (Harms) Breteler 5
Pterocarpus spp. Jacq. 7
Pterocarpus angolensis DC. 17
Pterocarpus gilletii De Wild. 1
Pterocarpus lucens Lepr. ex Guill. & Perr. 1
Pterocarpus Jacq.
Pterocarpus rotundifolius (Sond.) Druce 3
Pterocarpus soyauxii Taub. 16
Pterocarpus tessmannii Harms 1
Pterocarpus tinctorius Welw. 18
Tessmannia africana Harms 2
Tessmannia anomala (Micheli) Harms 3
Tessmannia anomala var. flamignii ).Léonard 2
Tessmannia Harms Tessmannia copallifera J.Léonard 2
Tessmannia dewildemaniana Harms 1
Tessmannia lescrauwaetii (De Wild.) Harms 5
Tessmannia yangambiensis Louis ex J.Léonard 4
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Uapaca spp. Baill. 6
Uapaca guineensis Mull.Arg. 5
Uapaca heudelotii Baill. 5
Uapaca kirkiana Mull.Arg. 3
Uapaca kirkiana var. gossweileri (Hutch.) Meerts 1
Uapaca mole Pax 6
Uapaca Baill. Uapaca nitida Mull.Arg. 4
Uapaca pilosa Hutch. 3
Uapaca pynaertii De Wild. 1
Uapaca robynsii De Wild. 2
Uapaca sansibarica Pax 4
Uapaca togoensis Pax 2
Uapaca vanhouttei De Wild. 2
Vitex spp. L. 2
Vitex congolensis De Wild. & T.Durand 10
Vitex cuspidata Hiern 1
Vitex doniana Sweet 5
Vitex L. Vitex ferruginea Schumach. & Thonn. 7
Vitex fischeri Giirke 1
Vitex grandifolia Gurke 1
Vitex madiensis Oliv. 6
Vitex madiensis subsp. milanjiensis (Britten) FWhite 2
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Vitex micrantha Gurke

Vitex mombassae Vatke

Vitex rubroaurantiaca De Wild.

Xylopia L.

Xylopia spp. L.

Xylopia acutiflora (Dunal) A.Rich.

Xylopia aethiopica (Dunal) A.Rich.

Xylopia aurantiiodora De Wild. & T.Durand

Xylopia cupularis Mildbr.

Xylopia flamignii Boutique

Xylopia gilbertii Boutique

Xylopia hypolampra Mildbr. & Diels

Xylopia katangensis De Wild.

Xylopia longipetala De Wild. & T.Durand

Xylopia odoratissima Welw. ex Oliv.

Xylopia phloiodora Mildbr.

Xylopia rubescens Oliv.

Xylopia staudtii Engl. & Diels

Xylopia toussaintii Boutique

Xylopia villosa Chipp

Xylopia wilwerthii De Wild.
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Table 8.5: The table shows quantified characteristics of the dataset for individual classes after division specimens into training and testing. Quantified characteristics are portrayed by
gradient colour scales, portraying positive deviation of the average value.

Botanical Genus

Total number of

specimens
Training data

in

Total number of
image patches in
Training data

Average number of
training patches
across specimens
per class (genus)

Total number of
specimens in Test
data

Total number of
image patches in
Test data

Average number of
test patches
across specimens
per class (genus)

Entandrophragma C.DC. 65 5698 88 27 2283 85
Pterocarpus Jacq. 49 2305 47 13 341 26
Albizia Durazz. 45 3695 82 26 1085 42
Diospyros L. 31 1564 50 32 1121 35
Uapaca Baill. 31 1659 54 15 969 65
Xylopia L. 31 3848 124 29 2235 77
Brachystegia Benth. 30 3976 133 23 1240 54
Afzelia Sm. 27 1869 69 14 716 51
Dialium L. 26 2529 97 14 508 36
Leplaea Vermoesen 26 1846 71 16 812 51
Beilschmiedia Nees 24 1120 47 10 422 42
Gambeya Pierre 24 2912 121 9 684 76
Vitex L. 23 1724 75 29 2235 77
Ficus Tourn. ex L. 21 1973 94 31 1504 49
Millettia Wight & Arn. 21 1653 79 6 404 67
Celtis L. 20 1021 51 15 613 41
Cynometra L. 18 1188 66 4 365 91
Gilbertiodendron J. Léonard 18 1961 109 4 668 167
Nauclea L. 16 1309 82 5 396 79
Prioria Griseb. 16 1994 125 14 964 69
Homalium Jacq. 14 2083 149 8 189 24
Irvingia Hook.f. 13 2792 215 7 348 50
Milicia Sim 11 1265 115 9 614 68
Tessmannia Harms 5 698 140 13 563 43
Alstonia R.Br. 3 875 292 6 333 56
Microcos Burm. ex L. 3 1577 526 6 432 72
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Figure 8.3: The Xception architecture, implemented in this study. Layers are sequenced from top-left to bottom-right. The legend underneath the architecture highlights the detailed structure of each layer (or "block”)
and the structure of the parameters (if applicable). The parameters (numerical values) for the layers in the figure are structured according to the listed parameters in the legend. Dashed lines represent residual (or

skip) connections, which enables a bypass across layers and was implemented to prevent the vanishing gradient problem. The “8x” above the boxed section represents that the boxed sequence is repeated 8x
sequentially.
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8.2 Definitions of classification performance metrics: Accuracy,
Precision, Recall, and F1-score

In classification problems, the performance of a model is commonly evaluated using a confusion matrix,
which summarizes predictions relative to ground-truth labels. For a binary classification problem, the
outcomes are defined as:

True Positives (TP): correctly predicted positive samples
True Negatives (TN): correctly predicted negative samples
False Positives (FP): negative samples incorrectly predicted as positive

False Negatives (FN): positive samples incorrectly predicted as negative

8.2.1 Accuracy

Accuracy measures the overall proportion of correctly classified instances among all predictions:

TP + TN + FP + FN
TP + TN

Accuracy =

While accuracy is intuitive, it can be misleading in imbalanced datasets (e.g., many more negative than
positive cases), as it does not distinguish between error types.

8.2.2 Precision

Precision (also called positive predictive value) quantifies the reliability of positive predictions by
measuring the proportion of predicted positives that are actually correct:

TP + FP

P .. —
recision TP

High precision indicates that when the model predicts a positive class, it is usually correct.

8.2.3 Recall

Recall (also called sensitivity or true positive rate) measures the ability of the model to identify actual
positives:

TP + FN

Recall =
eca P

High recall indicates that the model successfully detects most of the positive cases.

8.2.4 F1-Score

Precision and recall often trade off against each other: increasing recall may lower precision, and vice
versa. To balance these metrics, the F1-score is frequently used, defined as the harmonic mean of
precision and recall:

2 % (Precision + Recall)
Precision X Recall

Flscore =

This provides a single measure that rewards models with both high precision and high recall.
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8.3 Model performance during training

The Xception architecture achieved high training performance across all three models, consistently
surpassing 99% accuracy with training loss remaining below 0.5. Within five epochs, accuracy exceeded
95% and loss fell below 0.2, after which training stabilized (Figure 8.4). Validation accuracy closely tracked
training accuracy in models with the training data containing anomaly(damage)-free patches. However,
the inclusion of anomalous patches in the model trained with both types of patches, introduced greater
variability in validation loss during the first 30 epochs and a temporary decline in validation accuracy
compared to the model with only anomaly-free patches. In the model with only anomalous patches,
validation accuracy dropped to 87.9% with a loss of 0.82.

The reduced variability and faster convergence observed from the model with all patches, and the model
with only anomaly-free patches suggest that excluding anomalous patches facilitates a more stable
training process. Conversely, omitting anomaly-free patches led to a performance decline, with validation
accuracy decreasing from 98.6% (model trained on both) to 87.9%. This indicates that a slight negative
effect of anomalous patches on training stability and generalization, although the consistently high
validation accuracies across all models suggest that the model’s capacity to classify individual patches
effectively is not compromised.
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Figure 8.4: Training progress of accuracy and loss for the 3 models: Upper: model 1 (trained on all patches), Middle: model 2
(trained only on anomaly(damage)-free patches, Lower: model 3 (trained only on anomalous patches).
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8.4 Correlations between class-specific changes in recall

8.4.1 Across trained models and model-specific training metrics

Pearson correlation coefficients revealed weak links between training data metrics and recall differences, except for stronger correlations with the average number
of training patches per genus between models 1 and 2 (0.55 to 0.67). This suggests larger endgrain surface areas improve performance on anomaly-free specimens.

Table 10.6: Pearson correlation coefficients between the class-specific metrics of the training data and the performance differences between the three models on the (filtered) test
data. Model 1 was trained on all images, model 2 was trained only on anomaly-free images, model 3 was trained only on anomalous images

Average number of
Total number of . .
. . . Total number of image image patches across
specimens in Training . . .
data patches in Training data specimens per class
(genus)

-0,15 0,01 0,55
0,16 0,20 0,14
-0,21 -0,06 0,67
0,10 0,20 0,20
-0,05 0,15 0,36
0,07 0,16 0,16
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8.4.2 Within trained models (between anomaly-free and anomalous test data) and model-specific training metrics

Pearson correlations between class-specific performance differences and training data metrics were weak (<30%), except for a moderate positive correlation with
the average number of image patches per genus in the model trained on all patches (see Table 2 and Supplementary material 1). This indicates that the training data
structure does not significantly correlate with recall differences.

Table 10.7: Pearson correlation coefficients between the class-specific metrics of the training data and the performance differences between the anomaly-free and anomalous test

patches on the training models.

Total number of
specimens in Training
data

Total number of image
patches in Training data

Average number  of
image patches across
specimens per class
(genus)

-0,006 0,115 0,352
0,101 0,262 0,137
-0,089 -0,027 0,180
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Table 8.8: Full overview of all specimens (split across reference and test sets) of non-Congolese timbers used in chapter 5 on the generalisation of object re-identification beyond the

learned taxonomic scope of African timbers.

Erythrospermum
8
Lam.
Achariaceae 18 7 Pangium Reinw. 5
Trichadenia Thwaites 5]
Buchanania Spreng. 27
Anacardiaceae 82 33
Campnosperma
. 19
Thwaites

Dracontomelon

Blume LS

Erythrospermum
candidum Becc.

Pangium edule Reinw.

Trichadenia
philippinensis Merr.

Buchanania
arborescens Blume

Buchanania
macrocarpa Merr. ex
Setch.

Campnosperma
brevipetiolatum
Volkens

Campnosperma
coriaceum (Jack)
Hallier fil.
Campnosperma
montanum Lauterb.

Dracontomelon dao
(Blanco) Merr. & Rolfe

Tw74955, Tw74581,
Tw80935, Tw73711,
Tw74744, Tw73826,
Tw72021, Tw73975
Tw74592, Tw72760,
Tw73531, Tw71974,
Tw73773

Tw74201, Tw72936,
Tw73402, Tw74745,
Tw74640

Tw74789, Tw71377,
Tw74311, Tw74905
Tw72131, Tw72630,
Tw73652, Tw71702,
Tw73172, Tw73296,
Tw72935a, Tw71496,
Tw73848, Tw72794,
Tw74714, Tw73400,
Tw72761, Tw74292,
Tw71824, Tw74492,
Tw74037, Tw73213,
Tw74883a, Tw71226,
Tw74883b, Tw72284,
Tw74468

Tw71390, Tw72779,
Tw72422, Tw71922,
Tw72988, Tw73406,
Tw71283, Tw71766,
Tw73775, Tw74983,
Tw71150, Tw74464,
Tw74482, Tw74615,
Tw72981, Tw72806

Tw73003

Tw74914, Tw73058

Tw71997, Tw72408,
Tw73645, Tw73502,
Tw73803, Tw73314,
Tw72602, Tw73201,
Tw73858, Tw72675,
Tw74550, Tw73552,
Tw72922, Tw74899,
Tw71823, Tw73916

Tw74576, Tw73380,
Tw73899

Tw71113, Tw71060

Tw72756, Tw72221

Tw71294, Tw71289

Tw73184, Tw72246,
Tw72244, Tw72943,
Tw71115, Tw74865,
Tw74012, Tw71688

Tw74922, Tw72965,
Tw74800, Tw73734,
Tw71045, Tw71284

Tw72168

Tw72871

Tw73339, Tw74785,
Tw72384, Tw74828,
Tw73672, Tw71435
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Annonaceae

Apocynaceae

Aquifoliaceae

Bignoniaceae

Burseraceae

26

34

Gluta L.

Koordersiodendron
Engl. ex Koord.

Pentaspadon Hook.f.

Semecarpus L.f.

Cananga (Dunal)
Hook.f. & Thomson

Drepananthus
Maingay ex Hook.f. &
Thomson

Miliusa Lesch. ex
A.DC.

Cerbera L.

Ochrosia Juss.

Wrightia R.Br.

llex L.L.

Dolichandrone (Fenzl)
Seem.

Garuga Roxb.

20

Gluta papuana Ding
Hou
Koordersiodendron
pinnatum (Blanco)
Merr.

Pentaspadon motleyi
Hook.fil.

Semecarpus aruensis
Engl.

Semecarpus forstenii
Blume

Cananga odorata
(Lam.) Hook.f. &
Thomson

Drepananthus
petiolatus (Diels)
Survesw. &
R.M.K.Saunders
Drepananthus
polycarpus

(C.T.White &
W.D.Francis)
Survesw. & R.M.K.
Miliusa koolsii
(Kosterm.) J.Sinclair

Cerbera  floribunda
K.Schum.

Ochrosia ficifolia
(S.Moore) Markgr.
Ochrosia glomerata
(Blume) F.Muell.

Wrightia laevis
Hook.fil.

Ilex cymosa Blume

Dolichandrone
spathacea (L.fil.)
K.Schum.

Garuga floribunda
Decne.

Tw72489

Tw74258, Tw72855,
Tw74187, Tw71707,
Tw74593, Tw74943
Tw72087, Tw71506,
Tw72641, Tw72331,
Tw71472, Tw72968

Tw74892

Tw73981, Tw73781,
Tw74260, Tw74569,
Tw73295, Tw72071

Tw74185, Tw72653,
Tw74695, Tw71779,
Tw71695, Tw72283,
Tw71387, Tw73083,
Tw73474, Tw71339,
Tw72000, Tw74502,
Tw73150, Tw74275,
Tw73489, Tw74938,
Tw73320, Tw73494,
Tw72944, Tw74716

Tw73908, Tw73514

Tw74452

Tw74953, Tw74986,
Tw73677

Tw74484, Tw74885,
Tw74966, Tw74656,
Tw74367, Tw72768
Tw74528, Tw72709,
Tw74698, Tw72757

Tw74064, Tw72464

Tw74755, Tw72515,
Tw74838, Tw74405,
Tw73796, Tw72380

Tw71170, Tw71235

Tw72180, Tw74595,
Tw73022

Tw74288

Tw72181

Tw71437, Tw72480,
Tw71245

Tw71402, Tw72065

Tw72588

Tw73468, Tw71287

Tw73530, Tw72685,
Tw73075, Tw73144,
Tw71660, Tw72196,
Tw71190

Tw71931

Tw72734

Tw73335, Tw73548

Tw72418, Tw71454,
Tw73783

Tw72573, Tw72632
Tw72204

Tw72462, Tw72377,
Tw72295

Tw71074
Tw74274

Tw73661
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Calophyllaceae

Cannabaceae

Cardiopteridaceae

Celastraceae

22

Haplolobus H.J.Lam

Calophyllum L.

Gironniera Gaudich.

Citronella D.Don

Gonocaryum Miq.

Lophopetalum Wight
ex Arn.

33

10

22

Haplolobus
acuminatus
(K.Schum.) H.J.Lam

Haplolobus
floribundus
(K.Schum.) H.J.Lam

Haplolobus leeifolius
(Lauterb.) H.J.Lam
Calophyllum
euryphyllum Lauterb.
Calophyllum peekelii
Lauterb.
Calophyllum soulattri
Burm.fil.
Calophyllum
suberosum
P.F.Stevens
Calophyllum vexans
P.F.Stevens

Gironniera hirta Ridl.

Gironniera
subaequalis Planch.

Citronella suaveolens
(Blume) R.A.Howard
Gonocaryum litorale
(Blume) Sleumer
Lophopetalum
ledermannii  (Loes.)
Ding Hou

Lophopetalum
torricellense Loes.

Tw73821, Tw73968,
Tw74912, Tw73145

Tw73596, Tw71674,
Tw72738, Tw74529,
Tw71296, Tw71556,
Tw73164, Tw73573,
Tw71676, Tw73693,
Tw73478, Tw73699,
Tw73115, Tw73352,
Tw71677, Tw73316,
Tw74834, Tw74812,
Tw73301, Tw72989,
Tw74632, Tw73073,
Tw72780, Tw72990,
Tw74149, Tw73591,
Tw73729

Tw71964, Tw72502

Tw73653

Tw71587

Tw74760, Tw74741

Tw72978, Tw72172,
Tw73013

Tw71225, Tw71987,
Tw71465

Tw74113, Tw74151

Tw71604, Tw74433,
Tw73212, Tw71253,
Tw74807, Tw72764,
Tw71259, Tw73227,
Tw74307, Tw74749,
Tw71732, Tw73395,
Tw72723, Tw75002a,
Tw75002b, Tw72908,
Tw71541, Tw73386,
Tw72920, Tw73087

Tw73049, Tw74473

Tw72504

Tw72876, Tw72804

Tw72640, Tw74921,
Tw74574, Tw74848,
Tw74996, Tw74862

Tw72939, Tw72706

Tw71684,
Tw73732,
Tw74897,
Tw71169,
Tw74148

Tw71921

Tw71330

Tw71174

Tw72044

Tw72980

Tw71968

Tw74111

Tw72128,
Tw72917,
Tw72777,
Tw71096

Tw71929

Tw72473

Tw72796

Tw71585,
Tw72695,
Tw73961,
Tw73357,

Tw71529,
Tw72929,
Tw73874,

Tw72589, Tw74795
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Centroplacaceae

Chrysobalanaceae

Cornaceae

Ctenolophonaceae

Cunoniaceae

Dilleniaceae

Dipterocarpaceae

44

Bhesa Buch.-Ham. ex
Arn.

Atuna Raf.

Parastemon A.DC.

Alangium Lam.

Ctenolophon Oliv.

Schizomeria D.Don

Dillenia L.

Anisoptera Korth.

Hopea Roxb.

Vatica L.

10

11

14

21

Bhesa archboldiana
(Merr. & L.M.Perry)
Ding Hou

Atuna excelsa (Jack)
Kosterm.

Parastemon
versteeghii Merr. &
Perry

Alangium javanicum
(Blume) Wangerin

Ctenolophon
parvifolius Oliv.
Schizomeria serrata
(Hochr.) Hochr.
Dillenia castaneifolia
(Mig.) Martelli ex
T.Durand &B.D.Jacks.

Dillenia papuana
Martelli

Dillenia pteropoda
(Miqg.) Hoogland

Anisoptera thurifera
(Blanco) Blume

Hopea iriana Slooten

Hopea
novoguineensis
Slooten

Hopea papuana Diels

Hopea scabra
P.S.Ashton

Vatica rassak (Korth.)
Blume

Tw74353, Tw74896

Tw72306, Tw73883,
Tw72309, Tw73624,
Tw72600, Tw74406
Tw74377, Tw73864,
Tw73598, Tw73594,
Tw73987, Tw71935,
Tw73822, Tw73576,
Tw72627

Tw74070, Tw73976,
Tw74023, Tw73717,
Tw73941, Tw73812,
Tw74950, Tw73817,
Tw74305, Tw74303

Tw74223, Tw72365

Tw72716, Tw73578,
Tw74768

Tw73650, Tw73845

Tw71152, Tw74446,
Tw71765, Tw73050,
Tw74777, Tw72175,
Tw72900, Tw73167

Tw72506

Tw73869, Tw73007,
Tw74814, Tw71923,
Tw73000, Tw72866,
Tw72074, Tw72795,
Tw73683, Tw73617,
Tw74222, Tw73002,
Tw74366, Tw73872
Tw73686, Tw72954,
Tw74673

Tw72816, Tw74934

Tw73712, Tw71992

Tw73580, Tw71971

Tw74364, Tw72498,
Tw74968, Tw73629,
Tw71307, Tw71734,
Tw72826, Tw72314,
Tw72153, Tw74967,
Tw71509, Tw73720,
Tw72537, Tw71501,

Tw73401

Tw71507,

Tw73867,
Tw72485

Tw72079,
Tw74671,

Tw72256

Tw74162

Tw72047

Tw72405,
Tw71719

Tw71468

Tw73188,
Tw74401,
Tw73687

Tw72946,

Tw72491

Tw71991

Tw71962

Tw72237,
Tw71727,
Tw72313,
Tw71434

Tw72501

Tw73606,

Tw74306,
Tw72110

Tw72910,

Tw72169,
Tw71565,

Tw72495

Tw72130,
Tw73601,
Tw71265,
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Elaeocarpaceae

Euphorbiaceae

54

21

23

Elaeocarpus L.

SloaneaL.

Aleurites J.R.Forst. &
G.Forst.

Balakata Esser

Endospermum Benth.

35

19

11

Elaeocarpus
altisectus Schltr.

Elaeocarpus
dolichostylus Schltr.

Elaeocarpus miegei
Weibel

Elaeocarpus
nouhuysii Koord.

Elaeocarpus
sepikanus Schltr.
Elaeocarpus
sphaericus (Gaertn.)
Ettingsh.
Elaeocarpus
undulatus Warb.
Sloanea aberrans
(Brandis) A.C.Sm.
Sloanea brachystyla
(Schltr.) A.C.Sm.
Sloanea forbesii
F.Muell.

Sloanea
paradisearum
F.Muell.

Sloanea pullei
0.C.Schmidt ex
A.C.Sm.

Aleurites moluccanus
(L.) Willd.

Balakata luzonica
(Vidal) Esser

Endospermum
medullosum L.S.Sm.

Endospermum
moluccanum (Teijsm.
& Binn.) Kurz

Tw71547, Tw74283,
Tw71425, Tw72299,
Tw74627, Tw71731,
Tw72864

Tw74347, Tw72577,
Tw73042

Tw71623, Tw72953,
Tw74453, Tw73925,
Tw74120, Tw74121,
Tw74876, Tw73922,
Tw71633, Tw72775
Tw71181, Tw71228,
Tw73792

Tw71184, Tw71656,
Tw72397, Tw73378,
Tw71641, Tw73756,
Tw73139, Tw72316,
Tw71773, Tw73291,
Tw74873

Tw74400, Tw71620,
Tw71630

Tw73888, Tw73777,
Tw72671, Tw74319

Tw73820

Tw74621, Tw74954,
Tw74371

Tw73030

Tw73486, Tw72317

Tw74075, Tw74459

Tw72941, Tw73102,
Tw72740, Tw72844,
Tw73142, Tw72762,
Tw73414, Tw73735,
Tw72420, Tw74375,
Tw74988

Tw74977

Tw73338

Tw74117, Tw72650,
Tw74198, Tw74704,
Tw74128, Tw74706
Tw74864, Tw71762,
Tw72870, Tw73260,
Tw72460

Tw73620

Tw74618,

Tw74775,

Tw71338, Tw71368

Tw73024

Tw71077,

Tw73439,

Tw71111, Tw74509

Tw73749

Tw71761, Tw71808

Tw72271

Tw72496, Tw73258

Tw73025

Tw71104

Tw73244

Tw71628,

Tw74441,

Tw71581, Tw73737

Tw71476

Tw72027

Tw72310,
Tw73814

Tw72201,

Tw71129, Tw71127
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Fabaceae

Fagaceae

Gentianaceae

Hernandiaceae

Himantandraceae

23

Excoecaria L.

Mallotus Lour.

Spathiostemon
Blume

Adenanthera L.
Archidendron F.Muell.
Falcataria

(I.C.Nielsen) Barneby
& J.W.Grimes

Inocarpus J.R.Forst. &
G.Forst.

Pongamia Adans.

Serianthes Benth.

Castanopsis (D.Don)

Spach

Lithocarpus Blume

Fagraea Thunb.

Hernandia L.

Galbulimima
F.M.Bailey

11

15

Excoecaria
myrioneura Airy Shaw
Mallotus philippensis
(Lam.) MalLArg.
Mallotus pleiogynus
Pax & K.Hoffm.
Spathiostemon
javensis Blume
Adenanthera
novoguineensis Baker
f.

Archidendron molle
(K.Schum.) de Wit

Falcataria falcata (L.)
Greuter & R.Rankin

Inocarpus fagifer
(Parkinson ex
F.A.Zorn) Fosberg

Inocarpus papuanus
Kosterm.

Pongamia pinnata (L.)
Pierre

Serianthes
minahassae (Koord.)
Merr. & L.M.Perry
Castanopsis
acuminatissima
(Blume) A.DC.
Lithocarpus celebicus
(Miq.) Rehder
Lithocarpus
rufovillosus (Markgr.)
Rehder

Fagraea gracilipes
A.Gray

Hernandia ovigera L.

Galbulimima
belgraveana (F.Muell.)
Sprague

Tw74361

Tw73521, Tw73554

Tw72727, Tw74228,
Tw74963, Tw74277

Tw73719

Tw72477, Tw74435

Tw73664

Tw74474, Tw74322,
Tw74566

Tw74940, Tw72179,
Tw72452, Tw71549,
Tw71768, Tw72404,
Tw71391, Tw72960,
Tw74483, Tw72356

Tw73193

Tw73856, Tw73533,
Tw73722

Tw74895, Tw715083,
Tw72483

Tw73451, Tw73477

Tw73742, Tw72919

Tw74373, Tw73436,
Tw72676

Tw72950, Tw73626,
Tw73105

Tw74471, Tw74910,
Tw73843, Tw72805,
Tw71705, Tw71572,
Tw73463, Tw73107,
Tw73498, Tw74450,
Tw74549, Tw73276,
Tw71976, Tw74973,
Tw71480

Tw74080, Tw73225,
Tw74156, Tw73415,
Tw74540, Tw74372

Tw74157
Tw72466
Tw72385, Tw71989

Tw73669

Tw72112

Tw73648

Tw73240, Tw73483

Tw71050, Tw74756,
Tw74894, Tw71379

Tw73179

Tw72789, Tw71994

Tw72585

Tw73252

Tw71171

Tw73450

Tw72812, Tw72690

Tw71689, Tw73780,
Tw73399, Tw71196,
Tw74869

Tw73613, Tw73113
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Juglandaceae

Lamiaceae

Lauraceae

Engelhardia Lesch. ex
Blume

Teijsmanniodendron
Koord.

Alseodaphne Nees

Cinnamomum
Schaeff.

Cryptocarya R.Br.

Endiandra R.Br.

Litsea Lam.

41

20

Engelhardia rigida
Blume

Engelhardia spicata
Lesch. ex Blume

Teijsmanniodendron
bogoriense Koord.

Alseodaphne
archboldiana
(C.K.Allen) Kosterm.
Cinnamomum
grandiflorum
Kosterm.

Cryptocarya alleniana
C.T.White
Cryptocarya brevipes
C.K.Allen
Cryptocarya
diversifolia Blume
Cryptocarya murrayi
F.Muell.

Cryptocarya
verrucosa Teschner
Endiandra brassii
C.K.Allen

Endiandra forbesii
Gamble

Endiandra latifolia
Kosterm.

Endiandra
ledermannii Teschner
Litsea calophyllantha
K.Schum.

Litsea elliptica Blume

Litsea firma (Blume)
Hook.fil.

Litsea glutinosa
(Lour.) C.B.Rob.
Litsea grandis (Wall.
ex Nees) Hook.fil.

Litsea irianensis
Kosterm.
Litsea ledermannii
Teschner

Tw74065, Tw74047,
Tw74399, Tw73445,
Tw74412, Tw73738

Tw74819, Tw74669

Tw72104, Tw73873,
Tw73416, Tw73413,
Tw74815, Tw72752,
Tw72721

Tw71687, Tw74281,
Tw72951, Tw71746,
Tw73248

Tw72520, Tw72976

Tw73430, Tw73119

Tw74112

Tw73710

Tw74316, Tw73834,
Tw73562

Tw71334, Tw71306

Tw74650, Tw72693

Tw74004, Tw74804

Tw74489, Tw74526

Tw74849

Tw74684

Tw74176

Tw71215, Tw74357,
Tw74699, Tw74362,
Tw74060, Tw72912,
Tw73104, Tw72417,
Tw72884

Tw74878

Tw74061

Tw74118, Tw73541,
Tw73311

Tw73411, Tw74919,
Tw72867, Tw73464,
Tw73421, Tw74806

Tw73111, Tw73746

Tw74628

Tw73403,
Tw72587

Tw74428,

Tw71430, Tw71222

Tw71925

Tw72923

Tw74106

Tw72503

Tw74123

Tw71292

Tw71449

Tw71234

Tw71643

Tw72896

Tw72755

Tw74132

Tw72146,

Tw74136,

Tw74015, Tw74079

Tw74500

Tw74025

Tw72620, Tw71117

Tw73097,
Tw72724

Tw72666,
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Lecythidaceae

Loganiaceae

Lythraceae

Magnoliaceae

Malvaceae

Melastomataceae

Nothaphoebe Blume

Phoebe Nees

Barringtonia J.R.Forst.
& G.Forst.

Planchonia Blume

Neuburgia Blume

Duabanga Buch.-
Ham.

Lagerstroemia L.
Sonneratia L.f.

Magnolia Plum. ex L.

Colona Cav.

Kleinhovia L.

Trichospermum
Blume

Astronia Blume

Litsea timoriana
Span.

Nothaphoebe
archboldiana
C.K.Allen
Nothaphoebe elata
(Kosterm.) Kosterm.
Phoebe forbesii
Gamble

Barringtonia
lauterbachii R.Knuth

Planchonia papuana
R.Knuth

Neuburgia
corynocarpa (A.Gray)
Leenh.

Duabanga moluccana
Blume

Lagerstroemia
celebica Blume
Sonneratia caseolaris
(L.) Engl.

Magnolia tsiampacca
(L.) Figlar & Noot.

Colona scabra (Sm.)
Burret

Kleinhovia hospita L.

Trichospermum
pleiostigma (F.Muell.)
Kosterm.
Trichospermum
tripyxis (Schum.)
Kosterm.

Astronia hollrungii
Cogn.

Tw74125, Tw72885,
Tw72629, Tw74124,
Tw74532, Tw71632,
Tw74284, Tw74246,
Tw74248, Tw72341,
Tw73308, Tw74559,
Tw71081, Tw74636,
Tw72655, Tw72129,
Tw73884, Tw72320,
Tw73524

Tw74608

Tw71146, Tw73085

Tw74083

Tw73971, Tw73804,
Tw74675, Tw73844,
Tw74739, Tw80930,
Tw71112

Tw73949, Tw73937

Tw74253, Tw74270,
Tw74272

Tw74945

Tw72901, Tw72624

Tw72555

Tw74710, Tw74158,
Tw74898, Tw73427
Tw72433, Tw72162,
Tw72773, Tw74328,
Tw74722, Tw73082,
Tw72430, Tw74510,
Tw74729

Tw73526, Tw72516,
Tw73784

Tw73458, Tw73488,
Tw74479

Tw74638

Tw74490, Tw73204,
Tw74591, Tw73435,
Tw74451

Tw72750, Tw74245,
Tw73495, Tw73264,
Tw71071, Tw71737,
Tw72343

Tw73763

Tw71080

Tw73190

Tw74903, Tw71158,
Tw73960

Tw72214

Tw71075, Tw74166

Tw74419
Tw72584
Tw72359

Tw72711, Tw72613

Tw74649, Tw73151,
Tw72415

Tw72265, Tw71340

Tw73440, Tw73455

Tw71475

Tw72751, Tw72959
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Meliaceae

Astronidium A.Gray

Pternandra Jack

Aglaia Lour.

Aphanamixis Pierre

86 39
Azadirachta A.Juss.

Chisocheton Blume

Dysoxylum Blume

22

20

11

Astronidium biakense
J.F.Maxwell
Pternandra
tuberculata  (Korth.)
M.P.Nayar

Aglaia flavida Merr. &
L.M.Perry

Aglaia lawii (Wight)
C.J.Saldanha

Aglaia lepiorrhachis
Harms

Aglaia oligophylla Miq.

Aglaia sexipetala
Griff.
Aglaia silvestris

(M.Roem.) Merr.

Aglaia spectabilis
(Mig.) S.S.Jain &
Bennet

Aglaia subminutiflora
C.DC.
Aphanamixis
polystachya  (Wall.)
R.Parker
Azadirachta excelsa
(Jack) Jacobs

Chisocheton
ceramicus Miq.

Chisocheton
cumingianus (C.DC.)
Harms

Chisocheton
lasiocarpum (Mig.)
Valeton

Chisocheton
longistipitatus
(F.M.Bailey) L.S.Sm.
Chisocheton stellatus
P.F.Stevens

Dysoxylum excelsum
Blume

Dysoxylum
mollissimum Blume

Tw74030, Tw74035

Tw74674

Tw72018, Tw72992

Tw73299, Tw74332,
Tw72670, Tw73284,
Tw73304

Tw74942
Tw74712

Tw73662

Tw72785, Tw73833,
Tw74203, Tw72014,
Tw73921, Tw74205,
Tw74742, Tw74668

Tw71322

Tw73286, Tw71328,
Tw73564

Tw73384

Tw73211, Tw72425,
Tw72429

Tw73503, Tw74350,
Tw73067, Tw72414,
Tw71063, Tw74243,
Tw72272, Tw74570

Tw73808

Tw71998, Tw71333,
Tw72543, Tw74438,
Tw74182, Tw73232,
Tw74449, Tw73665

Tw71800

Tw73846, Tw73663

Tw74478, Tw73835,
Tw73496, Tw73404,
Tw74560
Tw73482, Tw73283,
Tw73432

Tw74029

Tw71532

Tw71085

Tw72481, Tw72070

Tw73948

Tw74421

Tw73532

Tw73919,
Tw72357

Tw71304

Tw73329

Tw72342

Tw74066,

Tw71785, Tw72290

Tw73426,
Tw72592

Tw73441

Tw73368,
Tw71508

Tw71203

Tw71189

Tw72066,

Tw73064,

Tw72963, Tw73210

Tw73434
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Metteniusaceae

Moraceae

Moraceae

Myristicaceae

50

22

Pseudocarapa
Hemsl.

Sandoricum Cav.

Toona (Endl.)
M.Roem.

Vavaea Benth.

Xylocarpus J.Koenig

Platea Blume

Parartocarpus Baill.

Paratrophis Blume

Prainea King ex
Hook.f.

Endocomia W.l.de
Wilde

Horsfieldia Willd.

Myristica Gronov.

12

16

31

Dysoxylum
oppositifolium
F.Muell.

Pseudocarapa
inopinata Harms

Sandoricum koetjape
(Burm.fil.) Merr.

Toona sureni (Blume)
Merr.

Vavaea amicorum
Benth.

Xylocarpus granatum
J.Koenig

Platea excelsa Blume

Parartocarpus
venenosa (Zoll. &
Moritzi) Becc.
Paratrophis glabra
(Merr.) Steenis
Paratrophis
philippinensis
(Bureau) Fern.-Vill.

Prainea limpato (Miq.)
Beumée ex K.Heyne

Endocomia
macrocoma (Miq.)
W.J.de Wilde
Horsfieldia irya
(Gaertn.) Warb.
Horsfieldia
pachyrachis W.J.de
Wilde

Horsfieldia sylvestris
(Houtt.) Warb.

Myristica fatua Houtt.

Tw72997, Tw74542,
Tw73034

Tw74096, Tw72798,
Tw74647, Tw74014,
Tw72742, Tw74388
Tw74734, Tw74290,
Tw74282, Tw74928
Tw74979, Tw73733,
Tw73794, Tw73472,
Tw73500

Tw72673, Tw74981,
Tw74172, Tw72134,
Tw72661, Tw71970,
Tw74285, Tw72667,
Tw74291, Tw73752,
Tw72488, Tw73743

Tw74603, Tw74730

Tw71616, Tw73758,
Tw72776, Tw71721

Tw74078, Tw74582,
Tw75001, Tw74696

Tw73906, Tw74661

Tw73340, Tw72603,
Tw72928, Tw74890,
Tw72260, Tw73180
Tw73923, Tw74140,
Tw74978, Tw71580,
Tw74831, Tw74635

Tw74678, Tw72697,
Tw73818

Tw74425

Tw74497

Tw73681, Tw71806,
Tw71639, Tw73839,
Tw71219, Tw71137,
Tw72862, Tw74867,
Tw72771, Tw71794,
Tw71791, Tw71792,
Tw71756, Tw71653
Tw73057, Tw71221,
Tw74374, Tw74280,
Tw74926, Tw74547,
Tw71535

Tw71502, Tw72421

Tw72722, Tw72934

Tw74271, Tw74231

Tw73268, Tw73467

Tw74192, Tw74590,
Tw74167, Tw73631

Tw71414

Tw71308, Tw71124

Tw72080, Tw71937

Tw73237

Tw72714, Tw71069

Tw74031, Tw71559

Tw74491

Tw71094

Tw71367

Tw74855, Tw71078,

Tw71793, Tw71946,
Tw71432

Tw71504, Tw74753,
Tw74226
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Myrtaceae

Nyssaceae
Oleaceae

Pentaphylacaceae

Phyllanthaceae

Podocarpaceae

Polygalaceae

Eucalyptopsis
C.T.White

Rhodamnia Jack

Tristaniopsis Brongn.
& Gris

Mastixia Blume

Chionanthus Royen

Ternstroemia Mutis ex
L.f.

Baccaurea Lour.

Bischofia Blume

Glochidion J.R.Forst.
& G.Forst.

Nageia Gaertn.

Podocarpus L'Hér. ex
Pers.

Xanthophyllum Roxb.

Myristica garciniifolia
Warb.
Myristica globosa
Warb.

Myristica hollrungii
Warb.

Mpyristica inutilis Rich.
ex A.Gray

Myristica mediovibex
W.J.de Wilde
Myristica scripta
W.J.de Wilde

Myristica sulcata
Warb.

Eucalyptopsis
papuana C.T.White
Rhodamnia
pachyloba A.J.Scott
Rhodamnia reticulata
A.).Scott
Tristaniopsis
ferruginea (C.T.White)
Paul G.Wilson &
J.T.Waterh.

Mastixia kaniensis
Melch.

Chionanthus
ramiflorus Roxb.
Ternstroemia
merrilliana Kobuski
Baccaurea nanihua
Merr.

Bischofia javanica
Blume

Glochidion  lucidum
Blume

Glochidion
stenophyllum Airy
Shaw

Nageia  wallichiana
(Presl) Kuntze
Podocarpus rumphii
Blume
Xanthophyllum
papuanum Whitmore
ex Meijden

Tw72546

Tw73709, Tw73569

Tw72167, Tw72040,
Tw73037, Tw74503,
Tw72388, Tw71610,
Tw72238, Tw71375,
Tw72006, Tw72681
Tw74682, Tw72219,
Tw72045

Tw74393, Tw73882

Tw74131

Tw73649, Tw74543,
Tw74469, Tw73614,
Tw73830

Tw72559

Tw73374, Tw72707,
Tw74499

Tw74663

Tw73701, Tw73692,
Tw74705, Tw72879,
Tw74210

Tw72835, Tw74700,
Tw73682

Tw74936, Tw74302

Tw72248, Tw74667,
Tw71517

Tw74073, Tw74155,
Tw72895

Tw74565, Tw73547,
Tw74515, Tw73520

Tw74995
Tw72072, Tw72595,
Tw74152

Tw72873, Tw72536,
Tw74626

Tw74331

Tw71351, Tw72754,
Tw71070

Tw71271

Tw73341

Tw71042,

Tw731086,

Tw73133, Tw71299

Tw73895

Tw73592

Tw74119

Tw73156, Tw72710

Tw72367

Tw74434

Tw72726

Tw72857, Tw72143

Tw73885

Tw72125

Tw72561

Tw74126

Tw72637, Tw72007

Tw71533

Tw73689

Tw72916

Tw74251

Tw72656
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Rhamnaceae

Rhizophoraceae

Rubiaceae

Rutaceae

12

31

34

Alphitonia Reissek ex
Endl.

Bruguiera Lam.

Carallia Roxb. ex R.Br.

Gynotroches Blume

Adina Salisb.

Mastixiodendron
Melch.

Neolamarckia Bosser

Neonauclea Merr.

Timonius Rumph. ex
DC.

Flindersia R.Br.

Halfordia F.Muell.

11

14

Xanthophyllum
suberosum C.T.White
Alphitonia excelsa
(Fenzl) Benth.
Alphitonia
macrocarpa
Mansfield

Bruguiera gymnorhiza
(L.) Lam.

Carallia brachiata
(Lour.) Merr.

Gynotroches axillaris
Blume

Adina multifolia Havil.

Mastixiodendron
pachyclados
(K.Schum.) Melch.

Neolamarckia
cadamba (Roxb.)
Bosser

Neonauclea  brassii
S.Moore

Neonauclea hagenii
(Lauterb. & K.Schum.)
Merr.

Neonauclea
lanceolata (Blume)
Merr.

Timonius timon
(Spreng.) Merr.

Flindersia
amboinensis Poir.

Flindersia
pimenteliana F.Muell.
Flindersia schottiana
F.Muell.

Halfordia kendack
(Montrouz.)
Guillaumin

Tw75005

Tw73480, Tw74900,
Tw73457, Tw73456

Tw74676, Tw74708,
Tw74539

Tw74604, Tw74686

Tw72401, Tw72875,
Tw74351, Tw73787,
Tw73523, Tw73076,
Tw73091, Tw74792,
Tw74623

Tw74929

Tw72275, Tw73166

Tw72036, Tw71709,
Tw71555, Tw72200,
Tw74641, Tw71825,
Tw71701, Tw71941,
Tw71557, Tw73768,
Tw71936

Tw74980, Tw74178,
Tw73305, Tw71927,
Tw74552, Tw73141,
Tw74769

Tw74447, Tw73108,
Tw74925, Tw73247,
Tw73565, Tw72493,
Tw74141

Tw73449

Tw74818

Tw72004, Tw73779

Tw74356, Tw73487,
Tw71131, Tw72399,
Tw72609, Tw72427,
Tw73255, Tw74553,
Tw74597

Tw74368, Tw74095,
Tw74003, Tw74021

Tw73563

Tw73608

Tw74224

Tw73424, Tw72509

Tw71635, Tw73372

Tw72156

Tw74074, Tw74114,
Tw72401a, Tw73725

Tw74798

Tw72251

Tw73643, Tw71255,
Tw73956, Tw71199

Tw73771, Tw72098,
Tw74964

Tw74501, Tw72662,
Tw73257

Tw72969

Tw74229

Tw71043

Tw74536, Tw72383,
Tw73361

Tw73605, Tw73597

Tw73259

Tw72792
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Melicope  bonwickii =~ Tw74408, Tw73558,
(F.Muell.) T.G.Hartley Tw72362
Tw72538, Tw73223,
Tw73173, Tw72578,
Tw72434, Tw71777,
Melicope J.R.Forst. & Melicope elleryana = Tw74530, Tw73074,
G.Forst. (F.Muell.) T.G.Hartley Tw73940, Tw73280,
Tw71750, Tw73066,
Tw73954, Tw72850,

Tw71782, Tw72279

Tw74537, Tw73136,
Tw71153, Tw73407,
Tw74735, Tw72165

Tw74466
Melicope exuta
T.G.Hartley Tw72853 Tw72277
Sabiaceae 1 1 Meliosma Blume 1 1 MIGIIGETiIE . [TREE Tw74217 Tw72135
(Roxb.) Maxim.
Casearia Jacq. 1 1 S::fana grewiifolia Tw74586 Tw74567
Salicaceae 4 2 :
ltoa stapfii (Koord.) = Tw73275, Tw73285,
Itoa Hemsl. 3 1 Sleumer TW73490 Tw73471
Arytera Blume 1 1 Arytera litoralis Blume = Tw74461 Tw74352
Dimocarpus Lour. 1 1 E;Trocarpus longan 1 71738 Tw71673
Tw73343, Tw72540,
Tw72012, Tw73807,
Tw71554, Tw71661,
Tw73121, Tw72409,
Tw73392a,
Tw74998b, Tw73881,
Tw74858, Tw73518,
Tw74596, Tw71319,
Tw72243, Tw71729, @ Tw71461, Tw72743,
Tw71324, Tw71224, Tw71950, Tw73630,
Tw72808, Tw71257, Tw71120, Tw71960,
Tw71148, Tw73730, @ Tw72529, Tw74998c,
Sapind a8 32 Tw71944, Tw71478, Tw72234, Tw71386,
apindaceae Tw72625, Tw73408, Tw72524a, Tw73604,
Pometia J.R.Forst. & 83 28 Pometia pinnata Tw71242, Tw71954, Tw71363, Tw72043a,
G.Forst. J.R.Forst. & G.Forst. Tw73473, Tw71650, Tw71380, Tw72443,

Tw72913, Tw72888, @ Tw74516, Tw74170,
Tw71389, Tw72455, = Tw72599, Tw71151,
Tw72240, Tw73609, @ Tw71820, Tw73325,
Tw73881a, Tw73219, = Tw72530, Tw71126,
Tw72807, Tw74583, @ Tw73375, Tw72541,
Tw74511, Tw74989, Tw72534,Tw71065
Tw73159, Tw74889,

Tw73397, Tw74426,

Tw74780, Tw72581,

Tw72608, Tw74631,

Tw71041, Tw74998a,

Tw71563, Tw72325,

Tw73392, Tw72529a,

Tw71144, Tw71314,
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Tristiropsis Radlk.

Burckella Pierre

Madhuca Buch.-Ham.

exJ.F.Gmel.

Palaquium Blanco

14

40

Tristiropsis
acutangula Radlk.

Burckella macropoda
(K.Krause) H.J.Lam

Burckella polymera
P.Royen

Madhuca

boerlageana (Burck)
Baehni

Madhuca
leucodermis
(K.Krause) H.J.Lam

Palaquium
amboinense Burck

Palaquium
galactoxylum
(F.Muell.) H.J.Lam

Palaguium lobbianum
Burck

Palaquium
obtusifolium Burck
Palaquium ridleyi King
& Gamble

Palaquium supfianum
Schltr.

Tw72043, Tw71492,
Tw74177, Tw72431,
Tw72787, Tw74263,
Tw72970, Tw71477,
Tw71913, Tw72228,
Tw72601, Tw73176,
Tw73220, Tw71400,
Tw73890, Tw72524,
Tw72118, Tw71605,
Tw71358, Tw71975,
Tw71419, Tw72582,
Tw73398, Tw73375a
Tw72225, Tw73932,
Tw72458

Tw74329, Tw73632,
Tw74326, Tw73053,
Tw74200, Tw74737
Tw73695, Tw74924,
Tw71498, Tw71448,
Tw74961, Tw74754,
Tw71481, Tw71603

Tw74068

Tw73221, Tw74160,
Tw73405

Tw72042a, Tw71809,
Tw74278, Tw74606,
Tw74204, Tw74175,
Tw74841, Tw72973,
Tw71967, Tw71297,
Tw71963, Tw71982,
Tw72972, Tw71955,
Tw74327, Tw71816,
Tw73123a, Tw71300

Tw73603, Tw72991,
Tw73006

Tw74051, Tw74032,
Tw71320, Tw74770,
Tw74917, Tw72786,
Tw73101, Tw72937,
Tw71369, Tw73793,
Tw71374

Tw74485, Tw73770,
Tw73540

Tw74209, Tw74358,
Tw74359

Tw72924

Tw72223, Tw71947

Tw72512, Tw73953

Tw71474,
Tw71594

Tw73607

Tw72352,

Tw71258, Tw71669

Tw71366,
Tw71164,

Tw72042,
Tw73123,

Tw74657, Tw73891

Tw73008

Tw74888,

Tw71309,

Tw71200, Tw74707

Tw73307, Tw72725

Tw73599, Tw72797

Tw71583

172



Simaroubaceae

Stemonuraceae

Styracaceae

Tetramelaceae

Theaceae

Planchonella Pierre

Sarcosperma Hook.f.

Ailanthus Desf.

Stemonurus Blume

Bruinsmia Boerl.

Koord.

Octomeles Miq.

Tetrameles R.Br.

Polyspora Sweet

&

25

3

12

Palaquium
warburgianum Schltr.
ex K.Krause
Planchonella
chartacea (F.Muell. ex
Benth.) H.J.Lam

Planchonella
keyensis H.J.Lam

Planchonella menait
(Vink) Swenson
Planchonella
myrsinodendron
(F.Muell.) Swenson,
Bartish & Munzinger
Planchonella obovata
(R.Br.) Pierre
Planchonella
pomifera (Pierre ex
Baill.) Dubard
Planchonella
torricellensis
(K.Schum.) H.J.Lam
Planchonella
xylocarpa (C.T.White)
Swenson, Bartish &
Munzinger
Sarcosperma
paniculatum (King)
Stapf & King

Ailanthus integrifolia
Lam. ex Steud.

Stemonurus
monticola
(G.Schellenb.)
Sleumer

Bruinsmia
styracoides Boerl. &
Koord.

Octomeles
sumatranum Miq.

Tetrameles nudiflora
R.Br.

Polyspora
amboinensis  (Miqg.)

Tw71571

Tw74391, Tw74213

Tw72413, Tw72213,
Tw72926, Tw71784,
Tw72435

Tw74665, Tw73684,
Tw74087, Tw74028

Tw74313, Tw74935

Tw71485, Tw73390,
Tw71346

Tw72749

Tw73538, Tw74556,
Tw74517, Tw73566,
Tw73358

Tw71810, Tw74607,
Tw71811

Tw74548, Tw73460,
Tw74816

Tw73309, Tw73549,
Tw73336, Tw71345,
Tw71084, Tw73627,
Tw74971

Tw74382, Tw80936,
Tw73716, Tw74212,
Tw74594, Tw73014

Tw72860, Tw74709,
Tw74216

Tw72782, Tw72085,
Tw71342, Tw73791,
Tw72784, Tw72360,
Tw72133, Tw71948,
Tw73556, Tw73149,
Tw72335, Tw74783
Tw72160, Tw73815,
Tw72449

Tw74153, Tw74670,
Tw74150

Tw71263

Tw73658

Tw71431, Tw71047

Tw72574, Tw72025

Tw72475

Tw72241

Tw71089

Tw71813, Tw72889

Tw71812

Tw73250, Tw73130

Tw73917,
Tw73318

Tw71232,

Tw74086, Tw73005

Tw74677

Tw73419,

Tw72837,

Tw73942, Tw72407

Tw73148

Tw73747, Tw73690
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Table 8.9: Overview of the applied class counts and simulations for the experiment in Chapter 5 on generalisation of object re-identification beyond the learned taxonomic scope.

Number of Classes

Number of Simulations per Class count

10 50
15 30
20 20
30 15
50 10
75 6

100 3

Orel, Peter G.Wilson,
Curry & Luu

Polyspora  papuana
(Kobuski) Orel, Peter
G.Wilson, Curry & Luu

Tw74402,
Tw72231

Tw72492,

Tw73570
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